

Nanotechnoloc

Aliya Alzhanova

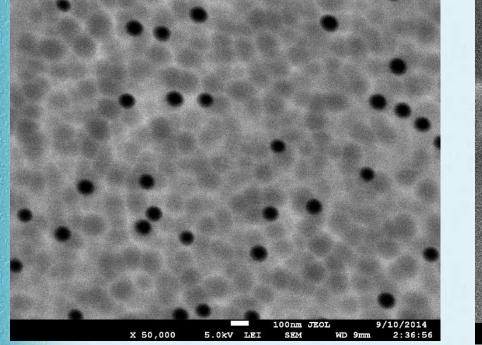
TRACK FORMATION TECHNOLOGY

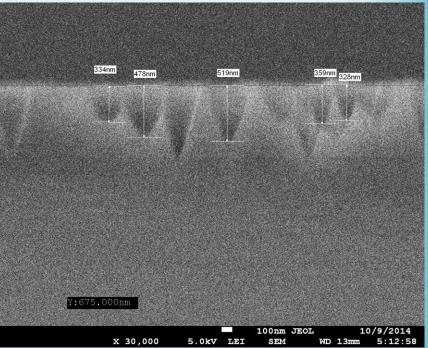
Based on Si - fully compatible with silicon technology

Silicon - well researched material

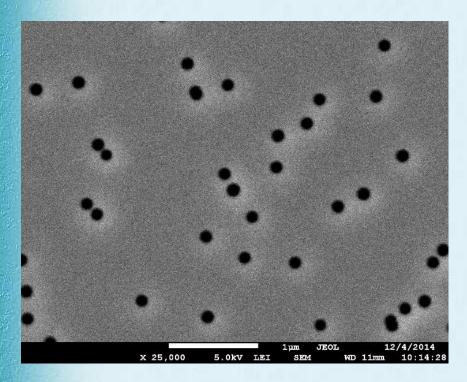
Competitive price of structure

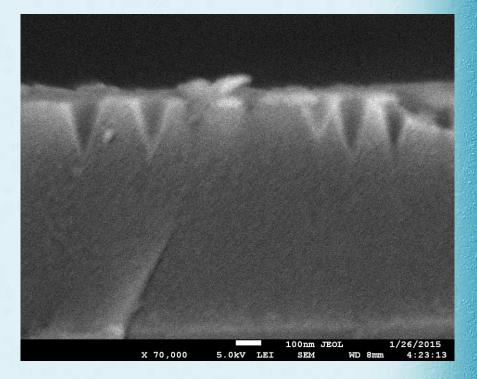
Cyclotron DC-60





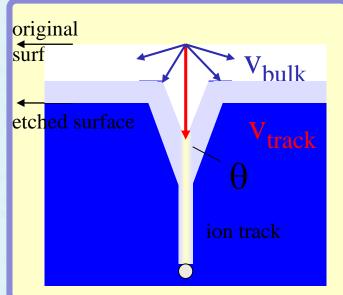
The samples were irradiated on a DC-60 cyclotron at normal beam incidence with 132 and 200 MeV Xe ions under fluencies (Φ) 1×10⁹ cm⁻².


Etching latent tracks



The surface and cross section of the SiO₂/Si sample for 6 min etching in 4 % HF (Xe, 132 MeV, 1×10⁹ cm⁻ ²)

The surface and cross section of the SiO₂/Si sample for 6 min etching in 4 % HF (Xe, 200 MeV, 1×10⁹ cm⁻²)

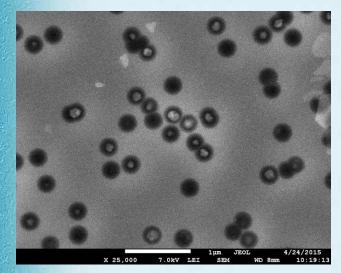


The conical shape of pores results from the matching material etching ratio in the area of V_t track and V_b undamaged matrix bulk.

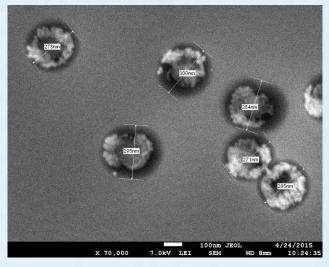
Knowing the values of the depth z, the etching duration t_e , and the half cone angle of the holes θ , the track and bulk etching rates (V_t and V_b) can be determined using the relations:

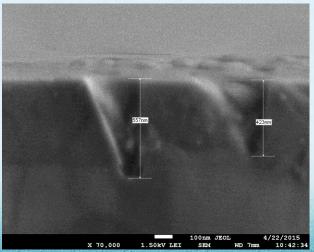
$$z = (V_t - V_b)t_e$$

 $\sin \theta = V_b / V_t$



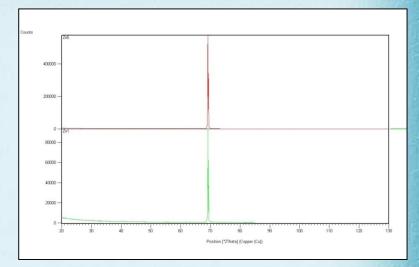
For the etching time of ten minutes, average result of nine measurements for V_t and V_b is 72 nm/min and 24 nm/min, respectively.

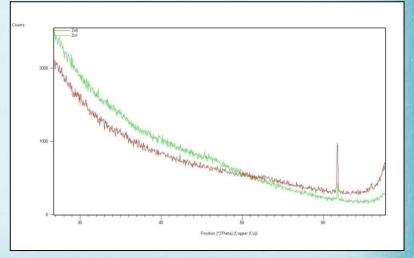

[2] Spohr R. Ion tracks and micro technology: principles and applications. Germany, Wisbaden: Viweg Verlag, 1990 272 p.


Si/SiO₂/Zn (deposition)

Xe (132 MeV, 1×10⁹ cm⁻²), after chemical deposition

Xe (200 MeV, 1×10⁹ cm⁻²), after electrochemical deposition during 7 min




Cross section of SiO₂/Si after Zn deposition, (Xe, 200 MeV, 1×10⁹ cm⁻²)

XRD for Si/SiO₂/Zn system

Name	a	C	c/a
PDF#361 451 - reference	3,249	5,206	1,602
Zn-1 (ChD)	3,231	5,190	1,606
Zn-5 (ElChD)	3,291	5,318	1,616

XRD analysis shown that the investigate structure is a nanostructure ZnO with Miller indexes (200) for θ =62,3° and (201) for 69.5°, according to the table the investigate structure is a little bit different from the reference values.

Conclusion

- It has been shown that irradiation with Xe ions in the energy range of 132 to 200 MeV at a fluence of 1×10⁹ cm⁻² allows to form a channel system comprising channels of regular (conical) shape with nearly the same size in amorphous SiO₂.
- According to XRD diffractograms, the formation of ZnO in nanostructured channels of the systems SiO_2/Si after Zn deposition is shown.

Main publications

- Al'zhanova A., Dauletbekova A., Komarov F., Vlasukova L., Yuvchenko V., Akilbekov A., Zdorovets M. Peculiarities of latent track etching in SiO₂/Si structures irradiated with Ar, Kr and Xe ions// Nuclear Instruments and Methods in Physics Research B. – 2016. – Vol. 374. – P. 121-124. (Impact Factor 1,22)
- Vlasukova L., Komarov F., Yuvchenko V., Baran L., Milchanin O., Dauletbekova A., Alzhanova A., Akilbekov A. Etching of latent tracks in amorphous SiO₂ and Si₃N₄: Simulation and experiment//Vacuum. – 2016. – Vol. 129. – P. 137-141. (Impact Factor 1,58)
- Vlasukova L., Komarov F., Parkhomenko I., Yuvchenko V., Milchanin O., Mudryi A., Zuvyl'ko V., Dauletbekova A., Alzhanova A., Akilbekov A. Photoluminescence and enhanced chemical reactivity of amorphous SiO₂ films irradiated with high fluencies of 133 –MeV Xe ions//Vacuum. 2017. Vol. 141. P. 15-21. (Impact Factor 1,58)

Scopus

 Dauletbekova A., Alzhanova A., Akilbekov A., Mashentseva A., Zdorovets M., Balabekov K. Synthesis of Si/SiO₂/ZnO nanoprous materials using chemical and electrochemical deposition techniques//AIP Conference Proceedings . – 2016. – Vol. 1767. – (020005), P. 1-4.

An innovative patent for the invention

"Method of producing a nanoporous material based on SiO₂/Si structures" (author certificate No.94266, patent No.31503), 2016.

157	
	МИНИСТЕРСТВО ЮСТИЦИИ РЕСПУБЛИКИ КАЗАХСТАН
	УДОСТОВЕРЕНИЕ АВТОРА
	№ 94266
Настоя	щим удостоверяется, что Альжанова Алия Ермековиа (KZ)
	беков Абдираш Тасанович (КZ); Даулетбекова Алма овна (КZ)
являетс	ся(ются) автором(ами) изобретения
(11) 315	303 (
(54) Cn	особ получения нанопористого материала на основе структур SiO/S
(73) Па	тентообладатель: Республиканское государственное предприятие на праве хозийственного ведения "Евразийский национальный университет имени Л.Н.Гумилева" Министерства образования и науки Республики Казахстан (КZ)
(21) 201 (22) 17.	15/0587.1 04.2015
	стель министра юстиции ики Казахстан Э. Азимова

Contacts

Alzhanova Aliya

PhD in Physics

Phone number: +7 777 11 999 22; +7 702 999 10 54

E-mail: aliya.alzhan@yandex.kz

Thank You for attention!