
High-precision methods for Coulomb, linear
confinement and Cornel potentials in momentum

space

Viktor Andreev

Theoretical Physics Department
Francisk Skorina GSU, Gomel, Belarus

XIV-th International School-Conference “Actual Problems of Microworld Physics”

In Memory of Professor Nikolai Shumeiko

We use special quadrature formulas for singular and hypersingular integrals to
numerically solve the Schrödinger equation in momentum space with the linear
confinement potential, Coulomb and Cornell potentials. It is shown that the
eigenvalues of the equation can be calculated with high accuracy, far exceeding
other calculation methods.
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Introduction

A numerical study of some relativistic QCD-motivated models is reduced
to solving the problems in momentum space (for instance, Bethe–Salpeter
equation [Bete:1951], spinless Salpeter equation [Salpeter:1952], CST model
[Savkli:1999me], Poincaré-invariant quantum mechanics (or relativistic Hamiltonian
dynamics) approach for description of bound states [Keister:1991] and others.
Typically these equations are an integral equations and reduced to the Schrödinger
equation in the nonrelativistic limit.

Advantages of using momentum representation for solving physics problems have
long attracted the attention of researchers for a long time [Salpeter:1957,
Eyre:1986]. In momentum space, in contrast to coordinate space, relativistic effects
are much simpler. For example there is no need for additional constructions related
to the definition of the relativistic kinetic energy operator T (k).

The momentum space code has an additional advantage of being easily adaptable
to relativistic equations. It is also relatively easy to obtain a relativistic interaction
potential with the use of appropriate elastic scattering amplitudes [Lucha:1991],
since the calculation is carried out initially in momentum space, which here arises
naturally. In momentum space formulation is also flexible means of incorporating
such dynamical effects as finite size of particles, vacuum polarization and so on.
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Introduction

However, the problem of using momentum space is aggravated by the fact that
even the simplest interaction potentials in the momentum representation lead to
integrals with singularities.
At present, there are many papers devoted to the solution of integral equations for
bound states with singular kernels. So in the Refs. [Gammel:1973, Kwon:1978,
Mainland:2001, Norbury:1994, Norbury:1994a, Maung:1993, J.Chen:2013] various
methods of numerical solution of equations with a logarithmic singularity are
developed.

Equations with linear confinement potentials containing a double-pole singularity
are considered in Refs. [Eyre:1986, Spence:1993, Hersbach:1993, Norbury:1992,
Tang:2001,Deloff:2006,J.Chen:2013-14,J.Chen:2012,Leitao:2014]. The subtraction
technique (Landé-subtracted approach) that isolates the singularity in an integral
that can be evaluated analytically is most often used.

Therefore, the accuracy of solutions for a number of problems with Coulomb
and linear confining potentials was relatively low (10−4 ÷ 10−6) [Norbury:1992,
Norbury:1994, Tang:2001, Deloff:2006], though it is possible to reach a higher
accuracy in coordinate space ∼ 10−11 ÷ 10−13 [Kang:2006].
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Introduction

The problem of accuracy in calculating characteristics of the bound quantum
systems has more than just an academic nature. A high precise calculation of
various energy corrections of the hydrogen-like systems is an relevant problem since
the experimental measurements of such values are performed with high accuracy
∼ 10−13 [Udem:1997,Liu:1999].

Thus, when calculating characteristics of the bound quantum systems, one should
allocate the problem of developing computational methods and the development of
mathematical methods, which would allow one to simplify the calculation schemes
and obtain results with a high degree of accuracy required for the experiment.

The most promising method to increase the accuracy of solution of integral
equations of bound systems with singular kernels, is the method of quadratures,
where the weight factors depend upon the location of the singularity.
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Introduction

The idea of inclusion of singularities into the weight factors is not new and it
is actively used in the numerical calculations of singular integrals [Chan:2003,
Bichi:2014,Z.Chen:2011,Sheshko:1976, et al.]. In [Deloff:2007], such an approach
was used in solving Schrödinger equation with the Coulomb potential (logarithmic
singularity), which allowed one to increase an accuracy of solution up to ∼ 10−13÷
10−14.

The aim of this work is to develop methods for the precision calculation of
energy spectra of the bound state equations in the momentum representation with
Coulomb, linear confining, and Cornell potentials.
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The method of solving integral equations

The Schrödinger equation for centrally symmetric potentials Ṽ (|r|) = Ṽ (r) after
partial expansion can be written as follows:

k2

2µ
φn`(k) +

∞∫
0

V`(k, k′)φn`(k′)k′2dk′ = En`φn`(k) , k = |k| , (2.1)

where wave function φn`(k) is the radial part of φ (k) and V`(k, k′) denotes the
`-th partial wave projection of the centrally symmetric potential

V`(k, k′) =
2
π

∞∫
0

j` (k′ r) j` (kr) Ṽ (r) r2dr, (2.2)

where j` (x) is the spherical Bessel function.

The numerical solution of integral equation (2.1) will be turned into a finite matrix
equation with help of the quadrature formulas for the integrals in this equation. At
the first stage we make the transition from the semi-infinite interval of integration
(0,∞[ to the “standard” interval [−1, 1] by means of the change of variables
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The method of solving integral equations

∞∫
0

f (k) dk =

1∫
−1

f (k(t))
dk
dt

dt . (2.3)

The function k (t) satisfies the boundary conditions

k (t = −1) = 0 , k (t = 1) = ∞ . (2.4)

Among various possibilities, the following mappings of the domain (0,∞) onto
(−1, 1) are used more frequently [Bielefeld:1999, Savkli:1999me, Tang:2001, van
Iersel:2000,Deloff:2006]:

k(t) = β0
1 + t

1− t
, (2.5)

k(t) = β0

√
1 + t

1− t
, (2.6)

where β0 is a numeric parameter. It can be used for the additional control of the
convergence rate of numerical process.
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The method of solving integral equations

The standard approach is based on the approximation of integral (2.3) by means of
the quadrature formula

∞∫
0

f (k) dk ≈
N∑

j=1

ω̃j f (kj) , (2.7)

where N is the number of abscissas and the ω̃j are related to the tabulated ωj

weight factors for the interval (−1, 1) by the relationship: ω̃j = (dk/dt)j ωj .

As a result, the numerical solution of integral equation (2.1) can be reduced to
the eigenvalue problem for the matrix H which arises when using the quadrature
formulas of type (2.7) for the integrals:

N∑
j=1

H (ki, kj)φ(kj) =
N∑

j=1

Hijφj = E(N)φi , (2.8)

where E(N) ≈ En` and the matrix-elements Hij are given by:

Hij =
k2

j

2 µ
δi,j + w̃j k

2
j Vl(ki, kj) . (2.9)
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The method of solving integral equations

However, the description of bound states in momentum space has a singular kernel
for both the Coulomb and linear confinement potentials. Let us illustrate this
statement.

The Coulomb potential Ṽ (r) = −α
r in momentum space has the form

V`(k, k′) = − αQ`(y)
π(kk′)

, (2.10)

where the coupling parameter α is dimensionless.

Parameter y in (2.10) is the combination of momenta

y =
k2 + k′

2

2kk′
, (2.11)
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The method of solving integral equations

and the Q`(y) is Legendre polynomial of the second kind:

Q`(y) = P`(y)Q0(y)− wl−1(y) , (2.12)

Q0(y) =
1
2

log
∣∣∣∣1 + y

1− y

∣∣∣∣ , wl−1(y) =
l∑

n=1

1
n
Pn−1(y)Pl−n(y) . (2.13)

In Eq. (2.12) P`(y) is the Legendre polynomial of the first kind.

From (2.12) and (2.13) it follows that potential (2.10) has a logarithmic singularity
in the case where k = k′ (y = 1).

The linear confinement potential V (r) = σr with parameter σ in momentum space
is written in the form

V`(k, k′) =
σQ′`(y)
π(kk′)2

. (2.14)
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The method of solving integral equations

With the help of (2.12) and (2.13) we find that the derivative Q′`(y) in Eq. (2.14)
is given by the relation

Q′`(y) = P ′`(y)Q0(y) + P`(y)Q′0(y)− w′l−1(y) , (2.15)

Q′0(y) =
1

1− y2
= −

(
2kk′

k′ + k

)2 1
(k′ − k)2

. (2.16)

As follows from (2.16), the function Q′`(y) is hypersingular in the case k = k′, and
V`(k, k′) consequently the potential itself is also hypersingular.

As follows from the above, the problem of calculating the elements (2.9) for the
Coulomb and linear confinement potentials is not complex if i 6= j. However, for
i = j (k = k′) it is not possible to directly compute Hij due to the presence of
singularities.
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Landé-subtracted method of solving equations with singular kernels

To obtain the solution, the most frequently used method assumes the “reduction”
of the singularity with the help of a counter term (the Landé subtraction method)
[Kahana:1993,Norbury:1992,Hersbach:1993,Tang:2001,J.Chen:2012,Leitao:2014].

The maximum possible accuracy in solving the Schrödinger equation in momentum
space reaches ∼ 10−6 for both Coulomb and linear potential, though in coordinate
space one may reach a considerably higher accuracy ∼ 10−11÷10−13 [Kang:2006].
It is therefore necessary to find such methods of finding the eigenvalues that are
comparable with the accuracy of solutions obtained in coordinate space.

In contrast to the Landé-subtracted approaches used in solving the Schrödinger
equation, the main feature of the developed approach, which should increase the
accuracy of solving Eq. with singular potentials, is the inclusion of singularities into
the weight factors ωi of the quadrature formula of type (2.7).
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Landé-subtracted method of solving equations with singular kernels

Furthermore, we consider the general calculation method of such weight factors
using the interpolation polynomial

Gi (t) =
P

(α,β)
N (t)

(t− ξi,N )P ′(α,β)
N (ξi,N )

, (3.1)

where ξi,N are the zeroes of the Jacobi polynomial

P
(α,β)
N (ξi,N ) = 0 (i = 1, 2, . . . , N) . (3.2)

Of all Jacobi polynomials P (α,β)
N (z), it is better to take polynomials with α, β =

±1/2. These polynomials P (±1/2,±1/2)
N (z) associated with Chebyshev polynomials.

There are several kinds of Chebyshev polynomials. These include the Chebyshev
polynomials of the first Tn(x) , second Un(x), third Vn(x) and fourth Wn(x) kinds
[Mason:2002].

Let’s introduce a function K
(α,β)
n (z) that generalizes the Chebyshev polynomials

by defining
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Landé-subtracted method of solving equations with singular kernels

K(α,β)
n (z) =


Tn(z) , α = β = −1/2 ,
Un(z) , α = β = 1/2 ,
Vn(z) , α = −β = −1/2 ,
Wn(z) , α = −β = 1/2 .

(3.3)

For these polynomials, the convergence of quadratures is maximal relative to other
Jacobi polynomials. Moreover, the zeroes of polynomials can be easily calculated
(there are analytical expressions) and many integrals for the weight factors with
singularities are given by relatively simple formulas [Kaya:1987, Golberg:1990,
Mason:1999,Sheshko:1976].
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Quadrature scheme for the evaluation of singular integrals

Quadrature scheme

Let us find the quadrature formula for the integral

I (z) =

1∫
−1

F (t)w(t)g (t, z) dt (4.1)

where g (t, z) is the singular function at t = z and F (t), w(t) are the part of the
kernel without singularities for all −1 < t, z < 1.

For this purpose, the function F (t) in (4.1) is replaced by the following expression
with the help of interpolation polynomial (3.1)

F (t) ≈
N∑

i=1

Gi (t) F (ξi,N ) , (4.2)

where ξi,N are the zeroes of Jacobi polynomial (see (3.2)).
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Quadrature scheme for the evaluation of singular integrals

Substituting expansion (4.2) into I (z), the quadrature formula for the integral takes
the form

I (z) ≈
N∑

i=1

ωi (z)F (ξi,N ) (4.3)

with

ωi (z) =
ω̃N (z, ξi,N )

P
′(α,β)

N (ξi,N )
, (4.4)

where additional function are introduced to simplify the notation

ω̃j (z, ξ) =

1∫
−1

g (t, z) w (t)
P

(α,β)
j (t)
t− ξ

dt . (4.5)
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Quadrature scheme for the evaluation of singular integrals

The use of the Christoffel-Darboux formula for the Jacobi polynomials

n∑
m=0

1
hm

P (α,β)
m (x)P (α,β)

m (y)

=
kn

kn+1hn

P
(α,β)
n+1 (x)P (α,β)

n (y)− P
(α,β)
n (x)P (α,β)

n+1 (y)
x− y

, (4.6)

where

km =
Γ (2m+ α+ β + 1)

2mΓ (m+ α+ β + 1) Γ (m+ 1)
,

hm =
2α+β+1Γ (m+ α+ 1)

(2m+ α+ β + 1)Γ (m+ 1)
Γ (m+ β + 1)

Γ (m+ α+ β + 1)
. (4.7)

gives the result for the weight factor in the form

ωi (z) = λ
(α,β)
i,N

N−1∑
m=0

1
hm

P (α,β)
m (ξi,N )J (α,β)

m (z) . (4.8)
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Quadrature scheme for the evaluation of singular integrals

The Christoffel symbols λ(α,β)
m,N in (4.8) for the Jacobi polynomials are defined by

the relation [G. Szegö:1993]

λ
(α,β)
m,N =

1∫
−1

w(α,β)(t)P (α,β)
m (t)

P
′(α,β)

N (ξi,N ) (x− ξi,N )
dt

=
2α+β+1Γ (N + α+ 1) Γ (N + β + 1)

Γ (N + 1)Γ (N + α+ β + 1)

× 1(
1− ξ2i,N

) [
P
′(α,β)

N (ξi,N )
]2 , (4.9)

then the integral J (α,β)
m (z) takes up the form

J (α,β)
m (z) =

1∫
−1

g (t, z)w(t)P (α,β)
m (t) dt . (4.10)
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Quadrature scheme for the evaluation of singular integrals

The coefficient λ(α,β)
i,N is the weight factor for the integral I (z) without the singular

function g(t, z), i.e.

1∫
−1

F (t) w(α,β)(t)dt ≈
N∑

i=1

λ
(α,β)
i,N F (ξi,N ) , (4.11)

where the function w(α,β)(t) is a weight function of the Jacobi polynomial P (α,β)
N (x)

w(α,β)(t) = (1− t)α (1 + t)β
, α, β > −1 . (4.12)

The important case of practical interest is that in which w(t) = 1 and we have

1∫
−1

F (t)dt ≈
N∑

i=1

ωst
i F (ξi,N ) (4.13)

with the weights
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Quadrature scheme for the evaluation of singular integrals

ωst
i =

1

P
′(α,β)

N (ξi,N )

1∫
−1

P
(α,β)
i (t)
t− ξi,N

dt . (4.14)

Using Eqs. (4.8) and (4.10) with g(t, z) = w(t) = 1 the weights in (4.14) read

ωst
i = λ

(α,β)
i,N

N−1∑
m=0

1
hm

P (α,β)
m (ξi,N )J (α,β)

m , (4.15)

where

J (α,β)
m =

2
m+ α+ β

[(
m+ α

m+ 1

)
+ (−1)m

(
m+ β

m+ 1

)]
. (4.16)
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Quadrature scheme for the evaluation of singular integrals

For example, when α = β = −1/2 the relation (4.15) is transformed to the form
[Deloff:2007]

ωst
i = − 4

N

[(N−1)/2]∑
′

k=0

T2k(ξi,N )
4k2 − 1

, (4.17)

where the sign ′ indicate that the first term in the sum is divided by two. The [n]
symbol means that the integer part of the number n is taken.

Therefore, the calculation of (4.4) or (4.10) makes it possible to find the weight
factors for quadrature formula (4.3) with singularities. One important fact is the
calculation of the analytical expressions, since only in this case it is possible to
increase the accuracy of calculations.
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Analytical expressions of weights with a singularity

Analytical expressions of weights with a singularity

Consider the possibility of analytical calculation of the weights for various forms of
singularities, i.e., depending on the form of the function g (t, z).

Cauchy integral

The most known variant of (4.1) in the literature is the Cauchy integral (sign -
∫

)

g (t, z) =
1

t− z
, −1 < z < 1 .

There are many works for this case (see, for example [Golberg:1990,Sheshko:1976]),
in which the different variants of quadrature formulas are proposed. Therefore, it is
possible to obtain formulas for weight factors (4.4) by the direct calculation of the
integral

ωN (z, ξi,N ) =
1

P
′(α,β)

N (ξi,N )
-

1∫
-1

w (t) P (α,β)
N (t)

(t− ξi,N ) (t− z)
dt . (5.1)

Viktor Andreev (Francisk Skorina GSU) High-precision . . . APMP-18, 20 August 2018 23 / 82



Analytical expressions of weights with a singularity

The coefficients (5.1) reduce to the form

ωN (z, ξi,N ) =
1

P
′(α,β)

N (ξi,N )


Π(α,β)

N (z)−Π(α,β)
N (ξi,N )

(z − ξi,N )
, z 6= ξi,N ,

Π ′(α,β)
N (ξi,N ) , z = ξi,N ,

(5.2)

where

Π(α,β)
n (z) = -

1∫
-1

w(t)
P

(α,β)
n (t)
(t− z)

dt . (5.3)

For calculating coefficients

ωi (z) =
ωN (z, ξi,N )

P
′(α,β)

N (ξi,N )
(5.4)

with high degree of accuracy, it is necessary to evaluate integral (5.3) analytically
for various forms of the function w(t).

w(t) = w(α,β) (t) ≡ (1− t)α (1 + t)β
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Analytical expressions of weights with a singularity

The most known representation of w(t) is the form with the Jacobi polynomial
weight function P (α,β)

n (t); that is,

w(t) = w(α,β) (t) ≡ (1− t)α (1 + t)β
.

Then for integral (5.3) one obtains

Π(α,β)
n (z) = Q̄(α,β)

n (z) ,

where

Q̄(α,β)
n (z) = -

1∫
-1

(1− t)α (1 + t)β P
(α,β)
n (t)
(t− z)

dt . (5.5)

In the most general case at arbitrary α and β, the function Q̄(α,β)
n (z) is related to

the second order Jacobi polynomials Q(α,β)
n (z) by the relationship

Q̄(α,β)
n (z) = (−2) (z − 1)α (z + 1)β

Q(α,β)
n (z) , (5.6)
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Analytical expressions of weights with a singularity

where [Bateman:1953]

Q(α,β)
n (z) = 2α+β+n Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(2n+ α+ β + 2)
(z + 1)−β

×(z − 1)−α−n−1
2F1

(
n+ 1, n+ α+ 1; 2n+ α+ β + 2;

2
1− z

)
. (5.7)

w(t) = 1

Consider the integral (5.3), when w(t) = 1. This is the most economical and natural
choice for practical calculations.
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Analytical expressions of weights with a singularity

The subtraction procedure leads us to the relation

Π(α,β)
n (z) = P(α,β)

N (z) =

1∫
−1

P
(α,β)
N (t)
(t− z)

dt

=

1∫
−1

P
(α,β)
N (t)− P

(α,β)
N (z)

(t− z)
dt+ P

(α,β)
N (z) log

(
1− z

1 + z

) (5.8)

Consider equation (5.8) when α = β = ±1/2. We can received that

P(α,β)
N (z) = K

(α,β)
N (z) log

(
1− z

1 + z

)

+4
[N−1

2 ]∑
i=0

K
(α,β)
N−2i−1(z)
2i+ 1

, (α, β = ±1/2)

(5.9)

to the form for all cases, except in the case α = β = −1/2.
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Analytical expressions of weights with a singularity Hypersingular variant

Hypersingular variant

Consider a hypersingular variant of integral (4.4), where g(t, z) = 1/(t− z)2 .

The concept of calculation of the finite part of hypersingular integral was first put
forward by Hadamard (J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial
Differential Equations,1923) and developed in [Shia:1999,Kaya:1987,Kutt:1975, et
al.]. The finite part of hypersingular integral marked by the sign =

∫
is related to the

Cauchy integral by the equation [Kaya:1987]

=

1∫
-1

w(t)F (t)
(t− z)2

dt =
d
dz

 -

1∫
-1

w(t)F (t)
t− z

dt

 , −1 < z < 1. (5.10)

Useful in applications can be a subtraction, in which the hypersingular version of
the equation (4.1) is expressed as

=

1∫
-1

F (t)w(t)
(t− z)2

dt = -

1∫
-1

(F (t)− F (z))
w(t)

(t− z)2
dt+ F (z) =

1∫
-1

w(t)
(t− z)2

dt. (5.11)
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Analytical expressions of weights with a singularity Hypersingular variant

Correspondingly, the weight factors of the quadrature formula

=

1∫
-1

w(t)F (t)
(t− z)2

dt =
N∑

i=1

ωH
i (z)F (ξi,N ) (5.12)

are related to coefficients (5.2) by the relation

ωH
i (z) =

d
dz
[
ωC

i (z)
]

=
1

P
′(α,β)

N (ξi,N )

d
dz
[
ω̃C

N (z, ξi,N )
]
. (5.13)

Then the weight factors of integral (5.12) can be calculated by the formulas
[Andreev:2017]

ωH
i (z) =

1

P
′(α,β)

N (ξi,N )

{
Π
′(α,β)
N (z)

(z−ξi,N ) −
Π

(α,β)
N (z)−Π

(α,β)
N (ξi,N )

(z−ξi,N )2
, z 6= ξi,N ,

1
2Π ′′(α,β)

N (ξi,N ) , z = ξi,N
(5.14)
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w(t) =
√

(1 + t) / (1− t)

For the Cauchy integral at α = −β = −1/2, the quadrature formula for
hypersingular integral has the form [Andreev:2017]

=

1∫
-1

√
1 + t

1− t

F (t)
(t− z)2

dt ≈
N∑

i=1

ωHV
i (z)F (ξi,N ) , (5.15)

where

ωHV
i (z) =

π

V ′N (ξi,N )
×


W ′

N (z)
(z − ξi,N )

− WN (z)−WN (ξi,N )
(z − ξi,N )2

, z 6= ξi,N ,

1
2
W ′′

N (ξi,N ) , z = ξi,N .

(5.16)

and function Vn(z) and Wn(z) are the Chebyshev polynomials of the third and
fourth order, correspondingly [Mason:2002].
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w(t) =
√

1− t2

The quadrature formula for a hypersingular integral with weight function w(t) =√
1− t2 are readily determined in a similar way from the Eq. (5.15).

The appropriate quadrature, takes the form

=

1∫
-1

F (t)
(t− z)2

√
1− t2

dt ≈
N∑

i=1

ωHT
i (z)F (ξi,N ) , (5.17)

where

ωHT
i (z) =

π

NUN−1 (ξi,N )

×


2C(2)

N−2 (z)
(z − ξi,N )

− UN−1 (z)− UN−1 (ξi,N )
(z − ξi,N )2

, z 6= ξi,N ,

4C(3)
N−3 (ξi,N ) , z = ξi,N .

(5.18)
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or

ωHT
i (z) =

4π
N

N−1∑
k=2

cos[(k − 1/2)π/N ]C(2)
k−2 (z) , (5.19)

where C(α)
n (z) are Gegenbauer polynomials.

Special case

In practice, a quadrature formula with subtraction can be useful

-

1∫
-1

F (t)− F (z)
(t− z)2

dt ≈
N∑

i=1

ωHS
i (z)F (ξi,N ) . (5.20)

Using (4.8), we find a formula for calculating weight factor with the singularity
ωHS

i (z) in the form

ωHS
i (z) = λ

(α,β)
i,N

N−1∑
m=0

1
hm

P (α,β)
m (ξi,N )JH

m (z) , (5.21)
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where

JH
m (z) =

1∫
−1

P
(α,β)
m (t)− P

(α,β)
m (z)

t− z
dt+ P ′ (α,β)

m (z) log
(

1− z

1 + z

)
. (5.22)

This integral can be calculated in principle for arbitrary values of α and β. When
solving physical problems, we can restrict ourselves to α, β = ±1/2. Here we give
the formula for the case α = β = −1/2

ωHS
i (z) =

2
N

N∑
′

m=1

Tm−1(ξi,N )JH
m−1(z) , (5.23)
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where

JH
m (z) = mUm−1(z) log

(
1− z

1 + z

)
+4

bm∑
j=0

(
m

2j + 1
− 1
)
Um−2j−2(z)cmj (bm) , bm =

[
m− 1

2

]
. (5.24)

the presence of a function cmj (n) indicate that the last term in the sum is divided
by two, if m is an odd number.

Eqs.(5.15), (5.16), (5.18) and (5.23) for the weight factors makes it possible to
calculate them with high accuracy and, correspondingly, it can be used for solving
the Schrödinger equation with linear potential in momentum space.
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Logarithmic singularity

Let us consider weight coefficient (4.4) for polynomials K(α,β)
n (z) (3.3), when

g(t, z) ∼ log |t− z| and w(t) = 1,
√

(1 + t)/(1− t).

Variant w(t) = 1

Let us consider the singular function of the form

g(t, z) = log |t− z| . (5.25)

Using (4.4),(4.5), we find a formula for calculating weight factor with the logarithmic
singularity ωlog

i (z).

As a result, for the integral with a logarithmic singularity (5.25), we obtain the
quadrature formula

1∫
−1

log |t− z| F (t)dt ≈
N∑

i=1

ωlog
i (z)F (ξi,N ) , (5.26)
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where

ωlog
i (z) =

2

K
′(α,β)
N (ξi,N )

N−1∑
m=0

K
(α,β)
N−1−m(ξi,N )
m+ 1

×

{
(−1)m log(z + 1) + log(1− z)

−Tm+1 (z) log
(

1− z

1 + z

)
−4

[m
2 ]∑

k=0

Tm−2k(z)
2k + 1

cmk ([m/2])

}
, (5.27)

cmk (n) =

 1/2 , k = n and m is odd number ,
1 , k = n and m is even number ,
1 , k 6= n .

(5.28)

If α = β = −1/2, then the summation in (5.27) (index m) the last term is divided
by two.
Structure-analogous coefficients were obtained for TN (t) polynomials in
[Deloff:2007] and used to solve the Schrödinger equation with the Coulomb potential
in momentum space [Deloff:2006].
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Variant w(t) = w(α,β)(t) =
√

(1 + t)/(1− t)

The Chebyshev polynomial Vn(t) of the third kind is defined by [Mason:2002]

Vn (t) =
cos [(n+ 1/2) arccos(t)]

cos [arccos(t)/2]
. (5.29)

Hence, the zeros of Vn(t) occur at

ξi,N = cos θi,N = cos
(

2i− 1
2N + 1

)
, (i = 1, . . . , N) . (5.30)

Then for integrals with a logarithmic singularity (5.25) we obtain the following
quadrature formula

1∫
−1

log |t− z|
√

1 + t

1− t
F (t)dt ≈

N∑
i=1

ωV
i (z)F (ξi,N ) , (5.31)
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where

ωV
i (z) = − 4π

2N + 1
cos
(
θi,N

2

) [
(log 2 + z) cos

(
θi,N

2

)

+
N−1∑
m=1

cos
[(
m+

1
2

)
θi,N

] (
Tk(z)
k

+
Tk+1(z)
k + 1

)]
. (5.32)

Variant w(t) =
√

1− t2

For convenience, we consider not only the case α = −β = 1/2 but also the case
when α = β = −1/2. In this case the weight factors of the quadrature formula for
integrals with a logarithmic singularity of the form

1∫
−1

log |t− z| F (t)√
1− t2

dt ≈
N∑

i=1

ωT
i (z)F (ξi,N ) , (5.33)
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are obtained from the Eq.(4.8) and can be written in the form

ωT
i (z) = − π

N

[
ln 2 + 2

N−1∑
k=1

1
k
Tk (ξi,N )Tk (z)

]
. (5.34)

Special case

Let us consider weight coefficient (4.4) when

g(t, z) = Q0 (t, z) = log

∣∣∣∣∣1− tz +
√

(1− t2) (1− z2)
t− z

∣∣∣∣∣ (5.35)

and α, β = ±1/2 , w(t) = 1.
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Quadrature formula for the integral with logarithmic singularity of type (5.35)

1∫
−1

F (t) log

∣∣∣∣∣1− tz +
√

(1− t2) (1− z2)
t− z

∣∣∣∣∣ dt ≈
N∑

i=1

ωQ0
i (z)F (ξi,N ) (5.36)

contains the weight factors

ωQ0
i (z) =

2π
√

1− z2

K
′(α,β)
N (ξi,N )

N−1∑
k=0

K
(α,β)
N−1−k(ξi,N )

Uk (z)
k + 1

. (5.37)

The weight coefficients (5.27), (5.32),(5.34) and (5.37) despite the cumbersome
form, can be calculated with a sufficient degree of accuracy and used to solve the
equations.
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Energy spectrum for Coulomb potential

The equation with Coulomb potential we transform to the form

k̃2φn`(k̃)−
2
π k̃

∞∫
0

Q`(y) k̃′φn`(k̃′)dk̃′ = εn`φn`(k̃) , (6.1)

where

k = βk̃ , φn`(k̃) = β3/2φn`(k) , β = µα , En` =
β2

2µ
εn` . (6.2)

In the case of Coulomb potential, the exact values of energies are known, namely,

εC
n` = −1/n2. (6.3)
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The accuracy of solving the equation will be determined using the relative error

δn` =

∣∣∣∣∣εn` − ε
(N)
n`

εn`

∣∣∣∣∣ , (6.4)

where εn` are exact eigenvalues and ε(N)
n` is the energy spectrum obtained by the

numerical solution of the eigenvalues problem for matrix H at the given number of
N

N∑
j=1

Hijφn`(ξj,N ) = ε
(N)
n` φn`(ξi,N ) . (6.5)

The calculations were carried out in the Wolfram Mathematica system
[S.Wolfram:2003], and the chosen accuracy of the weight factors and zeros was
equal to 90. For all calculations, we assume that numeric parameter β0 = 0.999992.
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Quadrature rules for ` > 0

For the numerical solution of the Schrödinger equation with the logarithmic
singularity, we use three realizations of the eigenvalue problem with the help of
quadrature rules.

In the first method (Method I) we use the Chebyshev polynomials of the third
kind Vn(t) with the function w(t) =

√
(1 + t)/(1− t) and, respectively, the weight

factors (5.32) to eliminate the logarithmic singularity. The second method (Method
II) includes using Chebyshev polynomials of the first kind Tn(t) with the function
w(t) = 1 and weight factors (5.27) for integrals with a logarithmic singularity.
In Method III, we apply the quadrature rule with weights factors (4.17) to all
integrals in the subtracted integral equation (Landé subtraction method). Some
characteristics of the methods are presented in the Table 1.
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Table 1: Characteristics of methods.

Method P
(α,β)
n (t) ξi,n ωi

I Vn(t) cos

(
2i− 1
2n+ 1

π

)
ωV

i (z), (5.32)

II Tn(t) cos

(
i− 1/2
n

π

)
ωlog

i (z), (5.27)

III Tn(t) cos

(
i− 1/2
n

π

)
ωst

i , (4.17)

By making use of mapping (2.5)

k̃ = β0
1 + z

1− z
, k̃′ = β0

1 + t

1− t
, (6.6)
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we transform Eq. (6.1) to

4β0

π

1− z

1 + z

1∫
−1

Q`(y(z, t))
(

1 + t

1− t

)
φn`(t)

dt
(1− t)2

=

(
β2

0

(
1 + z

1− z

)2

− εn`

)
φn`(z) , (6.7)

where

Q`(y(z, t)) = P`(y(z, t)) log
∣∣∣∣1− tz

t− z

∣∣∣∣− w`−1(y(z, t)) , (6.8)

and

y(z, t) =
2(t− z)2

(1− t2) (1− z2)
+ 1 . (6.9)
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To shorten the notation in this section, we introduce functions

k̄i =
(

1 + ξi,N
1− ξi,N

)
, dki =

1
(1− ξi,N )2

. (6.10)

Consider the numerical solution to Eq. (6.7) by means of the quadrature formulas.
Employing the Method I and putting that z = ξi,N and t = ξj,N , the integral Eq.
(6.7) can be approximated by the matrix equation (6.5) with

Hij = β0

[
β0 δi,j k̄

2
j −

4
π

(
1/k̄i

)√
k̄jQ

V
` (yij)dkj

]
, (6.11)

where

QV
` (yij) = λ

(−1/2,1/2)
j,N

[
P`(yij) log |1− ξi,N ξj,N | − w`−1(yij)

]
− ωlog

j (ξi,N )P`(yij) , yij = y (ξi,N , ξj,N ) . (6.12)
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The weight factors λ(−1/2,1/2)
j,N and ωV

j (ξi,N ) are determined by the Eqs. (??) and
(5.32), respectively, and the values of ξi,N by the formula (see Table 1)

ξi,N = cos
(

2i− 1
2N + 1

π

)
. (6.13)

Calculations using the Method II adduce to a matrix of the form

Hij = β0

[
β0 δi,j k̄

2
j −

4
π

(
k̄j/k̄i

)
QT

` (yij)dkj

]
, (6.14)

where

QT
` (yij) = ωst

j

[
P`(yij) log |1− ξi,N ξj,N | − w`−1(yij)

]
− ωlog

j (ξi,N )P`(yij) . (6.15)
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The weight factor ωst
j and ωlog

j (ξi,N ) are determined by the Eqs.(4.17) and (5.27),
respectively, and the values of ξi,N by the relationship

ξi,N = cos
(
i− 1/2
N

π

)
. (6.16)

The matrix elements Hij of Landé-subtracted integral equation with a Coulomb
potential are

Hii = β0

[
β0 k̄

2
i −

2
π
C` k̄i +

4
π

N∑
r=1

ωst
r Q`(yri 6= 1)

(
k̄i/k̄r

)
dkr

]
,

Hij = −4β0

π
ωst

j

(
k̄j/k̄i

)
Q`(yij)dkj , (i 6= j) . (6.17)

The diagonal matrix elementsHii of Eqs.(6.11), (6.14) are finite and all singularities
are under control.
Numerical results calculated by three methods are compared with each other (see
Table 2).
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Table 2: Relative errors δn` (6.4) on the computed Coulomb binding energies. Index I, II, III
denotes that Methods I, II, III are used for calculation of εN

n` respectively and 7.1(−16) ≡
7.1× 10−16.

` = 0

N n = 1 n = 2 n = 3 n = 4 n = 5
50I 2.3(−12) 2.3(−9) 1.8(−8) 7.5(−8) 2.3(−7)
100I 3.7(−14) 3.7(−11) 2.9(−10) 1.2(−9) 3.7(−9)
150I 3.3(−15) 3.3(−12) 2.5(−11) 1.1(−10) 3.3(−10)
150II 1.1(−16) 6.7(−15) 1.1(−13) 8.6(−13) 4.1(−12)
150III 7.1(−7) 1.4(−5) 1.2(−4) 5.3(−4) 1.8(−3)

` = 1
N n = 1 n = 2 n = 3 n = 4 n = 5
50I 2.2(−14) 1.0(−12) 1.4(−11) 1.1(−10) 4.4(−10)
100I 2.3(−17) 1.0(−15) 1.5(−14) 1.1(−13) 5.8(−13)
150I 4.0(−19) 1.8(−17) 2.6(−16) 2.0(−15) 1.0(−14)
150II 4.7(−16) 9.2(−15) 8.7(−14) 4.5(−13) 1.8(−12)
150III 4.2(−5) 1.7(−4) 3.6(−4) 4.3(−4) 1.2(−4)
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Table 3: Continuation of the table

` = 2
N n = 1 n = 2 n = 3 n = 4 n = 5
50I 2.2(−14) 1.0(−12) 1.4(−11) 1.1(−10) 4.4(−10)
100I 2.3(−17) 1.0(−15) 1.5(−14) 1.1(−13) 5.8(−13)
150I 4.0(−19) 1.8(−17) 2.6(−16) 2.0(−15) 1.0(−14)
150II 1.7(−19) 4.7(−18) 6.1(−17) 4.7(−16) 2.6(−15)
150III 1.4(−5) 1.1(−4) 4.8(−4) 1.6(−3) 4.3(−3)
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As follows from the results of the calculation, Methods I and II have excellent
convergence with increasing N and significantly exceed the accuracy of Method
III. In addition, the accuracy of Methods I and II increases with the increase of
orbital number `, unlike Method III.

Therefore, quadrature formulas (5.32) and (5.27), in which the logarithmic
singularities of integrals are included into the weight factors, make it possible to
solve the Schrödinger equation with Coulomb potential in momentum space with
high accuracy.

Special case for ` = 0

Using mapping (2.6)

k̃ = β0

√
1 + z

1− z
, k̃′ = β0

√
1 + t

1− t
, (6.18)
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Eq.(6.1) for ` = 0 is given by

2β0

π

√
1− z

1 + z

1∫
−1

φn0(t) log

∣∣∣∣∣1− tz +
√

(1− t2) (1− z2)
t− z

∣∣∣∣∣ dt
(1− t)2

=
(
β2

0

(
1 + z

1− z

)
− εn0

)
φn0(z) . (6.19)

Consider the numerical solution to Eq.(6.19) by means of the quadrature formula
(5.36) with the weights (5.37) (see, [Andreev:2017]). Using (5.36), integral equation
(6.7) reduces to the eigenvalues problem

N∑
j=1

Hijφn0(ξj,N ) = ε
(N)
n0 φn0(ξi,N ) , (6.20)
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where the matrix elements of H are given by the formula

Hij = β0

[
β0 δi,j k̄j −

2
π

dkj

k̄
1/2
i

ωQ0
j (ξi,N )

]
. (6.21)

The matrix ωQ0
j (ξi,N ) is calculated by means of (5.37) and the functions k̄i, dki

are determined by the Eq. (6.10).

We carry out the calculations for two sets of polynomials: the first-order Chebyshev
polynomials Tn(t) (α = β = −1/2) and the third-order Chebyshev polynomials
Vn(t) (α = −1/2, β = 1/2). The values of relative error (6.4), obtained as a result
of numerical solution, are given in Table 4, depending on the number of nodes N .
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Table 4: The five relative errors δn0 with ` = 0 for polynomials Vn(t), obtained by solving
Eq. (6.19).

N n = 1 n = 2 n = 3 n = 4 n = 5

50 0.0(−90) 9.5(−41) 3.0(−21) 4.6(−12) 8.8(−7)
100 0.0(−90) 3.0(−87) 1.7(−49) 1.1(−31) 4.7(−21)
150 0.0(−90) 0.0(−90) 1.6(−78) 2.0(−52) 8.4(−37)

The solution of Eq. (6.19) for the first-order Chebyshev polynomials Tn(t) leads to
analogous results (see Table 5).
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Table 5: Relative error δn0 for polynomials Tn(t).

N n = 1 n = 2 n = 3 n = 4 n = 5

50 0.0(−90) 8.0(−40) 1.1(−20) 1.1(−11) 1.6(−6)
100 0.0(−90) 2.7(−86) 6.5(−49) 2.8(−31) 9.6(−21)
150 0.0(−90) 0.0(−90) 6.3(−78) 5.3(−52) 1.8(−36)

As follows from the results, “nearly exact” quadrature formula for the integral in
the Schrödinger equation allows one to reproduce the energy spectrum εn0 with a
high degree of accuracy, greatly surpassing the analogous calculations [Deloff:2006,
Tang:2001, J.Chen:2013].
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Results for the linear potential

We write the Schrödinger equation with linear confinement potential in the form

k̃2φn`(k̃) +
1
π k̃2

∞∫
0

Q′`(y)φn`(k̃′)dk̃′ = εn`φn`(k̃) (7.1)

using the replacements

k = βk̃ , E =
β2

2µ
ε , β = (2µσ)1/3

, φn`(k̃) = β3/2φn`(k) . (7.2)
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We may deduce from Eq.(2.15) and Landé subtraction term

∞∫
0

dk Q′0 (y) = 0 , (7.3)

that the Schrödinger equation (7.1) is(
εn` − k̃2

)
φn`(k̃)

=
1
πk̃2

∞∫
0

[
Q′0(y)

{
P`(y)φn`(k̃′)− φn`(k̃)

}
− w′`−1(y)φn`(k̃′)

]
dk̃′

+
1
πk̃2

∞∫
0

Q0(y)P ′`(y)φn`(k̃′)dk̃′ . (7.4)
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To test the accuracy of calculations of the energy spectrum, we use the equation
(6.4). In the particular case ` = 0 the exact result is known and the binding energy
is

εL
n0 = −zn , n = 1, 2, 3 . . . , (7.5)

where zn are zeroes of the Airy functions Ai(z).

In contrast to Coulomb potential, there are no exact analytical solutions with linear
potential for ` > 1. For ` > 1 the values marked as exact have been computed
by solving the Schrödinger equation in configuration space. For this purpose we
used the variational method of solving with trial pseudo-Coulomb wave functions
[Fulcher:1993]

ψC
n`(r, β) =

√
n!

(n+ 2`+ 2)!
(2β)3/2 (2βr)`e−βrL2`+2

n (2βr) , (7.6)
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where L`
n(z) are the Laguerre polynomials with n, ` > 0. In [Fulcher:1993], the

analytical expressions for the integrals with functions (7.6) arising in coordinate
space were obtained. This makes it possible to carry out calculations with a high
degree of accuracy.

Therefore, the numerical solution in momentum space for ` > 1 will be compared
to the solution of this equation in coordinate space.

Quadrature rules ` > 0

To solve the Schrödinger equation in a momentum space with a linear potential, we
use quadrature formulas (5.17) and (5.20). The methods of solving the equation
with the help of formulas (5.20) and (5.17) will be called as Method A and B,
respectively.
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Let us now explain a method of solution (Method A) of the integral equation (7.4).
Employing the variable transformation (2.5)

k̃ = β0

(
1 + z

1− z

)
, k̃′ = β0

(
1 + t

1− t

)
(7.7)

and then using quadrature relationships (5.17) and (5.20) with the weight
factors (5.26) and (5.23), respectively, the subtracted integral equation (7.4) is
approximated by the matrix equation (6.5), where the matrix elements are

Hij = β2
0Tij +

1
β0π

(
1/k̄2

i

) (
V H

ij + V Log
ij

)
. (7.8)
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In Eq (7.8)

Tij = δi,j k̄
2
j ,

V H
ij = 2

[
ωHS

j (ξi,N )P`(yij)Zij − δi,j

N∑
k=1

ωHS
k (ξj,N )Zkj

− ωst
j w

′
`−1(yij)

]
dkj ,

V Log
ij = 2P ′`(yij)

[
ωst

j log |1− ξi,N ξj,N | − ωlog
j (ξi,N )

]
dkj , (7.9)

where

Zij = −1
4

[(
1− ξ2i,N

) (
1− ξ2j,N

)
(1− ξi,Nξj,N )

]2

, (7.10)

yij =
2(ξi,N − ξj,N )2(

1− ξ2i,N

)(
1− ξ2j,N

) + δi,j . (7.11)
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Weight factors ωst
j , ωHS

j (ξi,N ) and ωlog
j (ξi,N ) are determined by the Eqs. (4.17),

(5.23) and (5.26), respectively. The numbers ξi,N are the zeros of the Chebyshev
polynomial of the first kind Tn(t) (see the Eq.(6.16)).

Next we describe a quick method of solution (Method B) of the hypersingular
integral equation (7.1). The characteristic (specific) features of Method B consist
in using the change of variables (6.18) and quadrature formulas (5.17) and (5.33)
with the weight function w(t) =

√
1− t2 of the Chebyshev polynomial Tn(t).

As a result, the matrix H̃ for calculating the energy spectrum using the Method B
is determined by the following relation

H̃ij = β2
0 T̃ij +

1
β0π

(
1/k̄i

) (
Ṽ H

ij + Ṽ Log
ij

)
. (7.12)
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In Eq. (7.12)

T̃ij = δi,j k̄j ,

Ṽ H
ij = ωHT

j (ξi,N )P`(yT
ij)
(
ξ2i,N − 1

)
(1 + ξj,N )− π

N
w′`−1(y

T
ij) , (7.13)

Ṽ Log
ij =

P ′`(y
T
ij)

(1− ξj,N )

×
[
π

N
log
∣∣∣1− ξi,N ξj,N +

√
1− ξ2i,N

√
1− ξ2j,N

∣∣∣ − ωT
j (ξi,N )

]
,(7.14)

where
yT

ij =
1− ξi,Nξj,N√

1− ξ2i,N

√
1− ξ2j,N

. (7.15)

Weight factors ωHT
j (ξi,N ) and ωT

j (ξi,N ) are determined by the Eqs. (5.19) and
(5.34), respectively.

The numerical results calculated by the Methods A and B are compared with each
other (see Table 6).
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Table 6: Relative errors δn` (6.4) on the computed linear binding energies. Index A, B denotes that Methods A, B are used
for calculation of εN

n` respectively and 7.6(−13) ≡ 7.6 × 10−13.

` = 0

N n = 1 n = 2 n = 3 n = 4 n = 5
100A 2.9(−15) 1.1(−14) 2.2(−14) 3.7(−14) 5.4(−14)
150A 1.1(−16) 4.1(−16) 8.6(−16) 1.4(−15) 2.1(−15)
150B 2.6(−27) 6.2(−26) 5.5(−24) 8.8(−23) 6.2(−22)

` = 1
N n = 1 n = 2 n = 3 n = 4 n = 5
100A 8.0(−14) 8.3(−14) 1.6(−13) 1.7(−13) 2.4(−13)
150A 7.0(−15) 7.1(−15) 1.4(−14) 1.4(−14) 2.1(−14)
150B 2.6(−10) 7.4(−10) 1.4(−9) 2.2(−9) 3.1(−9)

` = 2
N n = 1 n = 2 n = 3 n = 4 n = 5
100A 6.5(−13) 2.3(−13) 5.6(−13) 1.5(−12) 8.0(−12)
150A 5.5(−14) 1.8(−14) 9.9(−14) 3.3(−14) 1.4(−13)
150B 1.5(−14) 6.5(−14) 1.7(−13) 3.5(−13) 6.2(−13)
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As follows from the results of calculations, Method A gives a more accurate result
than method B for ` > 1.

Thus, a special quadrature formula (5.20) based on the use of a counter
term and an analytical calculation of weight factors involving a singularity
gives a highly accurate solution of the Schrödinger equation in momentum
space for a linear potential. It should be noted that the accuracy of
calculating the spectrum of the Schrödinger equation with a linear potential
in the momentum space of both methods far exceeds the accuracy of
the solution in the approaches proposed in the papers [J.Chen:2013-
14,Deloff:2006,Hersbach:1993,Leitao:2014,Tang:2001, J.Chen:2013].
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Special case for ` = 0

By making use of mapping

k̃ = β0

√
1 + z

1− z
, k̃′ = β0

√
1 + t

1− t
, (7.16)

we transform Eq. (7.1) to

1
πβ0

(
1− z

1 + z

) 1∫
−1

Q′`(y(t, z))
φn`(t)dt

(1− t)
√

1− t2

=
(
εn` − β2

0

(
1 + z

1− z

))
φn`(z) . (7.17)
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In the case ` = 0, equation (7.17) after simplifications is written in the form

− 1
πβ0

(1− z)2
1∫

−1

φn0(t)

√
1 + t

1− t

dt
(t− z)2

=
(
εn0 − β2

0

1 + z

1− z

)
φn0(z) . (7.18)

Starting from the structure of the integral equation, the most suitable interpolation
polynomial for the quadrature formula is the polynomial Vn(t), and the weight
function can be chosen in the form

w(t) =

√
1 + t

1− t
.
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As a result, the matrix of the eigenvalues problem takes the form [Andreev:2017]:

Hij =
[
β2

0 δi,j k̄j −
ωH

j (ξi,N )

πβ0dki

]
, (7.19)

where ξi,N are the zeros of the polynomial VN (t) (see, Eq. (6.13)) and the matrix
elements ωH

j (ξi,N ) are calculated with the help of Eq.(5.16).

Therefore, it is possible to compare the results of numerical calculations with matrix
(7.19) and exact values −zn (7.5). Table 7 lists the values of the relative error (6.4)

δ =

∣∣∣∣∣εL
n0 − ε

(N)
n

εL
n0

∣∣∣∣∣ , (7.20)

where ε
(N)
n is the energy spectrum obtained by the numerical solution of the

eigenvalues problem for matrix (7.19) at the given number of N .
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Table 7: Relative error δn0 of solving Eq.(7.18).

N n = 1 n = 2 n = 3 n = 4 n = 5

50 3.4(−22) 3.6(−20) 3.2(−17) 2.9(−15) 8.0(−14)
100 1.7(−39) 1.1(−35) 1.5(−32) 4.3(−31) 5.2(−28)
150 4.5(−54) 8.2(−50) 4.8(−47) 1.3(−43) 5.9(−42)

Note, however, that the special method presented here gives high-precision results
only in the case ` = 0. If ` > 1, the kernel of Eq. (7.18) changes, which leads to a
sharp decrease of accuracy [Andreev:2017].
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Energy spectrum for Cornell potential

We are going to consider the case where both the Coulomb and the linear
confinement potential are present. For the Cornell potential V (r) = −α/r + σr,
there are no analytical solutions. Therefore, the numerical solution in momentum
space will be compared to the solution of this equation in coordinate space.

The method for estimating the accuracy of the solution will be the same as for the
case of a linear confinement potential.

Quadrature scheme for ` > 0

From an analysis of the methods for solving the Schrödinger equation in momentum
space for the Coulomb and linear potentials, the most optimal is the use of
quadrature formulas (5.20) and (5.26) in which the weight factors ωHS

i (z) (5.23)
and ωlog

i (z) (5.27) depend on double-pole and logarithmic singularities.

Using (7.2) and subtraction term (7.3), the Schrödinger equation with Cornell
potential V (r) = −α/r + σr in momentum space is written in the form
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(
εn` − k̃2

)
φn`(k̃) =

1
πk̃2

∞∫
0

{
Q′`(y)φn`(k̃′)−Q′0(y)φn`(k̃)

}
dk̃′

− λ

πk̃

∞∫
0

Q`(y)φn`(k̃′)k̃′dk̃′ , (8.1)

where

λ =
α (2µ)2/3

σ1/3
. (8.2)

The results of calculation are presented in Table 8. To determine the energy
spectrum the appropriate Schrödinger equation was solved in both the momentum
and the coordinate space. As seen from Table 8 there is excellent agreement between
these two methods of calculation.
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Table 8: Relative errors δn` (6.4) on the computed Cornel binding energies with λ = 1.

` = 0

N n = 1 n = 2 n = 3 n = 4 n = 5

50 6.7(−13) 2.4(−12) 4.9(−12) 1.9(−10) 4.7(−9)

100 2.7(−15) 9.6(−15) 2.0(−14) 3.5(−14) 5.2(−14)

150 1.1(−16) 3.7(−16) 7.9(−16) 1.4(−15) 2.0(−15)

` = 1

N n = 1 n = 2 n = 3 n = 4 n = 5

50 3.0(−12) 1.4(−11) 1.4(−10) 4.7(−10) 3.2(−8)

100 3.2(−14) 7.4(−14) 1.1(−14) 1.5(−13) 3.1(−14)

150 3.2(−15) 6.0(−15) 1.8(−15) 1.2(−14) 1.4(−15)

` = 2

N n = 1 n = 2 n = 3 n = 4 n = 5

50 1.7(−10) 1.8(−9) 2.7(−9) 1.3(−7) 9.3(−7)

100 4.1(−16) 1.1(−15) 1.6(−15) 3.2(−15) 1.0(−13)

150 3.2(−17) 7.2(−17) 1.4(−16) 2.2(−16) 3.3(−16)
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Thus, the use of the quadrature rules on the base of Eqs.(5.20) and (5.26) will
allow us to find the spectrum of the system with the Cornell potential with a
relative error of 10−15 for ` = 0 and 10−22 for ` > 1.
Special quadrature scheme for ` = 0

Using (6.21) and (7.19) , matrix Hij for the equation with Cornell potential at
` = 0 is written in the form (see, [Andreev:2017])

Hij = β2
0 δi,j k̄j −

ωH
j (ξi,N )

πβ0dki

− λβ0

π

dkj

k̄
1/2
i

ωQ0
j (ξi,N ) , (8.3)

Table 9 represents the values

δn0 =

∣∣∣∣∣ ε̃n0 − ε
(N)
n

ε̃n0

∣∣∣∣∣ , (8.4)

where ε̃n0 are the eigenvalues obtained in coordinate space.
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Table 9: Value of δn0 for polynomials VN (t) with λ = 1.

N n = 1 n = 2 n = 3 n = 4 n = 5

50 4.9(−23) 5.6(−20) 1.7(−17) 1.5(−15) 9.7(−14)
100 8.5(−40) 2.7(−36) 9.6(−34) 1.9(−30) 3.9(−28)
150 5.0(−55) 8.7(−51) 2.8(−47) 1.5(−44) 1.4(−41)

This method, as in the case of a special quadrature rules for a linear potential (7.19),
is highly accurate only for ` = 0 [Andreev:2017]. It is to be noted that numerical
calculations with the help of (8.3) completely agree with results [Kang:2006].
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Conclusions

In this paper, we solve numerically the Schrödinger equation in momentum
space with the Coulomb, linear confinement and Cornell potentials by using new
quadrature rules.

The numerical results demonstrate the efficiency of the created method. The
new quadrature formulas, in which the singularities of integrals are included into
the weight functions, make it possible to solve the Schrödinger equation for the
momentum space with high accuracy.

The achieved accuracy of calculations is many orders of magnitude higher than in
similar calculations in momentum space conducted in the papers [J.Chen:2013-
14,Deloff:2006,Hersbach:1993,Leitao:2014,Tang:2001,J.Chen:2013]. Special high-
precision methods of solution for states with zero orbital angular momentum are
considered.

Viktor Andreev (Francisk Skorina GSU) High-precision . . . APMP-18, 20 August 2018 75 / 82



Conclusions

These methods are easily generalized to the relativistic equations, where the
potentials are generally derived in momentum space. Consequently, the developed
procedure to obtain the energy spectra can be used to study and calculate various
effects in the two-body quantum systems, such as hydrogen-like atoms, hadronic
atoms and bound quark systems.

This work was supported by the Belarussian Foundation for Fundamental Research
(Minsk, Republic of Belarus). The author is grateful to the Samara University
(Samara, Russia) for technical support of numerical calculations in the “Wolfram
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