
Quasipotential equations solutions for three 
dimensional harmonic oscillator in the relativistic 

configuration representation

Grishechkin Yu.A.

Kapshai V.N.

Gomel state university of F. Scorina

The actual problems of microworld physics, Grodno, Belarus, 12-24, August, 2018



Plan

• Quasipotential equations

• Transformation of integral equations to the Sturm-Liouville problem

• The methods for approximate solution of the Logunov-Tavkhelidze equation

• Numerical solution of quasipotential integral equations in the RCR

• Analysis of results

2/20



Quasipotential equations

• Quasipotential equations in the momentum representation (MR):
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j=1 (j=3) – is the Logunov-Tavkhelidze equation (modified)

j=2 (j=4) – is the Kadyshevsky equation (modified)

The Green functions:
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2 2qE m - is the energy of two-particle system

m - is the mass of each particle

( , )V p k - potential
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Quasipotential equations in the relativistic configurational representation (RCR):
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- is the module of radius-vector in the RCR

0q 

r

- is the parameter related to energy as 2 2 chq qE m 

The Green functions in the RCR:
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- potential in the RCR( )V r
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The relationship between the values in the MR and in the RCR:
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Wave functions:

The values in the RCR and in the MR are interrelated by means of the Shapiro
integral transformation, which in the spherically symmetric case is the Fourier
transformation

0  - is the rapidity related to momentum as shp m 

Green functions:
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Potential:
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The non-relativistic limit of the above formulas and equations leads to the
corresponding formulas and equations of the non-relativistic quantum theory.
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Transformation of integral equations to 
the Sturm-Liouville problem

The harmonic oscillator type potential in the RCR :
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The potential in the momentum representation:
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The substitution of the potential in the integral equation in the MR leads to 
the differential equation (DE):

The boundary conditions:
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problem



The methods for approximate solving of 
the Logunov-Tavkhelidze equation
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The Sturm-Liouville problem for the Logunov-Tavkhelidze equation:
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The DE solution can be expressed through the modified Mathieu functions. However, the study of
such solutions is a cumbersome problem. Let us consider the approximate analytical solution of the
Sturm-Liouville problem.

Let us replace the variable 1 2 exp( ) 2z m 
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In the presented DE, we omit the right-hand side. The modified Bessel functions satisfy the 
equation obtained in this way.

The second of the boundary conditions holds for the Macdonald function
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Reduction of the equation to the modified Bessel equation
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Taking into account the first boundary condition leads to a transcendental equation 
for the quantity ν

 1 2 2 0iK m  

which is the condition for quantization of energy.

The approximate solution of the Logunov-Tavkhelidze equation in the MR:
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n=1,2,3,… - is the state number of the relativistic harmonic oscillator

nC - is the normalization constant

n - is the root of the transcendental equation, connected with the energy of the 
relativistic harmonic oscillator by the formula
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The approximate wave function in the RCR:
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Γ(z) – is the gamma function, 1F2(a; b, c; z) – is the generalized hypergeometric series

To find the constants Cn we use the normalization conditions for the wave functions : 
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The advantages of the solving method:

• the possibility of finding the analytical solution: wave functions in the MR and in the RCR

Disadvantages of the solving method:
• the absence of a non-relativistic limit of the results obtained
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Solution by the Galerkin method

We represent the unknown wave function as the sum:
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The number of terms N in the sum depends on the required accuracy of the solution obtained.

The functions have the form analogous to the wave functions of a non-relativistic 
harmonic oscillator:
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- is the Hermite polynomials( )nH x

The corresponding eigenvalues are defined as (3 4 )s s  
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After substituting the sum into the equation, we obtain the following equality:
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Multiplying the resulting equality by the function , and integrating the resulting equality 
from zero to infinity, we obtain the linear system of N + 1 equations
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The advantages of the solving method:
• the possibility to calculate quickly a large number of energy values simultaneously 

Disadvantages of the solving method:
• the need for cumbersome preliminary analytical calculations



Numerical solving quasipotential integral equations in the RCR
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The solution was found by the method that we used to study resonant states earlier on
the basis covariant two-particle integral equations in the RCR

Using quadrature formulas we replace integrals in the equations by the sums. As the
results we obtain homogeneously systems of linear algebraic equations

0M  ( ) ( , , ) ( )j
n m n m m q n m mlM W G r r V r  



Wn, rn − are the coefficients and nodes of the quadrature formula

− is the vector of wave functions in the nodes

The condition for existence of nontrivial system solution

( ) det 0qf M   - the energy quantization conditions
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It is advisable to represent roots of equation graphically on the complex plane .

In the case of the potential under consideration the roots are located on the real axis.

q
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The advantages of the solving method:
• the possibility to apply this method to solve various equations with a wide class of 

potentials, in the case of bound states and resonant states

Disadvantages of the solving method:
• low computing speed
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Energy eigenvalues of the relativistic harmonic oscillator

State 

number 

n 

Numerical solution of 

DE in the MR by 

Numerov’s method 

Solution of the   

modified Bessel equation 

in the MR 

 

Solution by 

Galerkin’s method 

in the MR 

 

Solution of integral 

equation  

in the RCR 

ω=0,5 

1 3,3266856 3,2827875 3,3266856 3,3266856 

2 4,7745776 4,7499059 4,7745776 4,7745776 

3 6,0647951 6,0475481 6,0647951 6,0647951 

4 7,2602146 7,2469130 7,2602147 7,2602147 

5 8,3899913 8,3791426 8,3899916 8.3899916 

ω=1 

1 4,4575153 4,4340641 4,4575153 4,4575153 

2 6,9820604 6,9688641 6,9820604 6,9820604 

3 9,2137508 9,2045646 9,2137508 9,2137508 

4 11,2795927 11,2725341 11,2795928 11,2795928 

5 13,2337174 13.2279780 13,2337177 13,2337177 

ω=4 

1 9,9176430 9,9125166 9,9176452 9,9176430 

2 17,4372346 17,4338824 17,4372462 17,4372346 

3 24,1520149 24,1496003 24,1521891 24,1520149 

4 30,4214462 30,4195702 30,4220768 30,4214463 

5 36,3935674 36,3920360 36,3983593 36,3935676 

ω=10 

1 18,7458897 18,7441887 18,7470688 18,7458718 

2 34,3783383 34,3770590 34,3833417 34,3783383 

3 48,5435979 48,5426370 48,5820152 48,5435979 

4 61,8714963 61,8707376 61,9781868 61,8714966 

5 74,6343046 74,6336807 75,0707392 74,6343053 

 • energy levels are not equidistant;
• the accuracy of the solutions by the method of reduction to the modified Bessel

equation is improved with increasing of coupling constant ω;
• the accuracy of the solutions by the Galerkin’s method is worsens with increasing of

coupling constant ω
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The dependence of energy on the value of

coupling constant at m=1

The wave functions in the momentum
representation at m=1 ω=1

• the dependence of energy on the value of coupling constant ω in this interval
is almost linear;

• the graphics of the approach wave function are indistinguishable visually
from numerical ones for the indicated quantities m и ω;

• the number of wave functions zeros in the MR is equal to state number of
relativistic harmonic oscillator
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The wave functions of ground state

The wave functions in the RCR at m=1, ω=5

The wave functions of 
second and third states

• the graphics of the approach wave function are indistinguishable visually from numerical
ones for the indicated quantities m и ω;

• the wave functions in the RCR have additional zeros in comparison with the wave
functions in the MR and the wave functions of non-relativistic harmonic oscillator



Conclusions and results
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• the solutions of the quasipotential equations for harmonic oscillator are found in
the spherically symmetric case;

• the Logunov-Tavkhelidze equation in the momentum representation was
transformed to the Sturm-Liouville problem. The approximate analytical and
numerical solutions of this problem were found;

• the obtained wave functions in the RCR have additional zeros in comparison with
corresponding wave functions in the MR and the wave functions of non-relativistic
harmonic oscillator. The number of zeros for the fixed quantum state depends on
value of coupling constant of relativistic harmonic oscillator.



Thank you for your attention!
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