

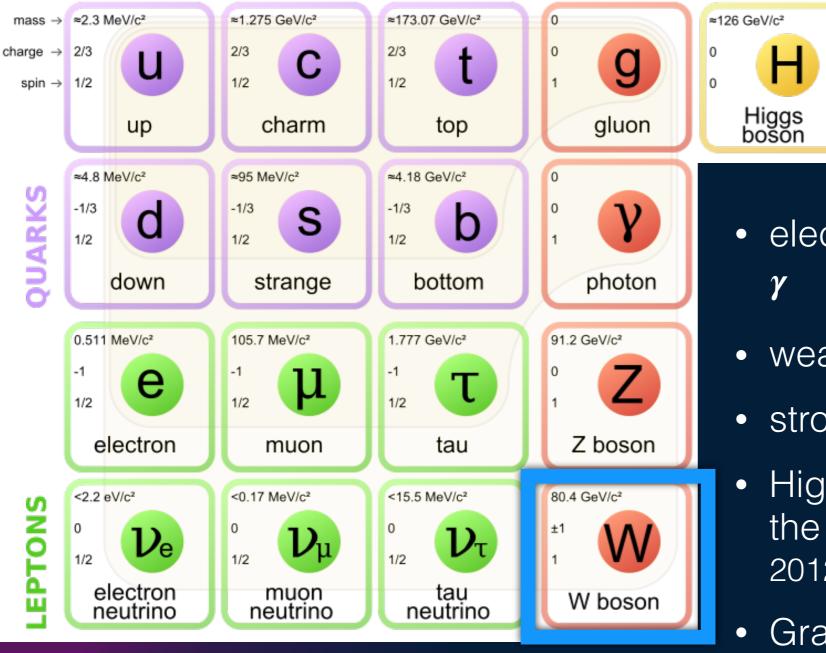
W physics in ATLAS

Fabrice Balli, CEA Saclay

THE XIV-th INTERNATIONAL SCHOOL-CONFERENCE "THE ACTUAL PROBLEMS OF MICROWORLD PHYSICS"

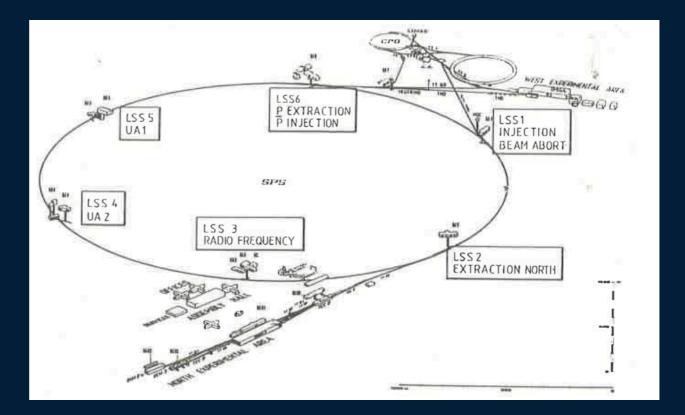
Grodno, Belarus, 12–24 August, 2018

Outline


- Introduction
- Theoretical context of precise W measurements
 - Exemple physics motivation : m_W measurement
 - W production at LHC
 - W detection at ATLAS
- Recent ATLAS measurements
 - W cross-sections at 7 TeV
 - W+jets at 8 TeV
 - W mass measurement at 7 TeV
 - Wjj and aGC at 7 and 8 TeV
- Conclusive remarks

Introduction

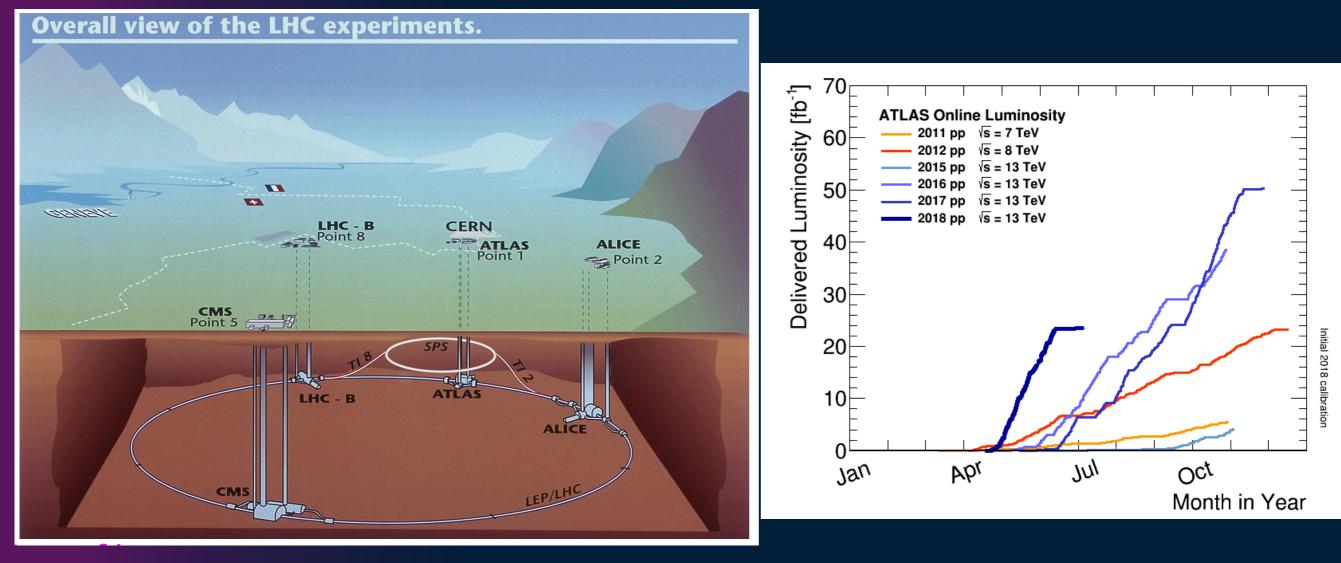
The Standard Model (SM)



- Standard Model : basic model of elementary particle physics
- electromagnetic force photon
 γ
- weak interaction Z, W+, W-
- strong interaction 8 gluons
- Higgs boson confers mass to the other particles ; discovered in 2012 by ATLAS and CMS
- Gravitational interaction not described by the SM

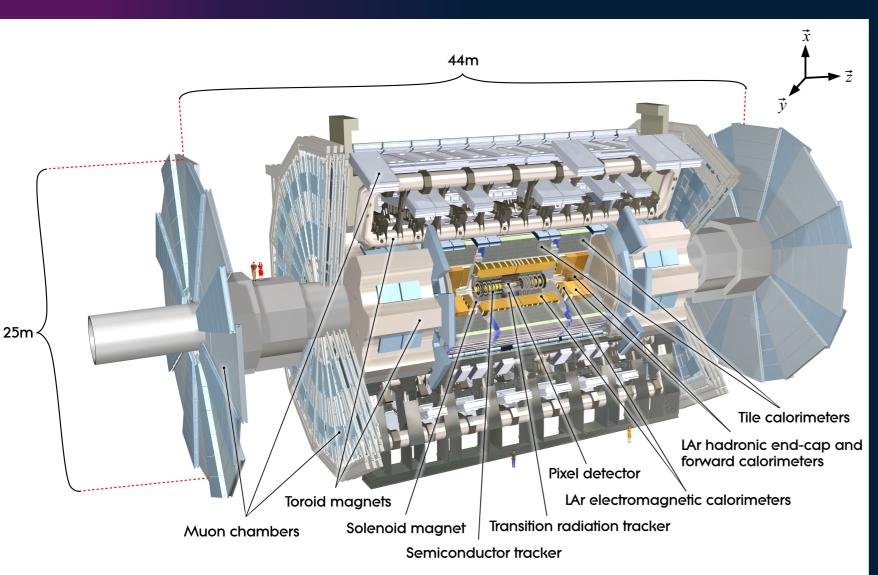
The W boson

- Discovered in UA1 and UA2 at CERN SPS in 1983
 - 1984 Nobel prize awarded to Carlo Rubbia and Simon van der Meer
- Charge : ±1e
- Width : 2.085±0.042 GeV
- Spin : 1
- Mass : 80.385±0.015 GeV
- Decay channels :
 - *e*, μ, τ : BR ~11 % each
 - hadrons : BR ~67 %

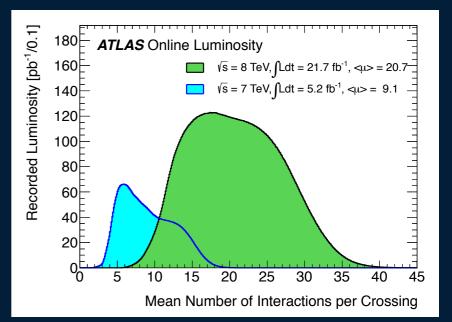


- A well-known pillar of SM : why worry about further measurements ?
 - Background to other processes (Higgs, ttbar...)
 - Stringent tests of SM consistency (EW fit), probe of pQCD, of anomalous gauge couplings —> More precise measurements of differential cross-sections and mass is necessary

F.Balli – W physics at ATLAS – Grodno, 12–24 August , 2018


The Large Hadron Collider at CERN

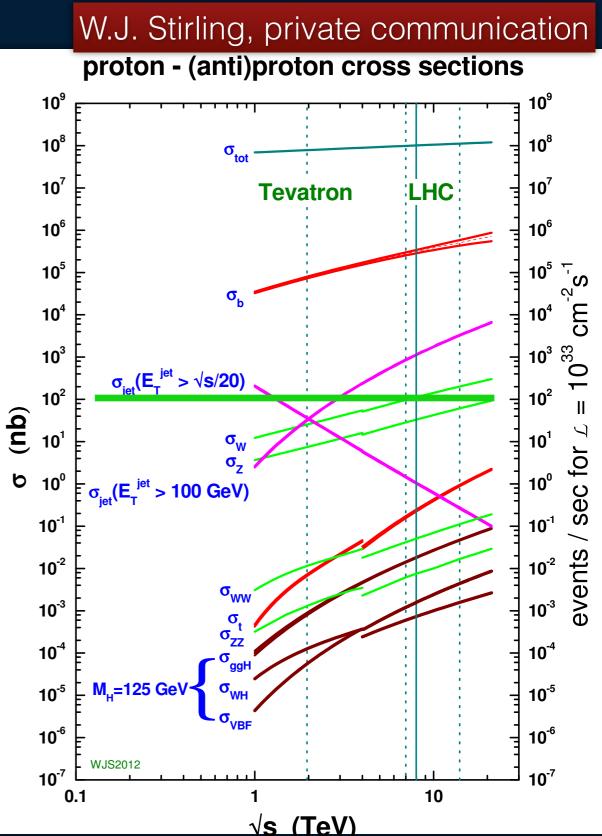
- 27 km circumference
- The only high-energy physics proton-proton collider currently running
- Has successfully delivered big amounts of collision data over the last 7 years to the 4 detectors : LHCb, ALICE, CMS and ATLAS
- Center of mass energy is 7 TeV (2011), 8 TeV (2012), 13 TeV (2015 up to now)



The ATLAS experiment at LHC in Run1 (2011-2012)

Recorded 4.6/20.2 fb⁻¹ luminosity in 2011/2012

- Inner tracker vertices reconstruction, charged tracks
- Electromagnetic calorimeter - electrons, photons
- Hadronic calorimeter jets
- Muon spectrometer in a toroidal magnetic field



Wevents at ATLAS Run1

8

- W cross-section ~ 10² nb
 - —>7 TeV N_W ~ 470M
 - —>8 TeV N_W ~ 2.02B
 - cleanest signature : e, μ
 - ~47 (202) M events per channel
 - detector acceptance, event selection and reconstruction efficiencies to be taken into account (conservative factor 10 : still a few M just for 7 TeV)

Recommended readings :

- CTEQ Lecture from Jeff Owens (2000)
- QCD and Collider Physics, R.K. Ellis, W.J. Stirling, and B.R. Webber

Theory context

(an experimentalist's view!)

- Theory motivation to m_W measurement
- W production at LHC
- W detection at ATLAS

mw and the EW fit

One illustration : W mass (m_W) and the EW fit

- Electroweak theory (true at all orders) (1)
- Also, one has (2)
- After solving the 2nd order equation in m_W² one gets (3)
- Where radiative corrections to the W boson propagator (dominated by top and Higgs contributions) can be expressed as :

$$\Delta r = \Delta \alpha - \frac{\cos^2 \theta_W}{\sin^2 \theta_W} \Delta \rho + \Delta r_{res},$$

Top quark mass dependence dominated by :

$$\Delta \rho^{top} \approx \frac{3\sqrt{2}G_{\mu}m_{\rm top}^2}{16\pi^2}$$

 Higgs boson mass dependence dominated by :

$$\Delta r_{res}^{Higgs} \approx \frac{\sqrt{2}G_{\mu}m_W^2}{16\pi^2} [\frac{11}{3}(\ln\frac{m_h^2}{m_W^2} - 5/6)]$$

$$m_{W}^{2} = \frac{g_{W}^{2}v^{2}}{4}, \ m_{Z}^{2} = \frac{g_{W}^{2}v^{2}}{4\rho_{0}\cos^{2}\theta_{W}} = \frac{m_{W}^{2}}{\rho_{0}\cos^{2}\theta_{W}} (2)$$

$$m_{W}^{2} = \frac{m_{Z}^{2}}{2}(1 + \sqrt{1 - \frac{4\pi\alpha}{\sqrt{2}G_{\mu}m_{Z}^{2}}})$$

$$= \frac{m_{Z}^{2}}{2}(1 + \sqrt{1 - \frac{4\pi\alpha_{tree}}{\sqrt{2}G_{\mu}m_{Z}^{2}}} \frac{1}{1 - \Delta r})$$

$$m_{W}^{2} = \frac{m_{W}^{2}}{2}(1 + \sqrt{1 - \frac{4\pi\alpha_{tree}}{\sqrt{2}G_{\mu}m_{Z}^{2}}} \frac{1}{1 - \Delta r})$$

 $m_W^2 = \frac{\pi \alpha_{tree}}{\sqrt{2}G_\mu \sin^2 \theta_{W,tree}}$

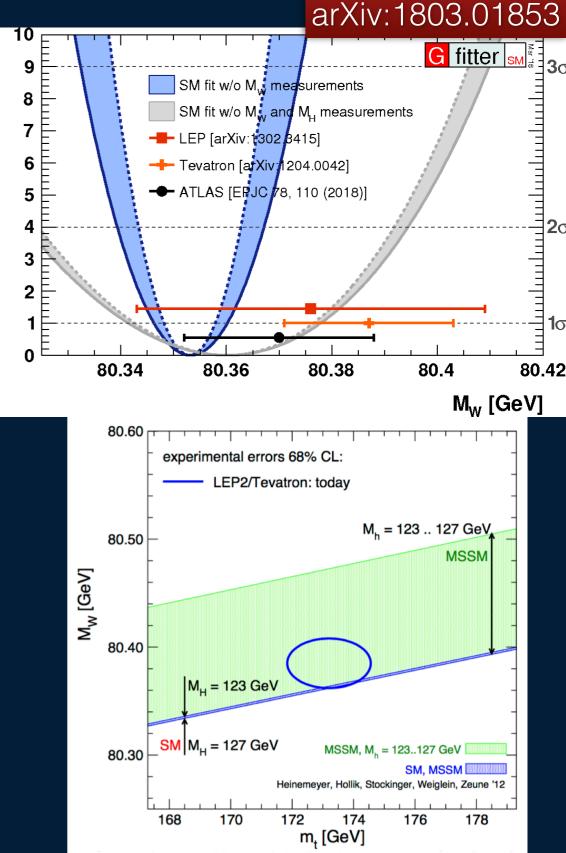
(1)

G. Burgers and F. Jegerlehner 10.5170/CERN-1989-008-V-1.55

Relationship between W mass, top mass and Higgs mass (and EW parameters) !

The global EW fit

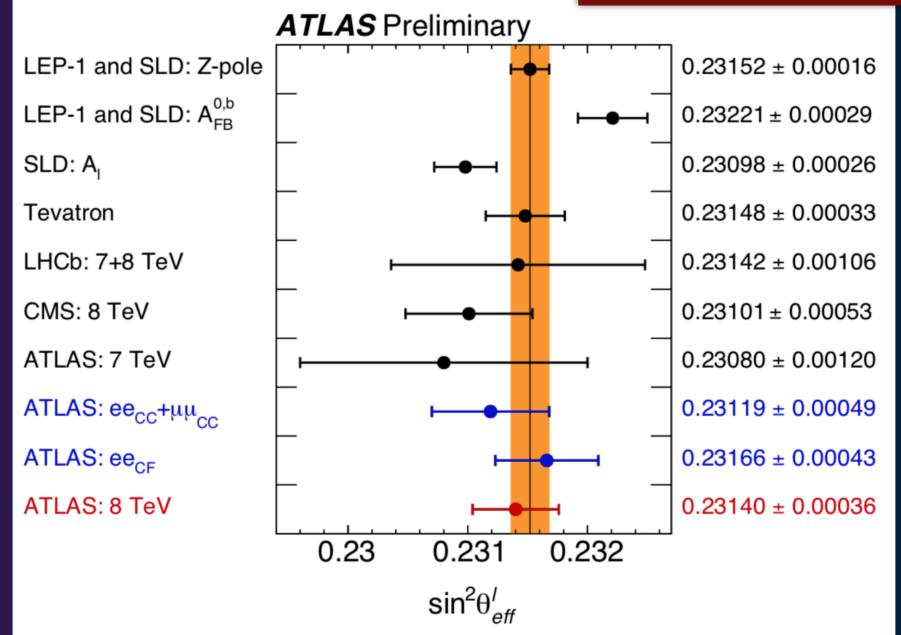
- Idea of electroweak fits
 - Measure many different observables in experiments
 - Calculate the relations between all observables in the Standard Model
 - Probe the consistency of the SM by predicting observables
- Input for the gobal electroweak fit mostly from
 - LEP: Z boson observables (e.g. sin²θ_W)
 - Tevatron: W boson, top quark mass
 - LHC: Higgs boson, top quark mass
- Overall good consistency between indirect determination (i.e. physics parameter left free) and the direct measurements



Ś

The global EW fit

- Test the consistency of the Standard Model
 - e.g. predict m_W, provided all other input measurements
- needs 7 MeV precision to compete with indirect determination from theory fit (10-4 relative uncertainty!)
- Electroweak precision measurements also sensitive to several new physics scenarios
 - For this, need a 5 MeV precision on m_W
- —>this measurement needs very accurate prediction for W production and kinematics of decay products :
 - W p_T and rapidity spectrum
 - polarisation (spin correlations)
 - high order EW (NLO) \bullet
- Proton PDFs are an essential ingredient for this
- It also needs detector calibration at the same level of precision! 13



parenthesis : $sin^2\theta_W$

- One of the key inputs to EW and BSM fits
- Observed tension between LEP and SLD measurements (~3 sigmas)
- New preliminary measurement from ATLAS

ATLAS-CONF-2018-037

W production

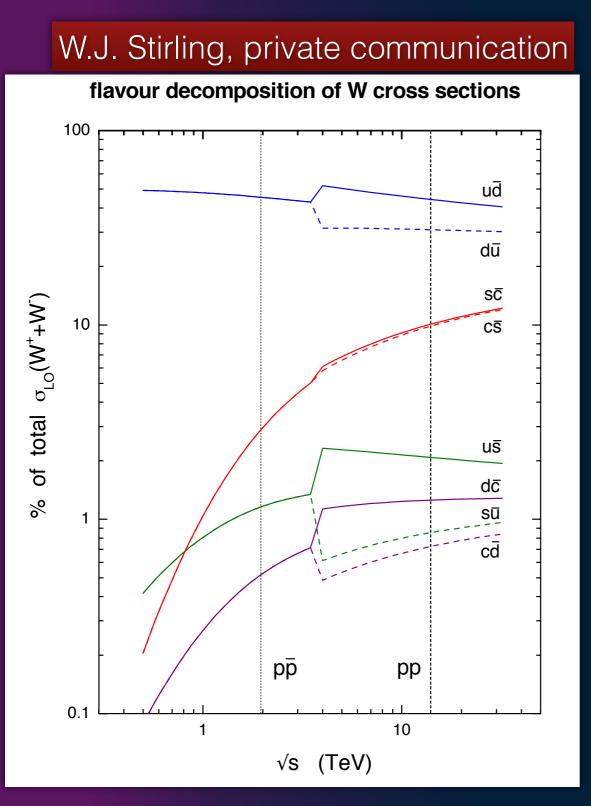
tre

Drell-Yan production

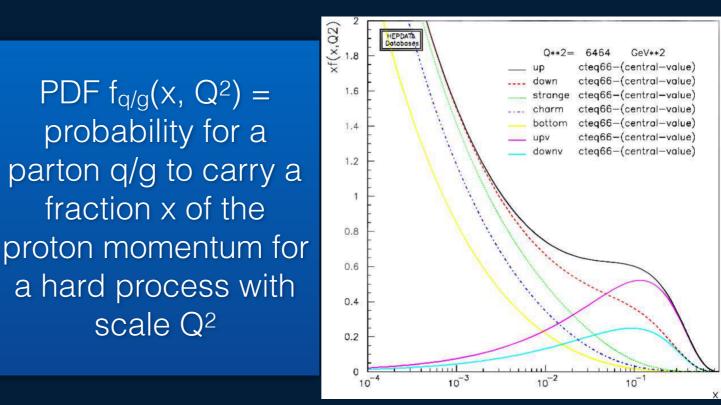
factorization theorem :

$$\sigma_{pp\to X}(\alpha_s, Q^2) = \sum_{a,b} \int_0^1 f_a(x_1, Q^2) f_b(x_2, Q^2) \times \hat{\sigma}_{ab\to X}(\alpha_s, Q^2) dx_1 dx_2$$

- weight the partonic cross-section by non-perturbative fonctions (parton distribution functions, PDFs) considered at high scale Q²=μ_F² (separates perturbative and nonperturbative regime)
- partonic cross-section can be calculated perturbatively and is only known up to NNLO and thus depends on a renormalisation scale μ_{R²} (=Q²):

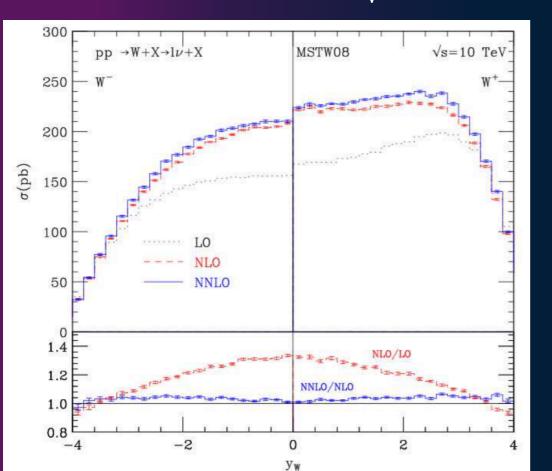

$$\hat{\sigma}_{ab\to X}(\hat{s}) = \underbrace{\hat{\sigma}_{0}(\hat{s})}_{lower} + \underbrace{\alpha_{s}(\mu_{R}^{2})\hat{\sigma}_{1}(\hat{s})}_{NLO} + \underbrace{\alpha_{s}^{2}(\mu_{R}^{2})\hat{\sigma}_{2}(\hat{s})}_{NNLO} + \mathscr{O}(\alpha_{s}^{3})$$

$$LO NLO NNLO$$


$$\overset{q}{\longrightarrow} \underbrace{l^{-}}_{\vec{q}'} \underbrace{l^{-}}_{\vec{v}_{l}} \underbrace{l^{-}}_{\vec{v}_{l}} \underbrace{\ell^{-}}_{\vec{v}_{l}} \underbrace{\ell^{-}}_$$

W production : PDFs

- W+(W-) production is dominated by ud (du)
- u_v is higher at high x —> increase of W⁺ production at high rapidities (next slide)
- Contribution from 2nd quark generation is not negligible : ~25%
 - induces larger uncertainties than in pp
- Gluon contribution starting at NLO

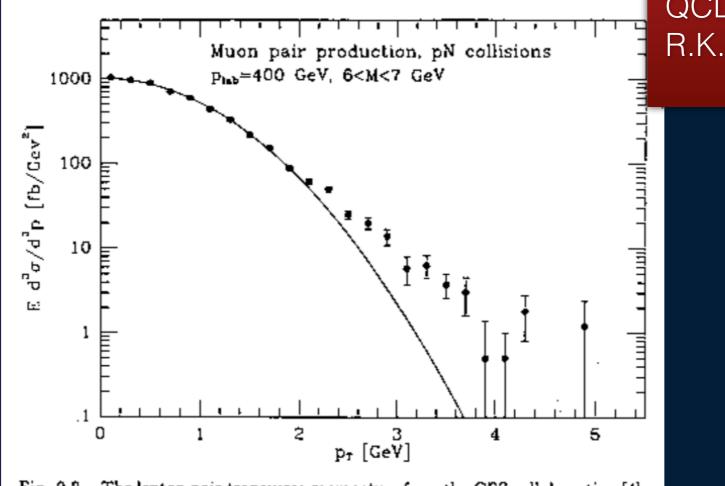


W production : rapidity

- Rapidity y is defined as : $y = 1/2 \ln [(E+p_z)/(E-p_z)]$
- Assuming intrinsic transverse momentum of partons $k_T=0$, we have (in center of mass frame) : $p_a = \sqrt{s/2} x_a (1,0,0,1)$ and $p_b = \sqrt{s/2} x_b (1,0,0,-1)$

• —>y =
$$1/2 \ln (x_a/x_b)$$

• Leading to : $x_a = \frac{M}{\sqrt{s}}e^y$ $x_b = \frac{M}{\sqrt{s}}e^{-y}$

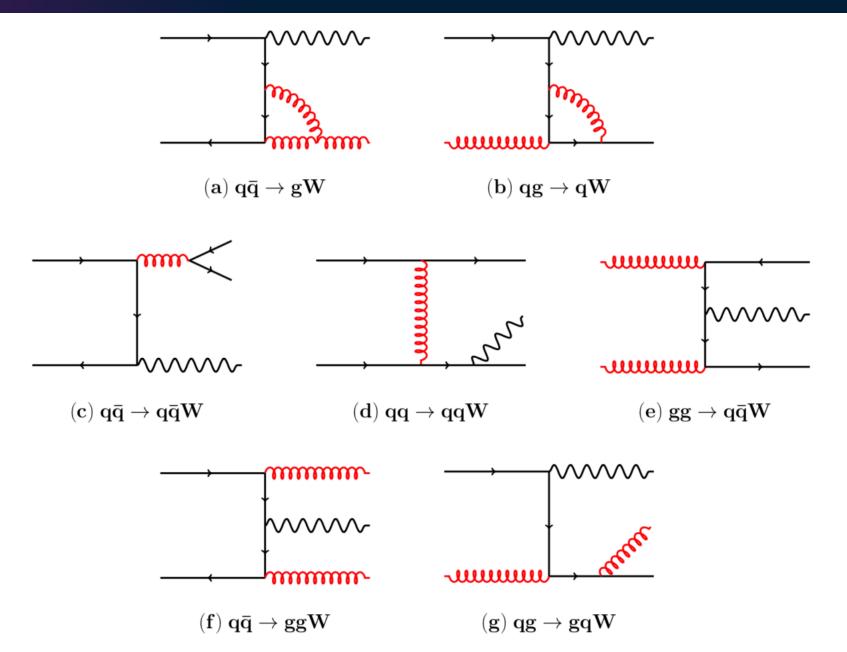

- low |y| : mainly sea quarks (x~10⁻²)
- high |y| : 1 sea quark and 1 valence quark (x~10⁻⁴, a few 0.1)
- One has at lowest order :

$$\frac{d\sigma}{dy} = \frac{1}{s} \sum_{a,b} \sigma_0^{ab \to W}(M) f_a(x_a, M^2) f_b(x_b, M^2)$$

- Boson rapidity directly sensitive to PDFs
- allows to constrain them from differential cross-section measurements

W p_T : where does it come from ?

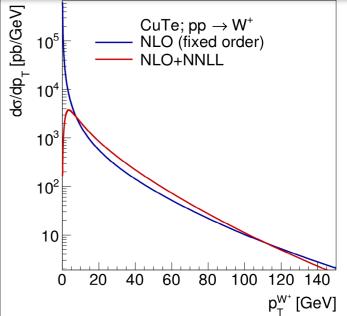
QCD and Collider Physics, R.K. Ellis, W.J. Stirling, and B.R. Webber


Fig. 9.2. The lepton pair transverse momentum from the CFS collaboration [4]. The curve corresponds to a Gaussian intrinsic k_T distribution for the annihilating partons.

- Intrinsic k_T of the partons : good agreement with the data (fixed-target pn collisions) up to $p_T \sim 2 \text{ GeV} \longrightarrow \text{assume Gaussian form with } < k_T(\text{parton}) > ~ 760 \text{ MeV}$
- Not sufficient to describe higher values of W pT

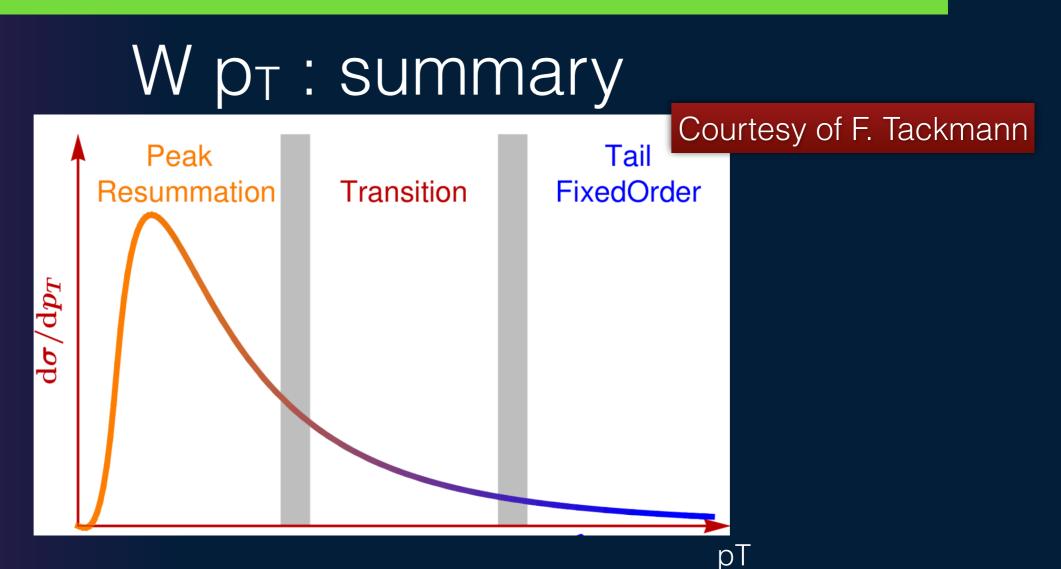
W pT: where does it come from ?

- Need additional hard parton emissions to explain higher p_T region
 - NLO (qg—>Wq, qq'—>Wg), NNLO QCD
 - NNLO diagrams are typically :



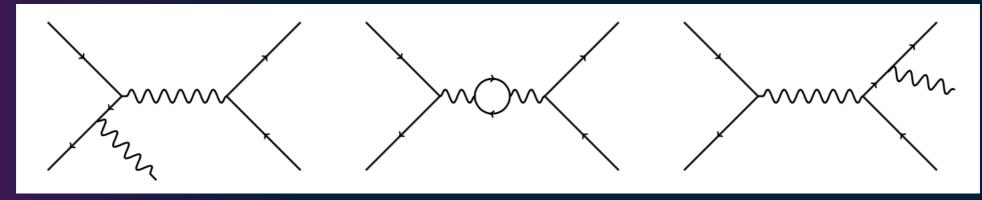
WpT: let's diverge a little bit

- Pure fixed-order NNLO predictions : diverge when p_T —>0 (p_T << M) due to the presence of soft and collinear emissions spoiled by large logarithms of the type $\alpha_S^n \ln^m (M^2/p_T^2)$
- This can (has to) be resummed at all orders and gives


$$\frac{d\sigma}{d\tau dy dp_T^2} = \left(\frac{d\sigma}{d\tau dy}\right)_{Born} \frac{4\alpha_s}{3\pi} \frac{\ln s/p_T^2}{p_T^2} \exp\left(-\frac{2\alpha_s}{3\pi}\ln^2 s/p_T^2\right)$$

ATL-PHYS-PUB-2014-015

- Where the exponential is referred to as the 'Sudakov form factor'
- However, does not include the cases where multiple gluons are emitted with k_T ~ p_T, nor the cases where gluon momenta add to 0.
- Several resummation formalisms and calculations to resum the leading, next-toleading and next-to-next-to leading logs
 - e.g., RESBOS, DYRES, Geneva, RADISH...
- Can also use parton showers (typically done in simulations) : Sherpa, Pythia, Herwig…
 - Evolution of fragmentation functions through DGLAP formalism

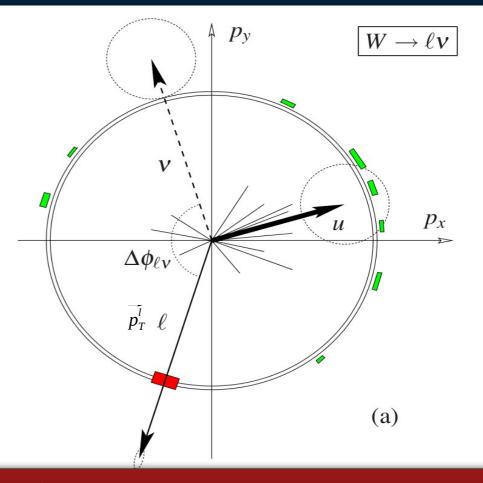


- high p_T~M : fixed-order V+1 jet (MC : fixed-order matrix elements) ; resummation does not work
 - do/dpT² goes as 1/pT²
- low p_T << M : fixed-order breaks down, resummation comes in (MC : Parton showers)
- Transition region : no fixed boundary
 - resummation works but fixed-order gives sensible results as well
 - Best prediction from consistent combination of the two
 - MC : Matrix element + parton shower merging/matching

NLO EW emissions

• Corrections to W production take into account $O(\alpha_{EM})$ corrections : photon radiation (ISR, FSR), loop corrections (pure weak), ISR/FSR interference (IFI)

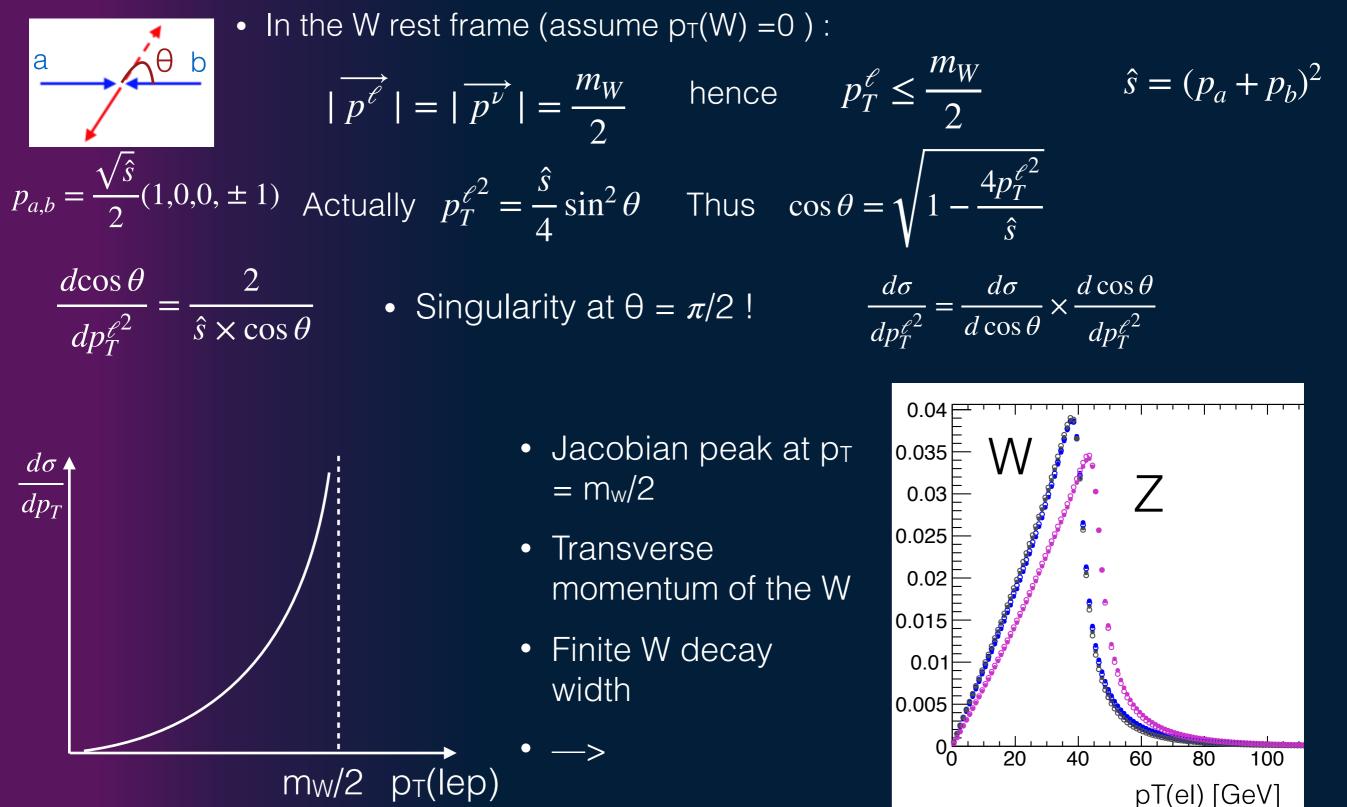
- ISR factorised in the PDF evolution, FSR is the most important numerically among the rest
- Several tools to handle this. In ATLAS W/Z simulated samples, typically :
 - Pythia8 parton shower handles the ISR
 - Photos handles FSR and electron pair emissions from virtual photon (higher order, uncertainty only)
 - pure weak and IFI corrections not included but impact is estimated with other tools (YFS, Winhac...) (and often simply added as uncertainty)



W detection

Event topology, definitions of observables

- Detect single (inclusive) W boson decaying into a lepton and a neutrino
- The ATLAS detector measures :
 - The lepton charge and 4-vector (transverse momentum p_T)
 - The activity recoiling against the W (hadronic recoil u_T)
 - measures additional jets from signal
 - Sensitive to additional interactions (pile-up) and underlying event
 - Enables to indirectly reconstruct the neutrino transverse momentum $\vec{p}_T^{miss} = -(\vec{u}_T + \vec{p}_T \ell)$
 - Some analyses use a direct reconstruction of p_T^{miss}, some use a direct reconstruction of the recoil —> different algorithms, impact is significant ~only for m_W here


 \vec{u}_{T} : vector sum of calorimeter deposits excluding lepton deposits

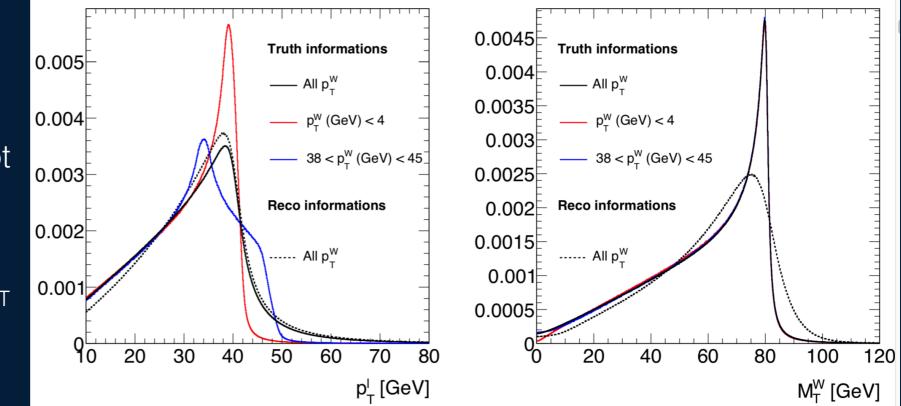
 $m_T = \sqrt{[2 p_T \ell p_T^{miss} (1 - \cos \Delta \varphi)]}$

Impossible to fully reconstruct m_W because of the neutrino

The Jacobian peaks : m_T and lepton p_T

26

The Jacobian peaks : m_T and lepton p_T


- Unlike the Z, not possible to fully reconstruct the W mass due to neutrino
- One can use the transverse mass $m_T(\ell v)$:

 $m_T(\ell\nu)^2 = (|\overrightarrow{p_T^{\ell}}| + |\overrightarrow{p_T^{\nu}}|)^2 - (\overrightarrow{p_T^{\ell}} + \overrightarrow{p_T^{\nu}})^2 = 2|\overrightarrow{p_T^{\ell}}||\overrightarrow{p_T^{\nu}}|(1 - \cos\Delta\phi_{\ell\nu})$

Can be compared to the invariant mass :

$$m(\ell\nu) = (|\overrightarrow{p^{\ell}}| + |\overrightarrow{p^{\nu}}|)^2 - (\overrightarrow{p^{\ell}} + \overrightarrow{p^{\nu}})^2$$

- For small $p_T(W)$, m_T is invariant to leading order
- Jacobian peak at m_w
- In the context of m_w measurement :
 - lepton p_T sensitive to modelling of W p_T and not so much to detector resolution
 - m_T is not sensitive to W p_T but is very sensitive to MET resolution

Recent ATLAS measurements

W cross-sections at 7 TeV

Eur. Phys. J. C (2017) 77:367

W cross-sections at 7 TeV : introduction

- Very precise measurement (<1%) of W and Z cross-sections at 7 TeV
- W cross-section is measured in a fiducial volume, extrapolated to full phase-space and differentially in lepton η absolute value, $|\eta_\ell|$
- QCD analysis : PDF fits, strange-quark density, determination of CKM matrix $|V_{cs}|$
- Signal MC sample : Powheg+Pythia6 using CT10 NLO PDF set for the matrix element, CTEQ6L1 for the parton shower
 - Assess uncertainties with alternative samples : MC@NLO+Herwig, Powheg+Herwig : matrix element variation, parton shower/underlying event
 - W p_T is reweighed to Powheg+Pythia8AZNLO, generator tuned to ATLAS Z data
 - Normalised to NNLO prediction from FEWZ with a 5% uncertainty (PDF, scales)
- Background is also using simulated samples except for multi-jet (data-driven)

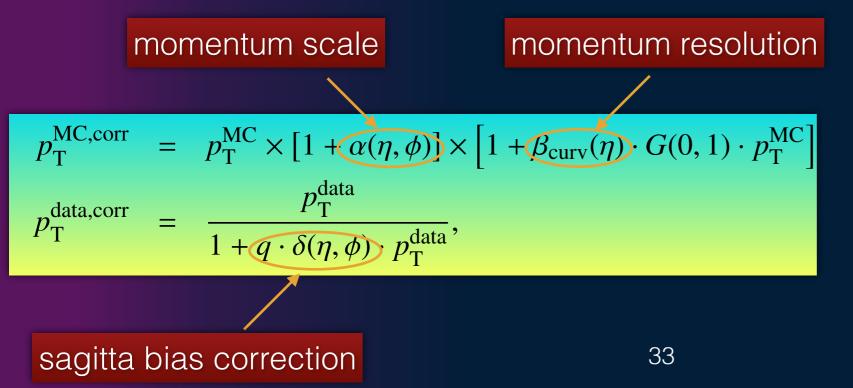
Event selection

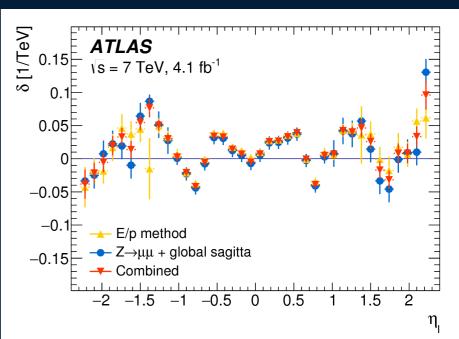
- at least one primary vertex with 3 tracks of $p_T > 500 \text{ MeV}$
- MET > 25 GeV
- m_T > 40 GeV
- electron channel :

- $\Delta R = \sqrt{\Delta \phi^2 + \Delta y^2}$
- single electron trigger with medium ID and $p_T > 20$ or 22 GeV (depending on the period)
 - Identification (ID) : based on shower shape, track properties and track-to-cluster matching
- Calorimeter isolation : upper limit on sum of energy in a cone of size $\Delta R = 0.2$ ('topoetcone20')
- Tracking isolation : upper limit on sum of p_T of tracks in a 0.4 cone ('ptvarcone40')
- exactly one tight ID electron that matches the trigger, in the acceptance (|\eta| < 1.37 or $1.52 < |\eta| < 2.47$, with $p_T > 25$ GeV
- reject events with >=1 medium ID electron with $p_T > 20$ GeV (cuts the Z background)
- Charge-separated analyses (W⁺ vs W⁻) : sensitive to charge misID
 - Evaluated from same-sign Z—>ee events in the data and the MC as a function of η, corrected for in the MC

Event selection

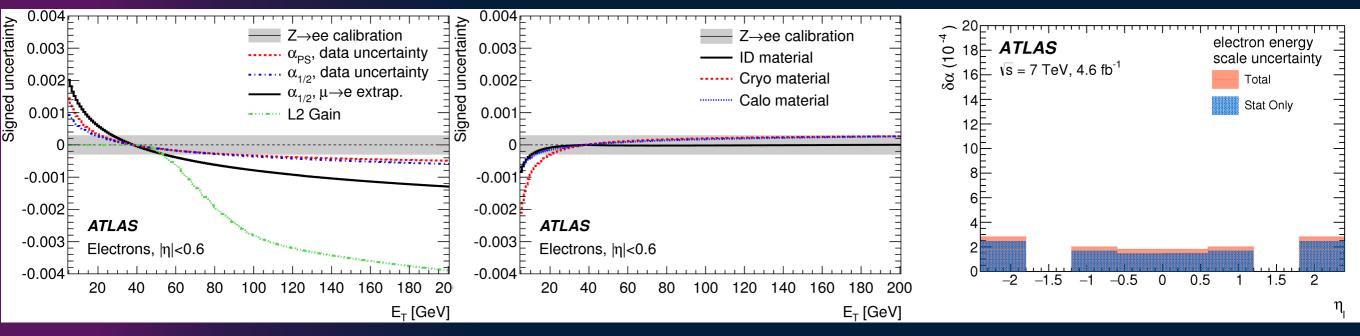
- Muon channel
 - single muon trigger with $p_T > 18 \text{ GeV}$
 - reconstructed using a combination of muon spectrometer and inner detector information
 - $|z_0-z_{PV}| < 1$ cm (remove background from cosmic rays) : z extrapolated to the beam line
 - p_T > 25 GeV, |η| < 2.4
 - isolation : $ptvarcone40/p_T < 0.1$
 - events with >= 1 muon with $p_T > 20$ GeV are rejected (cuts the Z background)
 - charge misID negligible


Fiducial volume : phase-space to where the distributions are unfolded at generation level (i.e. remove detector effects):

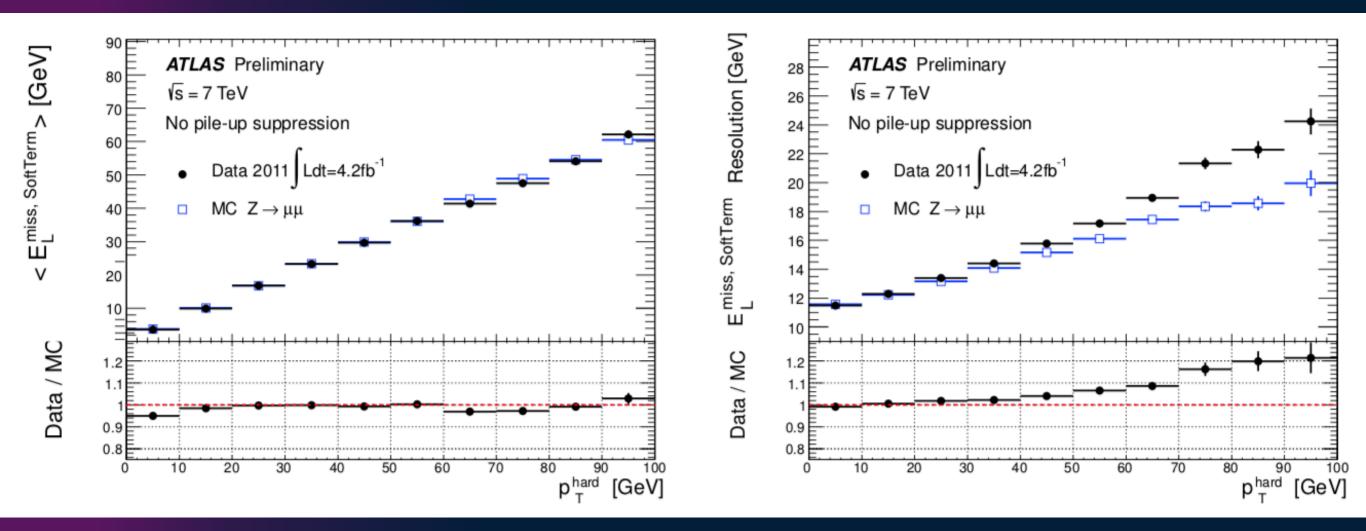

- lepton $p_T > 25$ GeV, lepton $|\eta| < 2.5$ Born level for the leptons
- pT v >25 GeV
- m_T > 40 GeV
- 11 lepton |n| bins (common to electron and muon channels) : [0.00, 0.21, 0.42, 0.63, 0.84, 1.05, 1.37, 1.52, 1.74, 1.95, 2.18, 2.50]

Muon calibration

- Use a combination of ID and MS, calibrate transverse momentum as a function of η
 - Momentum resolution : obtained by fitting the Z invariant mass, as well as 1/p_T ^{ID} 1/p_T ^{MS} for both μ⁺ and μ⁻ in Z and W
 - Momentum scale : compare Z peak in data and MC
- **longitudinal biases (sagitta biases**, from systematic misalignment modes)
 - muon sagitta bias correction uses W events (E/p) and Z events
- Momentum corrections at the level of 0.1-0.4% and uncertainty of ~2.10-4
- Use tag-and-probe methods (Z—>μμ) for the scale factors (reconstruction, trigger, isolation) and uncertainties
 - Same level of correction, a bit higher for trigger, 5-10% (still known with a relative uncertainty of 0.1-0.8%)



Electron calibration


- Electron measurement : energy from the EM calorimeter; eta and phi from the ID
- Calibration sequence :
 - Calorimeter longitudinal intercalibration using muon energy deposits ($Z \rightarrow \mu\mu$ events)
 - Passive material and presampler response corrections derived using longitudinal shower profiles of electrons and photons
 - Overall energy scale and resolution from Z—>ee decays
- Selection efficiencies for reconstruction, identification, trigger, isolation
 - use tag-and-probe methods (Z—>ee) for the scale factors and uncertainties

MET calibration

- MET built from a soft term (tracks) + hard term that comprises leptons and jets
- Uncertainties from each hard object is propagated to the hard term
- Soft term uncertainty is obtained by looking at Z in MC and data (response and resolution)

Multijet background (QCD)

- non-isolated electrons, converted photons or hadrons misidentified as signal electrons, or heavy quarks or hadron decays into muons + MET cut is passed thanks to neutrinos from hadron decays/resolution effect
- multijet is poorly modelled in most ATLAS analyses (huge cross-section, tiny selection efficiency, bad modelling of non-prompt muons...)
 - Need to use the data to estimate its contribution
- Use a control region (CR) enriched in multijet to build shape templates
 - loosen lepton ID and invert isolation requirement, subtract EW/top contributions
- Fit the fraction in a 'normalization (or fit) region' == signal region with relaxed m_T and MET cuts (enriched in QCD)
- Extrapolate the fitted fraction to the signal region by taking into account the selection efficiency
- Scan in m_T/MET relaxing cut values —> dependence —>additional linear extrapolation to signal region (10% correction, added as uncertainty here)
- Additional uncertainties for the template shapes : different requirements for CR, detector calibration uncertainties, alternative signal MC

Analysis method

37

- Measured fiducial cross-section where :
 - L is the integrated luminosity N_W is the total number of events, B_W is the estimated background, C_w is defined as :
- Then extrapolated to common fiducial volume, where E_W accounts for the different eta acceptances
- Total cross-sections can be then inferred from :
- where $A_{W} = \frac{N_{W}^{MC,generated,fiducial}}{N_{W}^{MC,generated,total}}$
- Luminosity uncertainty is 1.8%
- Theory uncertainties relate to : PDF, NLO ME/PS matching, hadronisation, underlying event

 $\sigma_{W}^{fiducial,e/\mu} = \frac{N_{W} - B_{W}}{C_{W} \times L}$

 $C_{W} = \frac{N_{W}^{MC,reconstructed}}{N_{W}^{MC,generated,fiducial}}$

$$\sigma_W^{fiducial,\ell\nu} = \frac{\sigma_W^{fiducial,e/\mu}}{E_W^{e/\mu}}$$

$$\sigma_{W}^{total,\ell\nu} = \frac{\sigma_{W}^{fiducial,\ell\nu}}{A_{W}}$$

- C_W uncertainties amount to ~0.2(0.6)% in the μ (e) channel
- E_w has small uncertainties w.r.t. experimental
- Aw has larger uncertainties : 1.5-2%

Results

Process	N events	N Background	С
W+ —> $\mu \vee$	9 225 887	683 000 ± 32 000	0.656 ± 0.003
$W^{-} \longrightarrow \mu \vee$	6 260 198	598 000 ± 20 000	0.649 ± 0.003
W+> e v	7 552 884	515 000 ± 48 000	0.572 ± 0.004
W>e∨	5 286 997	468 000 ± 40 000	0.586 ± 0.005

- Combine using technique introduced at HERA
- Properly taking into account the correlations between the measurements
- χ² minimisation allowing to have contributions of the correlated uncertainty sources to shift

	$\sigma^{\rm fid}_{W \to \ell \nu}$ (pb)
$W^+ \rightarrow e^+ v$	$2939 \pm 1 \text{ (stat)} \pm 28 \text{ (syst)} \pm 53 \text{ (lumi)}$
$W^+ \to \mu^+ \nu$	$2948 \pm 1 \text{ (stat)} \pm 21 \text{ (syst)} \pm 53 \text{ (lumi)}$
$W^+ \to \ell^+ \nu$	$2947 \pm 1 \text{ (stat)} \pm 15 \text{ (syst)} \pm 53 \text{ (lumi)}$
$W^- \rightarrow e^- \bar{\nu}$	$1957 \pm 1 \text{ (stat)} \pm 21 \text{ (syst)} \pm 35 \text{ (lumi)}$
$W^- o \mu^- \bar{\nu}$	$1964 \pm 1 \text{ (stat)} \pm 13 \text{ (syst)} \pm 35 \text{ (lumi)}$
$W^- o \ell^- \bar{\nu}$	$1964 \pm 1 (\text{stat}) \pm 11 (\text{syst}) \pm 35 (\text{lumi})$
$W \to e \nu$	$4896 \pm 2 \text{ (stat)} \pm 49 \text{ (syst)} \pm 88 \text{ (lumi)}$
$W \to \mu \nu$	$4912 \pm 1 \text{ (stat)} \pm 32 \text{ (syst)} \pm 88 \text{ (lumi)}$
$W \to \ell \nu$	$4911 \pm 1 \text{ (stat)} \pm 26 \text{ (syst)} \pm 88 \text{ (lumi)}$

Results

$$\sigma^{\rm tot}_{W \to \ell \nu} \ ({\rm pb})$$

 $W^+ \to \ell^+ \nu$ 6350 ± 2 (stat) ± 30 (syst) ± 110 (lumi) ± 100 (acc)

 $W^- \to \ell^- \bar{\nu} = 4376 \pm 2 \,(\text{stat}) \pm 25 \,(\text{syst}) \pm 79 \,(\text{lumi}) \pm 90 \,(\text{acc})$

 $W \rightarrow \ell \nu$ 10720 ± 3 (stat) ± 60 (syst) ± 190 (lumi) ± 130 (acc)

$$R_W = \frac{\sigma_{W \to ev}^{\text{fid}, e} / E_W^e}{\sigma_{W \to \mu v}^{\text{fid}, \mu} / E_W^{\mu}} = \frac{\sigma_{W \to ev}^{\text{fid}}}{\sigma_{W \to \mu v}^{\text{fid}}} = \frac{BR(W \to ev)}{BR(W \to \mu v)}$$

= 0.9967 ± 0.0004 (stat) ± 0.0101 (syst)
= 0.997 ± 0.010.

- Integrated cross-section : dominated by luminosity and acceptance factor uncertainties
- Test of lepton universality
 - Ratio result is more precise than LEP result of 1.007 ± 0.019

Systematic uncertainties : electron channel

	$\delta\sigma_{W+}$ (%)	$\delta\sigma_{W-}$ (%)	Signal modelling	0.57	0.64
			(matrix-element generator)		
Trigger efficiency	0.03	0.03	Signal modelling (parton	0.24	0.25
Reconstruction efficiency	0.12	0.12	shower and hadronization)		
Identification efficiency	0.09	0.09	PDF	0.10	0.12
Forward identification	_	_	Boson $p_{\rm T}$	0.22	0.19
efficiency			Multijet background	0.55	0.72
Isolation efficiency	0.03	0.03	Electroweak+top background	0.17	0.19
Charge misidentification	0.04	0.06	Background statistical	0.02	0.03
Electron $p_{\rm T}$ resolution	0.02	0.03	uncertainty		
Electron $p_{\rm T}$ scale	0.22	0.18	Unfolding statistical	0.03	0.04
Forward electron p_T scale +	_	_	uncertainty		
resolution			Data statistical uncertainty	0.04	0.05
$E_{\rm T}^{\rm miss}$ soft term scale	0.14	0.13	Total experimental uncertainty	0.94	1.08
$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04		0.94	1.00
Jet energy scale	0.04	0.02	Luminosity	1.8	1.8
Jet energy resolution	0.11	0.15			

Dominated by multijet background and signal modelling (MC@NLO vs Powheg)

- Luminosity dominates
- Total experimental uncertainty (excluding luminosity) is $\sim 1\%$

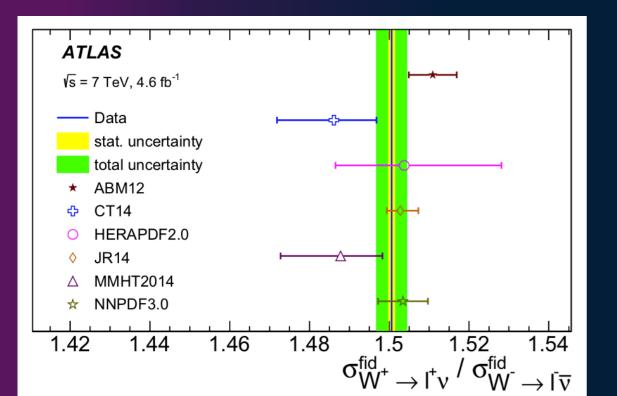
Systematic uncertainties : muon channel

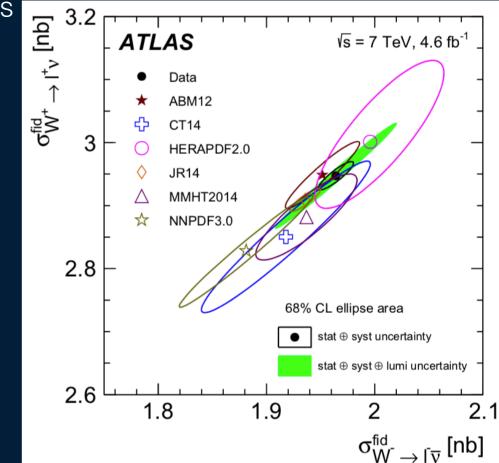
			Signal modelling (matrix-element generator)	0.12	0.06
	$\delta\sigma_{W+}$ (%)	$\delta\sigma_{W-}$ (%)	Signal modelling (parton shower and hadronization)	0.14	0.17
Trigger efficiency	0.08	0.07	PDF	0.09	0.12
Reconstruction efficiency	0.19	0.17	Boson $p_{\rm T}$	0.18	0.14
-			Multijet background	0.33	0.27
Isolation efficiency	0.10	0.09	Electroweak+top background	0.19	0.24
Muon $p_{\rm T}$ resolution	0.01	0.01	Background statistical	0.03	0.04
Muon $p_{\rm T}$ scale	0.18	0.17	uncertainty		
$E_{\rm T}^{\rm miss}$ soft term scale	0.19	0.19	Unfolding statistical	0.03	0.03
$E_{\rm T}^{\rm miss}$ soft term resolution	0.10	0.09	uncertainty		
Jet energy scale	0.09	0.12	Data statistical uncertainty	0.04	0.04
Jet energy resolution	0.11	0.16	Total experimental uncertainty	0.61	0.59
			Luminosity	1.8	1.8

- Dominated by multijet background, followed by various uncertainties ~at the same level
- Total uncertainty excluding luminosity is ~0.6%

Results : unfolded differential distributions

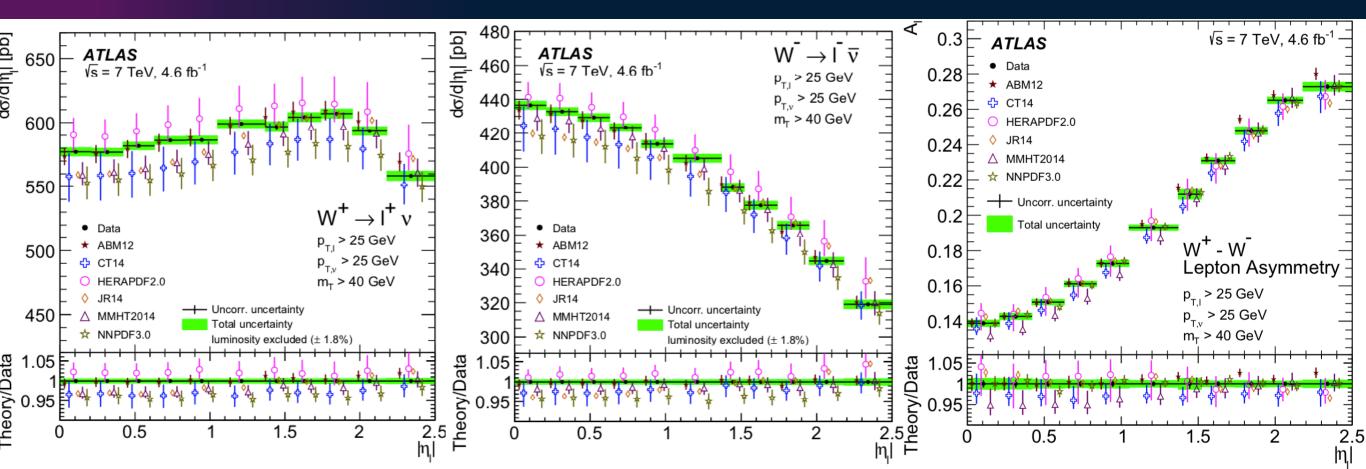
- Bayesian unfolding, purity > 90%
 - Unfolding is almost an efficiency correction


Comparison with theory


- Fixed-order NNLO QCD predictions use DYNNLO 1.5 (baseline) and FEWZ 3.1.b2 (used for NNLO uncertainty evaluation)
 - NLO EW corrections provided by MCSANC
- In DY cross-section calculations the value of $\alpha_{\rm EW}$ can be fixed in different input-parameter schemes
 - Here 'Gµ' scheme (primary parameters are particle masses and Fermi constant with values taken from PDG) —>see Dittmaier, S. & Huber, M. J. High Energ. Phys. (2010) 2010: 60

43

Uncertainties in these plots is the dominating PDF uncertainty only



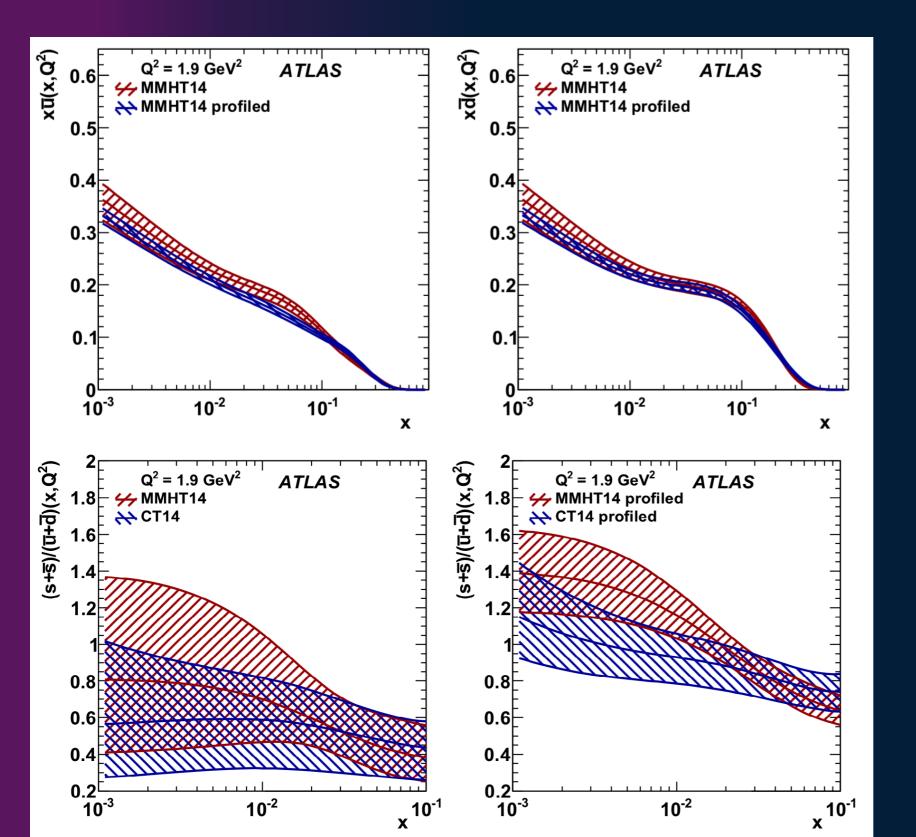
Comparison with theory : lepton n and asymmetry

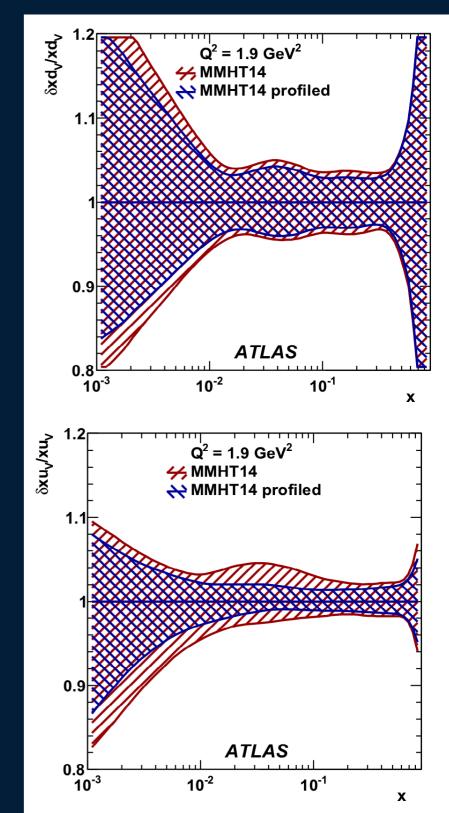
Lepton charge asymmetry defined as :

 $A_{\ell} = \frac{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}$

- Significant constrain on u/d PDFs between x ~ 10⁻¹ and 10⁻³
- Data overall well described (luminosity uncertainty of 1.8% is excluded in the plots)
- HERAPDF2.0, NNPDF3.0, MMHT14 and CT14 more or less agree with the data within uncertainties
 - ABM12 remarkably good, but does a poorer job describing Z distributions

PDF profiling : methodology


 PDF profiling and full PDF fits heavily rely on methods used in previous. experiments (Tevatron, HERA) and global PDF fit groups, see e.g.

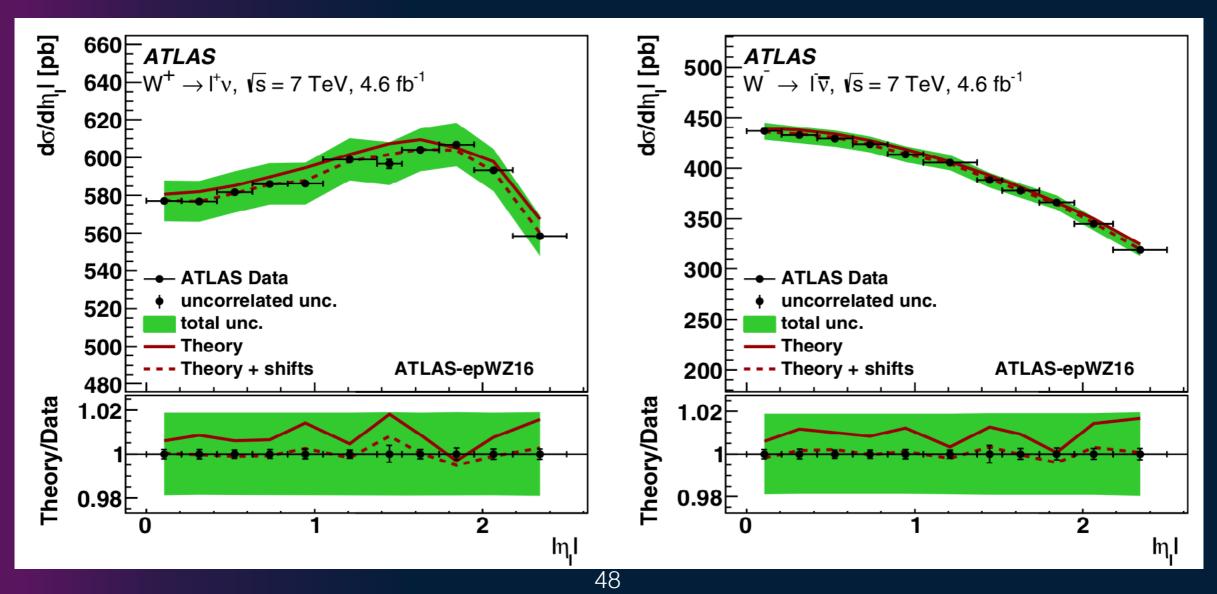

Eur. Phys. J. C 75, 458 (2015), JHEP 12, 100 (2014), JHEP 09, 061 (2012)

- Use of APPLGRID for theory predictions, together with k-factors from the accurate theory tools described before (NNLO QCD from DYNNLO 1.5, NLO EW from PHOTOS and MCSANC)
- Use of xFitter software
 - start from existing PDF sets
 - Use a $\chi^2(b_{exp}, b_{th})$ that minimises difference between observed and predicted cross-section allowing nuisance parameters (bexp, bth) to shift
 - Allows for quantitative estimate of the agreement between the data and the PDF sets from global fits, and study further constraining power from the new measurement
 - Best χ^2 is obtained with CT14nnlo, CT10nnlo, and reasonable with MMHT14nnlo

PDF profiling results (exemple of MMHT14)

Full PDF fit

- More complex than PDF profiling
 - Requires parametrisation of the PDFs at a starting scale $Q_0^2 = 1.9 \text{GeV}^2$


$$\begin{aligned} xu_{v}(x) &= A_{u_{v}} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} (1+E_{u_{v}} x^{2}), \\ xd_{v}(x) &= A_{d_{v}} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}, \\ x\bar{u}(x) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}, \\ xg(x) &= A_{g} x^{B_{g}} (1-x)^{C_{g}} - A'_{g} x^{B'_{g}} (1-x)^{C'_{g}}, \\ x\bar{s}(x) &= A_{\bar{s}} x^{B_{\bar{s}}} (1-x)^{C_{\bar{s}}}, \end{aligned}$$

- PDFs are evolved to the scale of the measurements and convolved with hardscattering coefficients to obtain the theoretical cross-section predictions
- Then, fit using similar (but different) χ^2 as in profiling, with parameters left free
- Fit done with HERA and new ATLAS data
 - New set termed ATLAS-epWZ16
 - Includes experimental and theory uncertainties

Full PDF fit : result

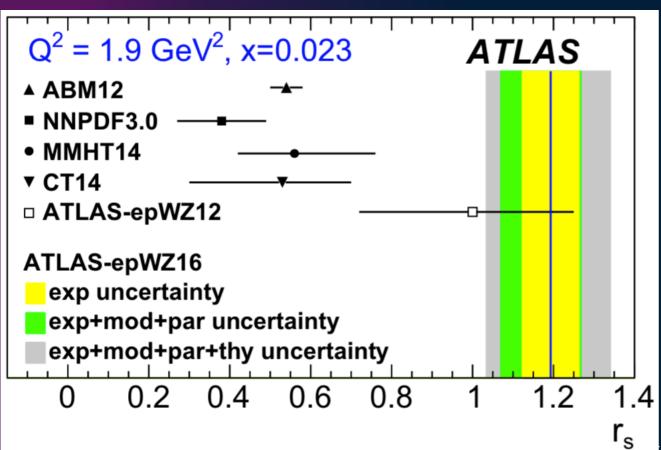
- Theory uncertainties include : variation on the heavy quark masses, on Q₀, on Q_{min} (smallest scale for HERA data), different parametrisation, *α*_S(m_Z) (= 0.118 ± 0.002), NLO EW, FEWZ vs DYNNLO
- Experimental uncertainties on the new PDF set greatly reduced by a factor 3 w.r.t. the previous one (ATLAS-epWZ12)
- Data well described by the theory

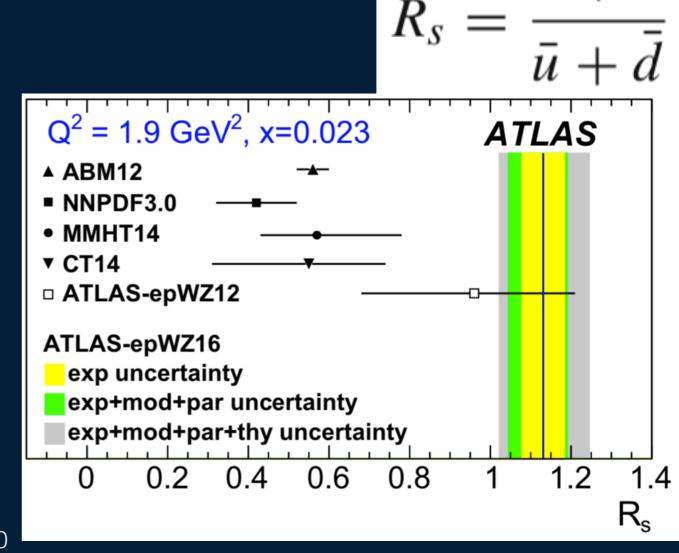
strange quark density

- ATLAS 2010 W,Z : unsuppressed strangeness at x ≈0.023 and Q² = 1.9 GeV², —> strange, down and up sea quarks of similar strength in that kinematic range
 - Supported by ATLAS W+c measurement
 - Not expected from neutrino scattering experiments, which have big weight in global PDF fits

$$r_s = \frac{s + \bar{s}}{2\bar{d}}$$

$$r_s = 1.19 \pm 0.07 \text{ (exp)} \stackrel{+0.13}{_{-0.14}} \text{ (mod + par + thy)}$$

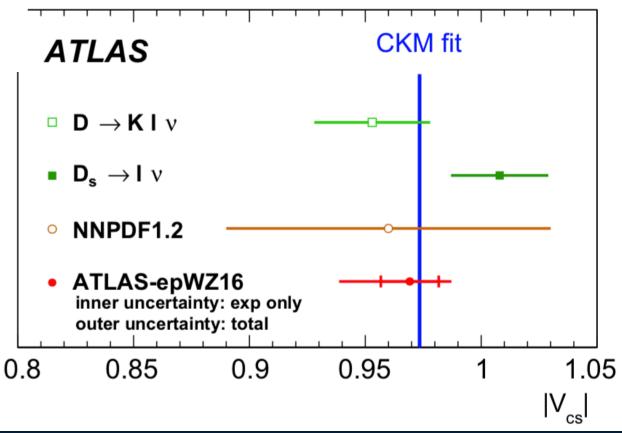

- Many checks were performed :
 - remove the constraint $\bar{u} = \bar{d}$ for x—>0
 - Inclusion of E866 data for which there are tensions $(\bar{u} \bar{d})$
 - remove low/high mass Drell-Yan
 - How much the χ^2 increases when imposing suppressed strangeness (r_s = 0.5 and C_{\rm \bar{s}} = C_d)
- Everything points to strangeness values consistent with this measurement


F.Balli – W physics at ATLAS – Grodno, 12–24 August , 2018

strange quark density

- Uncertainties include :
 - experimental
 - model variations (heavy quark masses, starting scale, minimum scale of HERA data)
 - PDF parametrisation
 - **a**s
 - EW corrections

- factorisation and renormalisation scales
- FEWZ vs DYNNLO



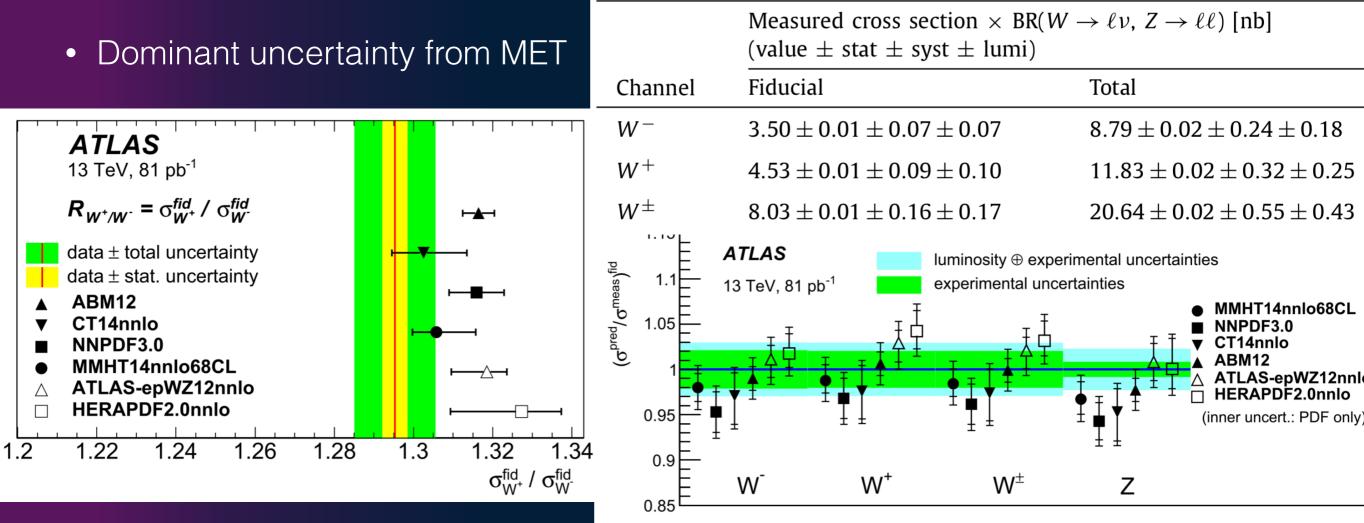
V_{cs}| measurement

- W production mainly from ud and cs quarks
 - $|V_{ud}|$ already measured with high precision, but not $|V_{cs}|$
 - W production rate and lepton η distributions are sensitive to $|V_{cs}|$
 - —>PDF fit with $|V_{cs}|$ allowed to vary (other CKM matrix elements fixed to the 2012 PDG value)
 - parametrisation variations —>Dominant uncertainty
 - Competitive with other measurements

$$|V_{cs}| = 0.969 \pm 0.013 \text{ (exp)} {}^{+0.006}_{-0.003} \text{ (mod)} {}^{+0.003}_{-0.027} \text{ (par)}$$

 ${}^{+0.011}_{-0.005} \text{ (thy)}.$

Central value	<i>V</i> _{cs} 0.969
Experimental data	±0.013
Model $(m_b, Q_{\min}^2, Q_0^2 \text{ and } m_c)$	$+0.006 \\ -0.003$
Parameterization	$+0.003 \\ -0.027$
$\alpha_{\rm S}$	± 0.000
EW corrections	± 0.004
QCD scales	$^{+0.000}_{-0.003}$
FEWZ 3.1b2	+0.011
Total uncertainty	$+0.018 \\ -0.031$



W cross-section at 13 TeV

Physics Letters B 759 (2016) 601-621

- Shorter analysis was performed using 81pb⁻¹ of early Run2 2015 data : W,Z fiducial and inclusive cross-sections
- Peak delivered instantaneous luminosity was L = 1.7×10^{33} cm⁻¹ s⁻¹, $\langle \mu \rangle = 19$.
- measurement compared with NNLO fixed-order predictions from DYNNLO using different PDF sets

W cross-section : conclusion and summary

- Remarkable precision on Drell-Yan cross-section, below 1% (when excluding luminosity uncertainty) even for W
- Allows for stringent tests of Standard Model
- High number of experimental points is a good input to constrain parton distribution functions and thus reduce their related uncertainty
 - Key ingredient for most physics analyses
- Competitive measurement of |V_{cs}| CKM matrix element

W+jets at 8 TeV

JHEP05(2018)077

W+jets at 8 TeV : introduction

- Several differential cross-sections for $W + \ge 1$ jet in the electron channel
 - H_T (scalar sum of the transverse momenta of electron, neutrino and jets), p_T(W), p_T(j1), y(j1) (transverse momentum and rapidity of the leading jet, i.e. with highest p_T)
- And for $W + \ge 2$ jets
 - p_T(j2), y(j2), ΔR(j1,j2), M_{jj}
- W+/W⁻ cross-section ratio
 - Cancelling of dominant systematic uncertainties
- Motivation : stringent tests of pQCD, constraints to PDFs fits, sensitivity to ME/PS matching schemes
- detector calibration for reconstructed objects (leptons, jets, missing E_T) are all from standard Combined Performance groups
- Main signal MC sample is Alpgen+Pythia6 with up to 5 partons in the ME
- All backgrounds estimated with MC except for multi jet (data driven)

W+jets at 8 TeV : event selection

- Trigger : electron, isolated (p_T>24 GeV) or not (p_T>60 GeV)
- exactly 1 electron with p_T>25 GeV, within detector acceptance and matching the trigger
 - 'tight' identification
 - cut on impact parameters of associated track
 - isolation : $ptvarcone30/p_T < 0.07$, topoetcone30/ $p_T < 0.14$
 - no other 'medium' electron with p_T>20 GeV
- Anti- k_T jets with R=0.4, p_T >30 GeV, |y|<4.4, separated from the electron
 - pile-up rejection for jets within tracking acceptance ('JVF' cut)
 - Veto on events with b-tagged jets (p_T >20 GeV, $|\eta| < 2.5$) —>rejects tt \bar{t}
- jets-electron overlap removal
- MET > 25 GeV, m_T > 40 GeV

W+jets at 8 TeV : event yields

N _{jets}	0	1	2	3	4	5	6	7
$W \rightarrow e\nu$	94~%	86~%	75~%	67~%	57~%	47~%	40~%	35~%
Multijet	3~%	8 %	15~%	16~%	16~%	16~%	14~%	14 %
$t\bar{t}$	<1~%	<1~%	1 %	6~%	16~%	27~%	36~%	43~%
Single t	<1~%	<1~%	1 %	1~%	2~%	2~%	2~%	1 %
$W \rightarrow \tau \nu$	2~%	2~%	2~%	2~%	2~%	1~%	1~%	1 %
Diboson	<1~%	<1~%	1 %	1~%	1~%	1~%	<1~%	<1~%
$Z \rightarrow ee$	<1~%	3 %	5 %	6~%	6~%	6~%	5~%	5 %
$Z \to \tau \tau$	<1~%	<1~%	<1~%	<1~%	< 1~%	<1~%	<1~%	<1~%
Total predicted	54310000	7611700	2038000	478640	120190	30450	7430	1735
	± 22000	± 4000	± 1700	± 720	± 320	± 150	± 63	± 20
Data observed	56342232	7735501	2070776	486158	120943	29901	7204	1641

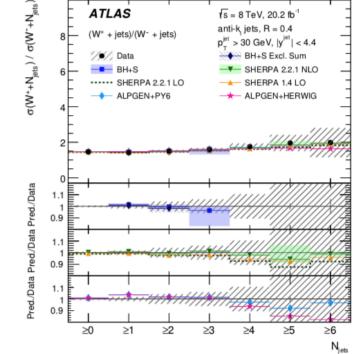
 Dominant background is multijet for lower jet multiplicity, tt becomes more important for events with higher multiplicity

W+jets at 8 TeV : comparison to various predictions

- All observables use Bayesian unfolding to account for detector effects (bin migrations)
- Comparison to various prediction (first 3 have non-perturbative corrections using Sherpa 2.2.1 to • account for hadronisation and underlying event)
- NLO EW corrections investigated with Sherpa 2.2.1, PDF sensitivity investigated with MCFM
- Theory uncertainties include : renormalisation/factorisation scale variations, $\alpha_{\rm S}$, PDF uncertainties (only statistical uncertainty is shown for LO generators)

Program	Order	$N_{\rm partons}^{\rm max}$	PDF set	
	in $\alpha_{\rm S}$	at highest order		
N _{jetti}	NNLO	1	CT14	
BlackHat+Sherpa	NLO	1, 2 or 3	CT10	
MCFM 6.8	NLO	1, 2 01 5	CT10 CT10	
			+ 3 more	
Powheg+Pythia 8	NLO	1	CT14	
Sherpa 2.2.1	NLO	2	CT10	
Sherpa 2.2.1	LO	2(3)	NNPDF 3.0	
Alpgen+Pythia 6	LO	5	CTEQ6L1 (LO)	
Alpgen+Herwig	LO	5	CTEQ6L1 (LO)	
Sherpa 1.4.1	LO	4	CT10	
Theo	oretical	predictions	58	

	Electron criteria
Electron $p_{\rm T}$	$p_{\rm T} > 25 {\rm GeV}$
Electron pseudorapidity	$ \eta < 2.5$
	W criteria
Electron decay	Exactly one electron
Missing transverse momentum	$E_{\rm T}^{\rm miss} > 25 {\rm GeV}$
Transverse mass	$m_{\rm T} > 40 {\rm GeV}$
	Jet criteria
Jet $p_{\rm T}$	$p_{\rm T} > 30 {\rm GeV}$
Jet rapidity	y < 4.4
Jet-electron distance	$\Delta R(e, \text{jet}) \ge 0.4$


Fiducial phase space

W+jets cross-section and W+/W- ratio

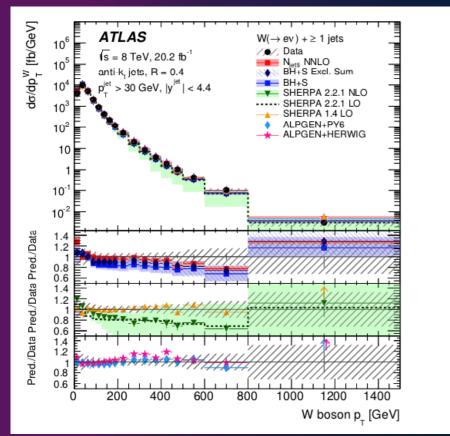
- Overall good agreement of measured values with predictions
- NLO vs LO improves agreement \bullet (Sherpa 2.2.1)
- Better agreement for the ratio \bullet
 - —>probable cancelling of theoretical mismodeling (jet emission)

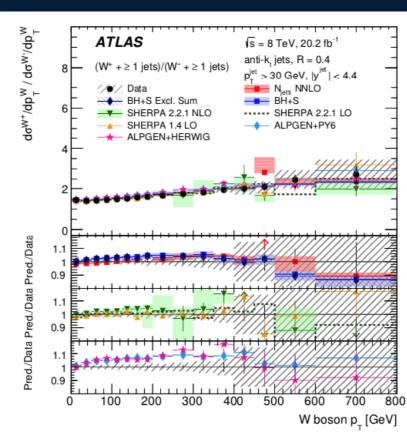
	_					_	
σ(W+N _{jets}) [pb]	10 ⁸	ATLAS		W(→ ev) + jets		'-
s	107		00.04-1		Data		=
7		I s = 8 TeV			BH+S Excl.	Sum	
Ŧ	10 ⁶	anti-k, jets,	R = 0.4	-	BH+S		
Ś	10 ⁵	. p_ ^{jet} > 30 Ge	eV, y ^{jet} < 4.4		SHERPA 2.		שוני לשווי לשווי לשווי לשווי לשווי
ь					SHERPA 2.		
	10 ⁴				SHERPA 1.		
	10 ³				ALPGEN+P ALPGEN+F		_
	-			×	ALF GENT	LINNIG	=
	10 ²						
	10				,		_
	٦Ē				and the second		_
	1				30.0		
	10-1				11	7///	****
	10 ⁻²					. 7/	1/12
ata	10 ⁻² 1.4 1.2	.	_	_	11/1/1	1/////	7/7
Q	1.2		1 44 44 4 1 1 7	++ //////	//////	/////	//#
B.	1 0.8 0.6 1.4		******///		///////	//////	1/3
- L	0.6	-			'//////////////////////////////////////	/////	Æ
ata	1.4			1	·~~~//	1////	<u>√</u> /=
Ő	1.2 E		111111111	117/1///	1////4	4477	1/7
ed.			11111111	7777977	111111	/////	1/1
Ę.	0.8				///////	/////	/Æ
Pred./Data Pred./Data Pred./Data	1.4 1.2				11/1///	X////	<u>//</u> =
Q		wille	11111111	4 <i>44</i> 44		AHT)	
ed.	0.8		1111111	1//////	//////	1/////	1/2
Ť	0.6	1 1			///////	8////	
		≥0 ≥1	≥2 ≥3	3 ≥4	≥5	≥6 2	≥7
							N

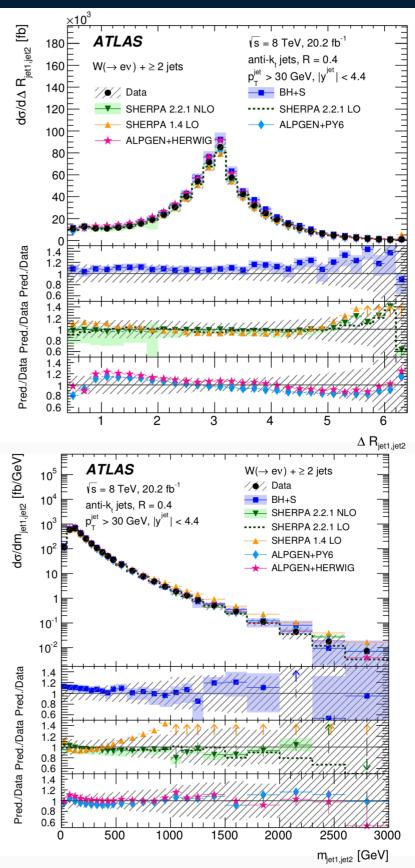
	Inclusive	≥ 1 jet	≥ 2 jets	≥ 3 jets	Inclusive	≥ 1 jet	≥ 2 jets	≥ 3 jets
Jet energy scale	< 0.1	0.3	1.2	2.3	0.1	7.5	10	14
Jet energy resolution	0.1	0.7	1.6	2.5	0.5	8.8	9.9	12
b-tagging	< 0.1	0.2	0.5	1.5	0.1	0.5	1.5	3.8
Electron	0.1	0.1	0.1	0.1	1.1	1.4	1.4	1.5
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.8	1.9	2.8	1.1	2.6	4.2	5.5
Multijet background	0.3	1.2	2.9	3.2	0.5	1.3	2.1	2.6
Top quark background	< 0.1	0.1	0.3	1.2	< 0.1	0.2	0.8	2.5
Other backgrounds	< 0.1	0.1	0.2	0.3	< 0.1	0.1	0.2	0.3
Unfolding	0.6	0.5	0.6	0.7	4.7	4.1	4.9	4.4
Other	< 0.1	0.1	0.3	0.9	0.3	0.8	1.0	2.1
Luminosity	< 0.1	< 0.1	0.1	0.2	0.1	0.2	0.4	0.7
Total systematic uncert.	0.7	1.8	4.1	5.9	5.0	13	16	20

High gain in precision from the ratio

- multijet uncertainty ightarrowdominant at large jet multiplicity (ratio)
- Significant impact of jet energy scale at high multiplicity (dominant for W cross-section)

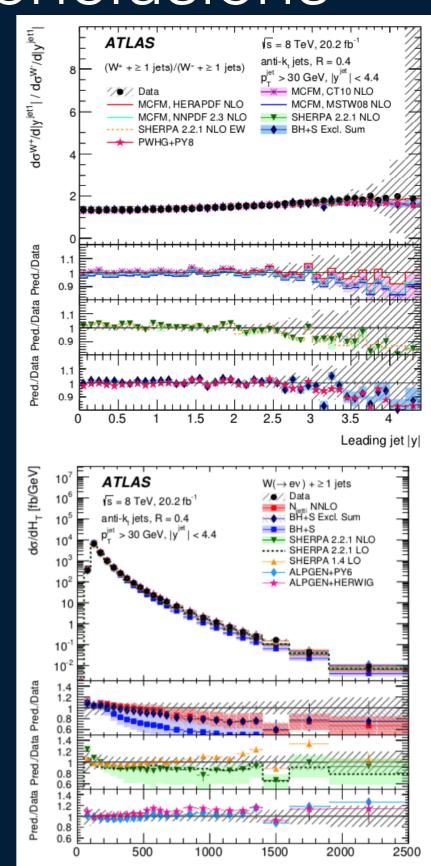

W cross-section ratio uncertainties


W cross-section



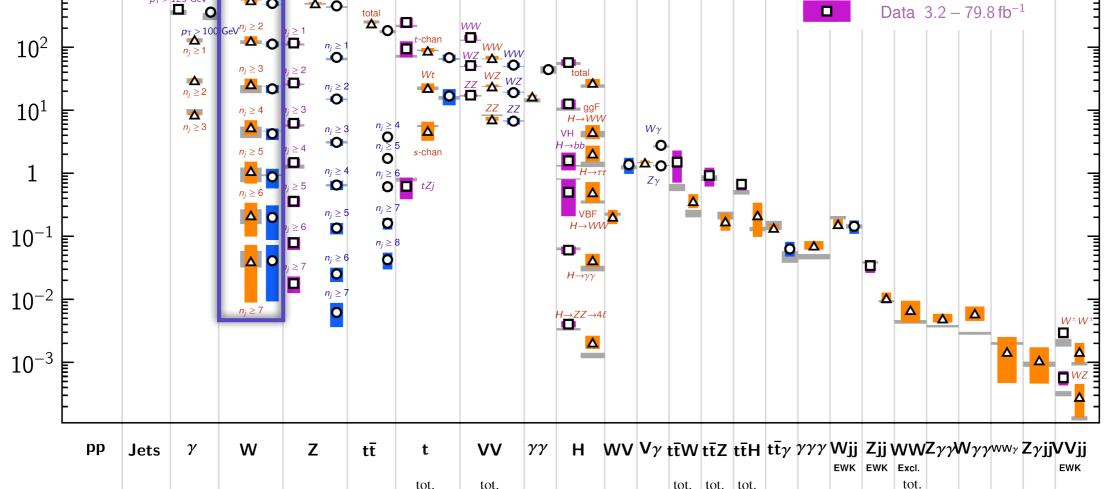
W+jets at 8 TeV : differential cross-sections

- Just a few exemples of distributions : W p_T for W + ≥ 1 jet (W and ratio), ΔR, M_{ij} for W + ≥ 2 jets
- W pT : sensitive to PDFs, interesting for fits
 - best described by Alpgen+Pythia and LO Sherpa 1.4
 - Ratio : most predictions are off
- ΔR, M_{jj} : test hard parton radiation at large angles and matrix-element/ parton-shower matching
 - Good description from BlackHat+Sherpa
 - Much better description of large M_{jj}/ΔR values from Sherpa 2.2.1 as compared to Sherpa 1.4



W+jets at 8 TeV : a few conclusions

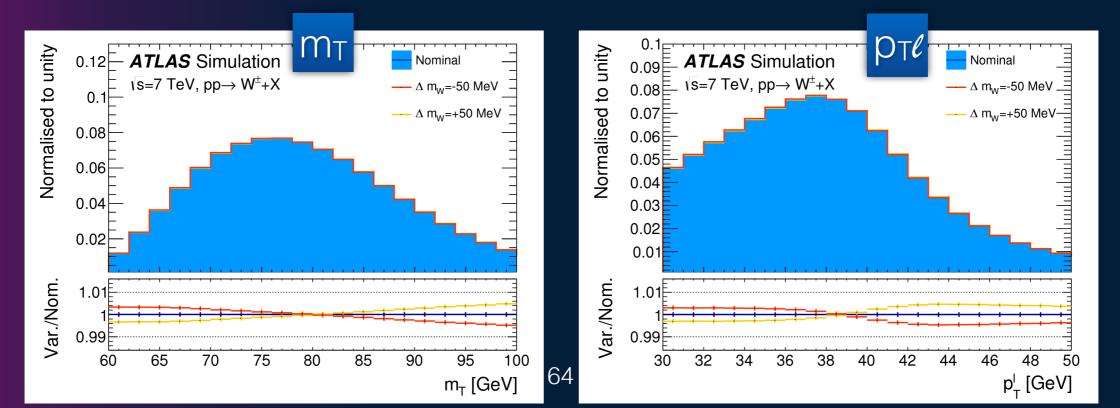
- High precision reached especially for the W+/W- ratio
- Overall good agreement between the data and the theory predictions
- Degradation at large jet rapidity, angular separation and energy
- Sensitivity of W+/W- ratio to PDFs
- Multi-leg generators (Alpgen, Sherpa) do best in many places
 - High multiplicities in the ME
- No single prediction describes each and every measured observable


H_T [GeV]

لسند المسلم

W cross-section : conclusion and summary

Standard Model Production Cross Section Measurements Status: July 2018 σ [pb] ▲ O total (2x) ATLAS Preliminary 10^{11} □ <u>∧</u> O inelastic Theory Run 1,2 $\sqrt{s} = 7,8,13$ TeV п 10⁶ incl LHC pp $\sqrt{s} = 7$ TeV Δo O. Data 4.5 - 4.9 fb⁻¹ dijets 10⁵ 0 > 25 GeV LHC pp $\sqrt{s} = 8$ TeV 10^{4} Data 20.2 - 20.3 fb⁻¹ $\square -n_i \geq 0$ **A**-0 LHC pp $\sqrt{s} = 13$ TeV 10³ О $\square - n_i > 0$ *p*_T > 125 GeV **A** O <u>A</u>_0 **▲** ∩ □ ^{*p*}_T ≥ 10² **△** 0 LO. 0 Δ $n_j \ge 2$ 10^{1} Δ Δ-Ο $n_i \ge 3$ Wγ s-chan


W mass at 7 TeV

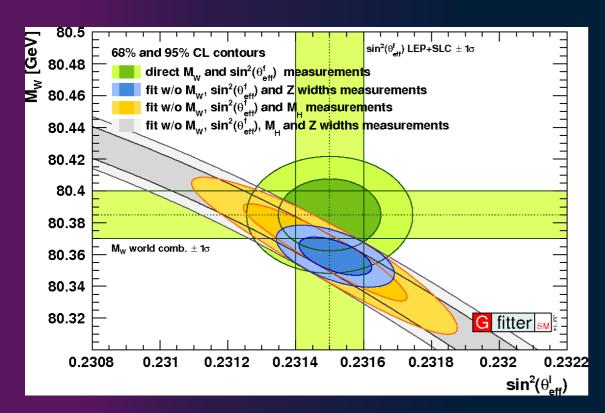
Eur.Phys.J. C78 (2018) no.2, 110

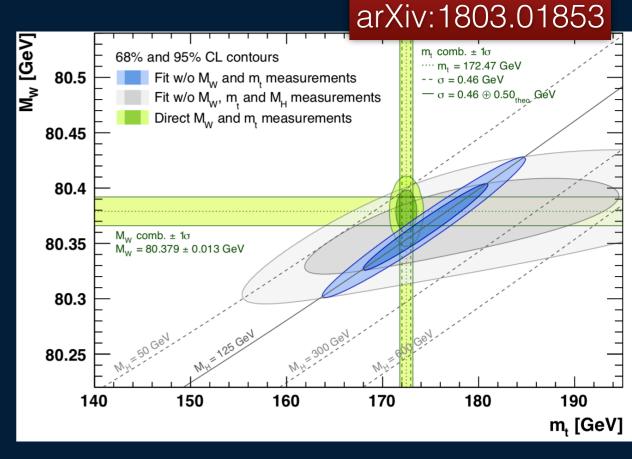
Analysis strategy

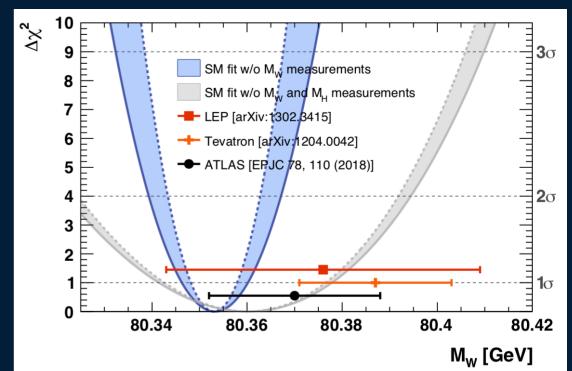
- Measurement's methodology :
 - obtain predictions with simulated events for signal and background (except data-driven multijet background)
 - to extract the result, compare data and predictions for distributions sensitive to m_W by performing a template χ^2 fit
- Very simple in principle, but extremely challenging in practice as it requires at the 1/10,000 level :
 - Accurate theoretical description of W production and decay kinematics in the simulation
 - Precise calibration of the detector
- Fully reconstructed mass in Z-boson sample to validate the analysis and to provide significant experimental and theoretical constraints (ancillary measurements)

Measurement's categories

Decay channel	$W \to e \nu$	$W \to \mu \nu$
Kinematic distributions Charge categories $ \eta_{\ell} $ categories	$\begin{array}{c} p_{\mathrm{T}}^{\ell},m_{\mathrm{T}}\\ W^{+},W^{-}\\ [0,0.6],[0.6,1.2],[1.8,2.4]\end{array}$	$\begin{array}{c} p_{\mathrm{T}}^{\ell},m_{\mathrm{T}}\\ W^{+},W^{-}\\ [0,0.8],[0.8,1.4],[1.4,2.0],[2.0,2.4]\end{array}$

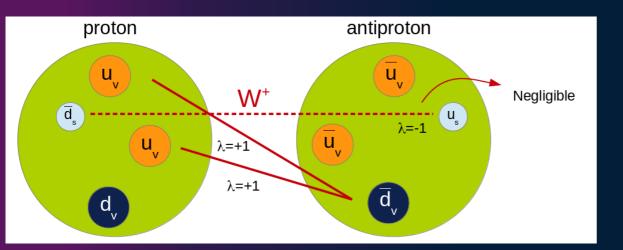

- Measurement performed in 2 channels, using 2 observables, 2 charge categories, 3 (4) |η(lepton)| bins in the electron (muon) channel
 - In total, 28 different values of m_W are extracted
 - Allows to :
 - Thoroughly validate the physics modelling
 - benefit from different sensitivities to systematic uncertainties

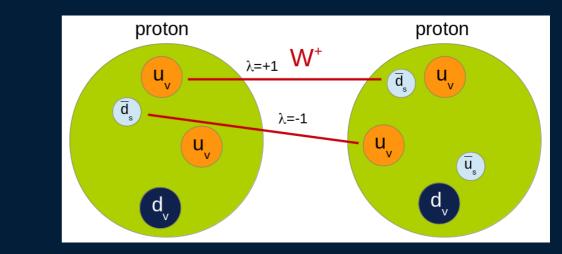


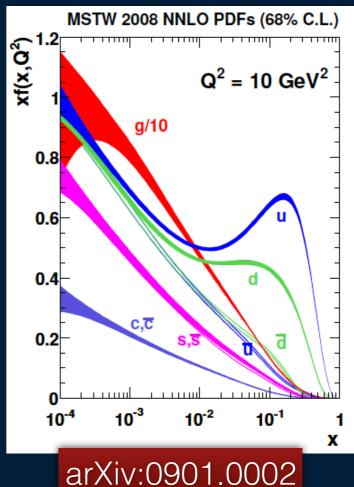

Motivation

66

- See Introduction
- Current world average (Tevatron + LEP) provides the most precise value :
 - $m_W = 80.385 \pm 0.015 \text{ GeV}$
- The natural goal for the measurement's precision is set by the EW fit prediction's uncertainty (7 MeV)

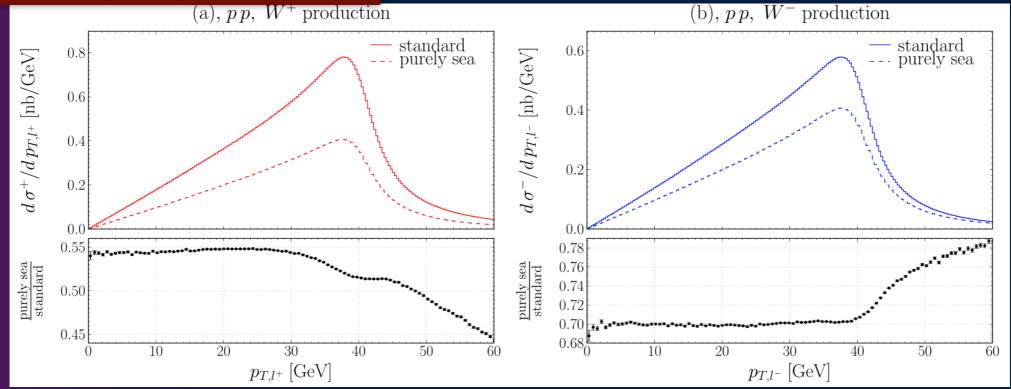






W mass at LHC : more data, larger challenges

- In proton-proton, W+/W- boson production is asymmetric
 - Different contributions from sea/valence quarks
 - Charge dependence of p_T spectrum and thus on the p_T and m_T observables
- More heavy flavour initiated production (25% of the W production is induced by at least one second generation quark s or c)
- W+, W- and Z are produced by different light flavour fractions
- Larger gluon-induced W production
- Large PDF-induced W-polarisation uncertainty (valence vs sea quarks)
- Strange quark pdf uncertainty —> uncertainty on the relative fraction of charm-initiated W boson —> alter the balance between valence quark and sea quark



F.Balli – W physics at ATLAS – Grodno, 12–24 August , 2018

Spectra differences between 'purely sea' and 'standard' quark induced W production

Eur. Phys. J. C (2010) 69: 379-397

Uncertainty on sea and valence PDFs —>on the measured spectra

$$\sigma_{W^+}(y) \propto u(x_1) \cdot \bar{d}(x_2) + \bar{d}(x_1) \cdot u(x_2)$$

$$\sigma_{W^-}(y) \propto d(x_1) \cdot \bar{u}(x_2) + \bar{u}(x_1) \cdot d(x_2)$$

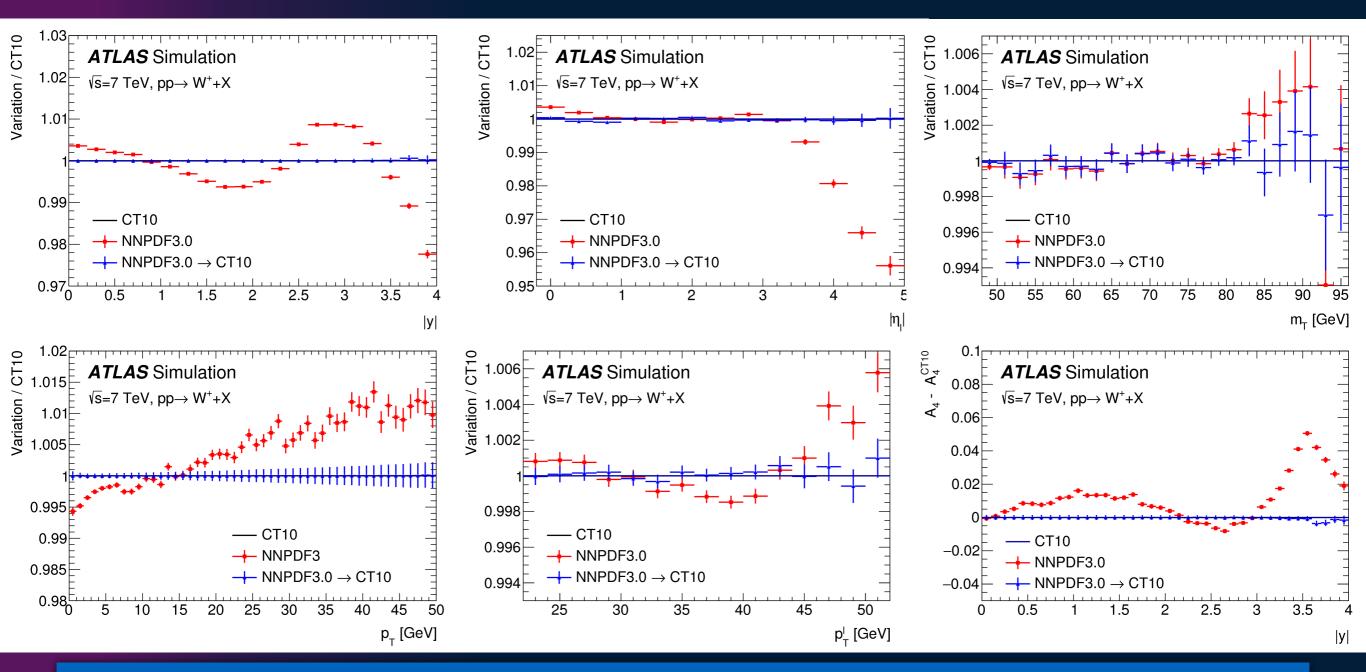
MODELING ASPECTS

Introduction to the modeling

• Factorisation of cross-section under 4 terms

spherical harmonics

Approximation checked and valid at 2 MeV level for m_W


$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right]$$

- do(m)/dm modeled with Breit Wigner
- Other terms : reweight MC according to various predictions
 - 1. $d\sigma(y)/dy$: fixed-order NNLO prediction (DYNNLO)
 - 2. p_T at a given y : Pythia8 with 'AZ' tune
 - 3. polarisation Ai : fixed-order NNLO prediction (DYNNLO)
 - (NB : baseline MC is Powheg+Pythia)

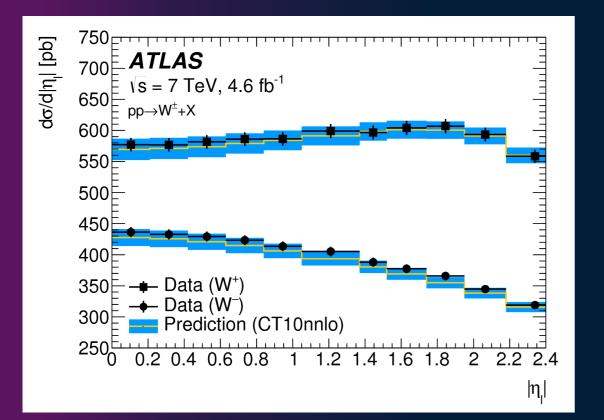
F.Balli – W physics at ATLAS – Grodno, 12–24 August , 2018

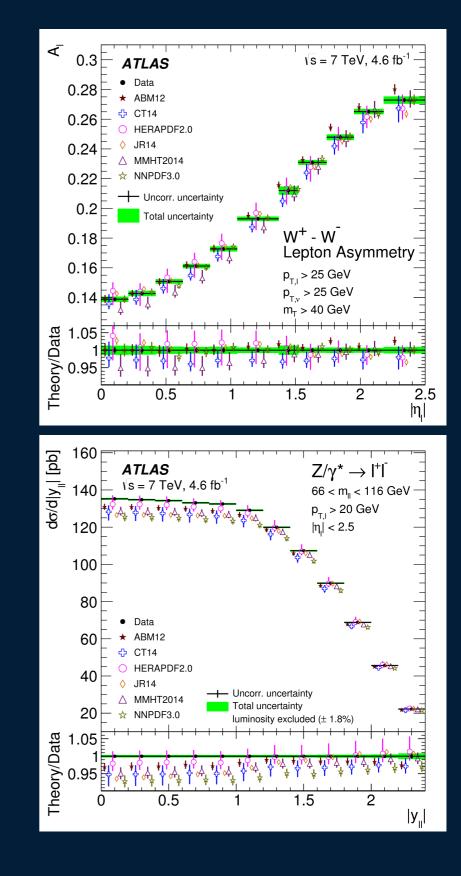
Validity check of the reweighting

Cea

Use NNPDF3 prediction as pseudo-data, perform the various reweightings (y, $p_{T,}$ polarisation) to CT10 sample : strongly validates the modeling procedure

 $\Delta m_W = 1.5 \pm 2.0 \text{ MeV}$

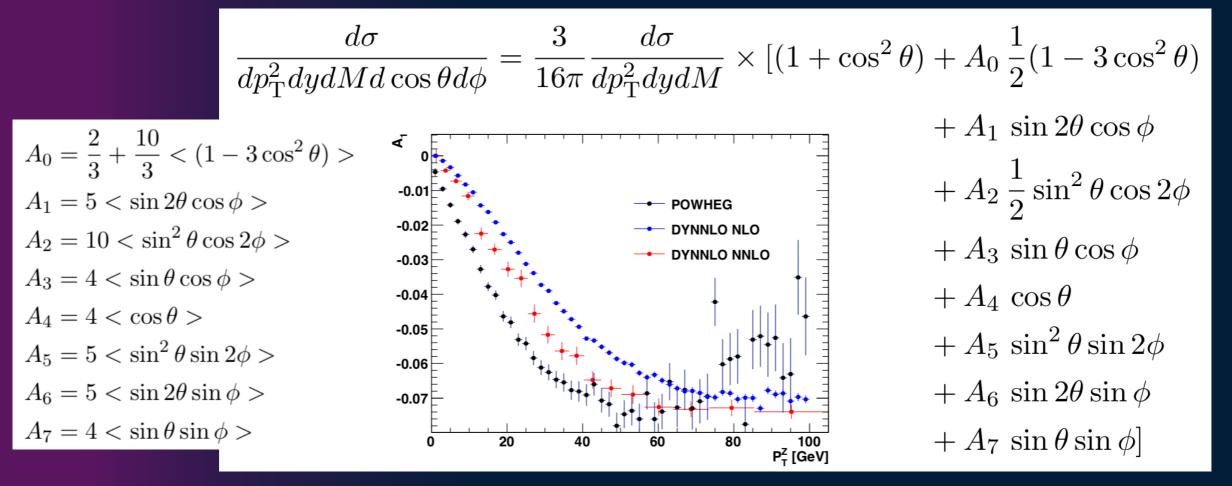



Rapidity

- Use of DYNNLO (Fixed-order pQCD, NNLO)
- Validate against 7 TeV ATLAS W, Z cross-section measurements
 - Distributions sensitive to PDF effects, critical for validation

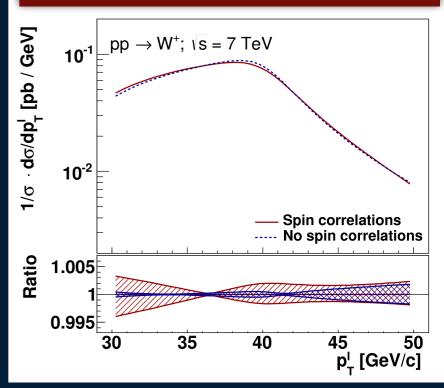
Eur. Phys. J. C 77 (2017) 367

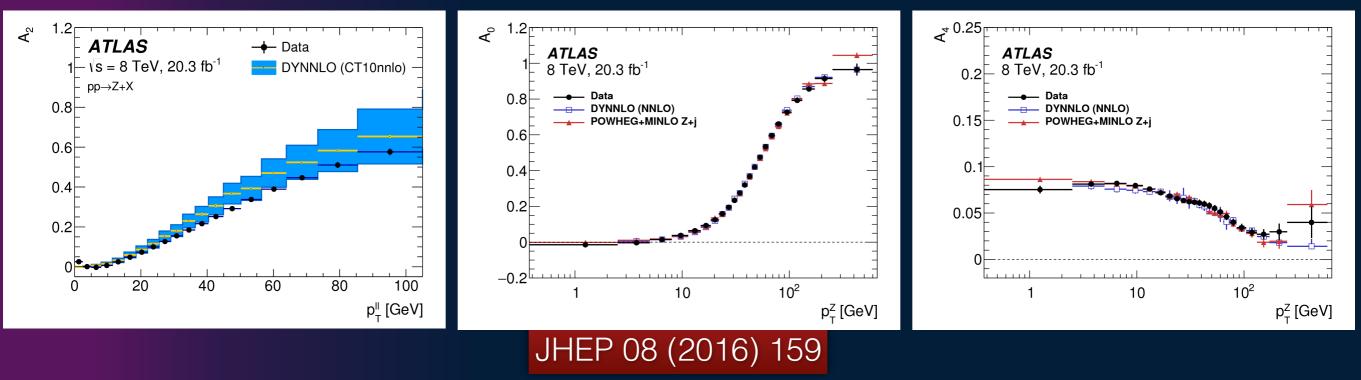
 PDF set : CT10nnlo (best agreement), MMHT14nnlo and CT14nnlo used for uncertainties (other global sets disfavoured by the data)



W/Z polarisation

- Kinematic of the decay leptons depend on polarisation of the (W or Z) boson
 - NLO QCD brings p_T to boson, in turn affecting polarisation
- Full 5-dimensional cross-section can be written as :

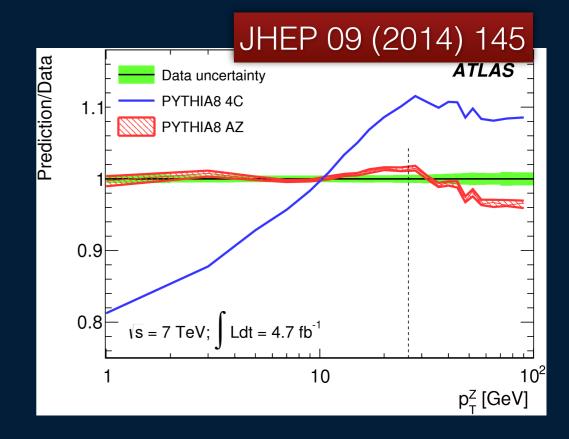

- θ and ϕ : angles of the charged lepton (W⁻, Z) or neutrino (W⁺) in the rest frame of the boson
- A_i(m, y, p_T) : dimensionless angular coefficients (m dependence is small)
 - $A_i \rightarrow 0$ when $p_T \sim 0$ except for A_4 (responsible of forward-backward lepton asymmetry, sensitive to $sin^2 \Theta_W$)
 - A₅-A₇ small, only appear at NNLO in $\alpha_{\rm S}$

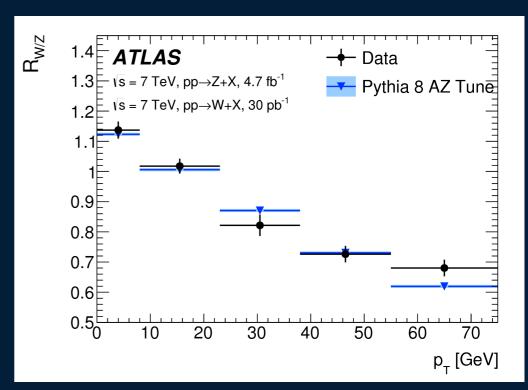


Polarisation

- Crucial to get right in *pp* collisions, otherwise miss some effects
- ATLAS measurement of Z angular coefficients validates fixedorder pQCD NNLO prediction
 - except for A₂ : additional uncertainty
 - data/prediction difference is added to the uncertainty ; pseudo-experiments show no correlation with other coefficients
 - Uncertainties on the Z measurement are propagated to the W

W boson transverse momentum

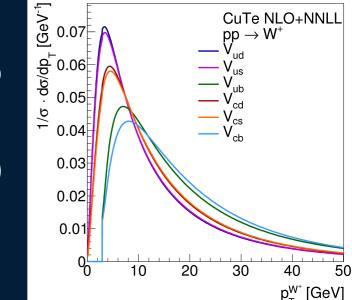

Pythia8 tuned on Z pT ATLAS data (AZ tune)

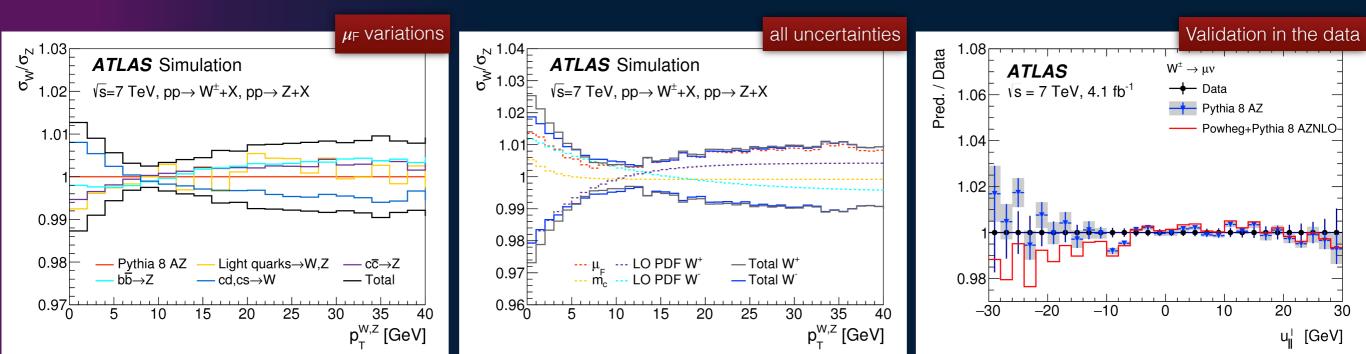

	Pythia8
Tune Name	AZ
Primordial $k_{\rm T}$ [GeV] ISR $\alpha_{\rm S}^{\rm ISR}(m_Z)$	$egin{array}{c} 1.71 \pm 0.03 \\ 0.1237 \pm 0.0002 \end{array}$
ISR cut-off [GeV]	0.59 ± 0.08
$\chi^2_{ m min}/ m dof$	45.4/32

• Good agreement is obtained for the ratio of differential cross-sections using this tune:

$$R_{W/Z}(p_{\rm T}) = \left(\frac{1}{\sigma_W} \cdot \frac{\mathrm{d}\sigma_W(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right) \left(\frac{1}{\sigma_Z} \cdot \frac{\mathrm{d}\sigma_Z(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right)^{-1}$$

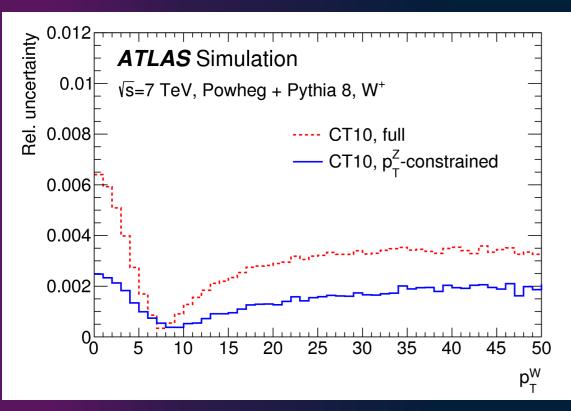
- p_T(W) is obtained via the product of the predicted ratio and the experimental Z p_T spectrum
 - The total uncertainty being the sum in quadrature of these two components, ~1-2%

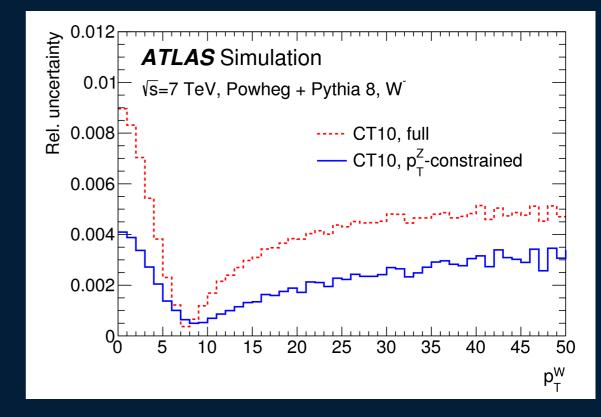



Uncertainties to $p_T(W)$

- Only modelling uncertainties which are uncorrelated between Z and W give sizeable uncertainties on the measurement
 - Induced by heavy flavour initiated production : 6/3% of cc/bb for Z, 20% of cs for W production
- Missing higher orders in QCD ISR : factorisation scale (μ_F) variations taken as correlated between W and Z for light quark, independently for heavy quarks
- other sources : uncertainty on m_c, choice of parton shower LO PDF

CuTe NLO+NNLL


 Central prediction and uncertainty well validated with the recoil distribution in the data



Uncertainty from the PDFs

- Each PDF uncertainty eigenvector from CT10nnlo propagated simultaneously to Ai, rapidity and pT reweighing distributions
 - Overall uncertainty evaluated with the Hessian method
 - Consider MMHT14nnlo and CT14nnlo as alternative
- For p_T(W), only relative variations of p_T(W) and p_T(Z) are considered, reducing the impact of this uncertainty

QCD modelling uncertainties

- Biggest uncertainties arise from the PDFs, modelling of $p_T(W)$ and polarisation
 - Strong anti-correlated effect of PDF on W+ vs W- !
- May be further reduced in the future thanks to :
 - More ancillary measurements : polarisation @13 TeV (higher statistics, uncorrelated systematics), direct W p_T measurement (requires a low pile-up run at LHC)
 - Simultaneous profiling of the PDFs in the fit

W-boson charge	W	7+	W	7-	Comb	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	$p_{ extsf{T}}^\ell$	m_{T}
$\delta m_W [{ m MeV}]$						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Electroweak uncertainties

- QED FSR photons implemented with Photos, negligible uncertainty on it
- FSR pair production impact checked with Photos and Sanc, taken as uncertainty
 - can be implemented in the baseline MC for future measurements (Photospp 3.61)
- Combined NLO EW QCD corrections are assessed with Winhac and taken as an uncertainty - they include IFI + pure weak corrections but need to be checked using a realistic p_T (NLO in QCD)
 - same remark (available recently in Powheg-EW)

Decay channel	И	$V \to e\nu$	W	$\nu \to \mu \nu$
Kinematic distribution	$p_{ ext{T}}^\ell$	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$				
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1
Pure weak and IFI corrections	3.3	2.5	3.5	2.5
FSR (pair production)	3.6	0.8	4.4	0.8
Total	4.9	2.6	5.6	2.6

EXPERIMENTAL ASPECTS

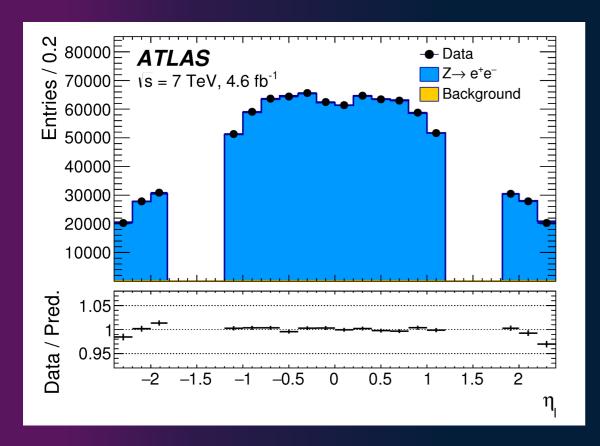
Event selection

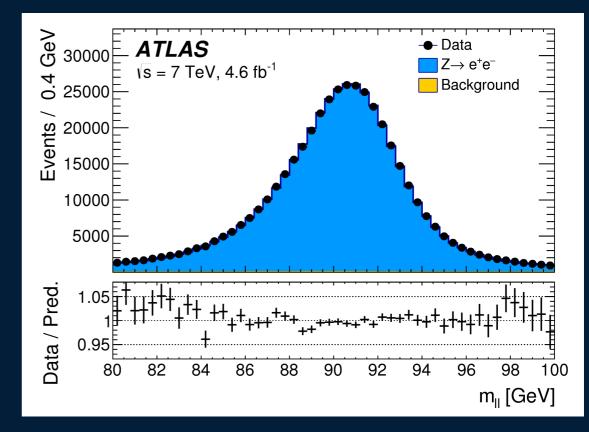
- Lepton selection
 - muon : $p_T > 30$ GeV, $|\eta| < 2.4$, track-based isolation
 - electron : p_T > 30 GeV, $|\eta|$ < 1.2 or 1.8 < $|\eta|$ < 2.4, track and calorimeter-based isolation
- Kinematic requirements :
 - Recoil : u_T < 30 GeV
 - m_T > 60 GeV, p_T^{miss} > 30 GeV

$ \eta_{\ell} $ range	0-0.8	0.8 - 1.4	1.4 - 2.0	2.0 - 2.4	Inclusive
$\begin{array}{c} W^+ \to \mu^+ \nu \\ W^- \to \mu^- \bar{\nu} \end{array}$			$1377773\916163$		$\frac{4609818}{3234960}$
$ \eta_{\ell} $ range	0-0.6	0.6 - 1.2		1.8 - 2.4	Inclusive
$ \begin{array}{c} W^+ \to e^+ \nu \\ W^- \to e^- \bar{\nu} \end{array} \end{array} $	$1233960\969170$	$1207136\908327$		$\begin{array}{c} 956620 \\ 610028 \end{array}$	$3397716\2487525$

7.8M events

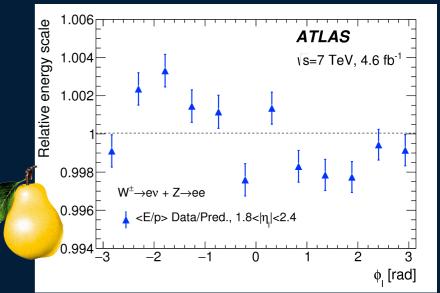
5.9M events



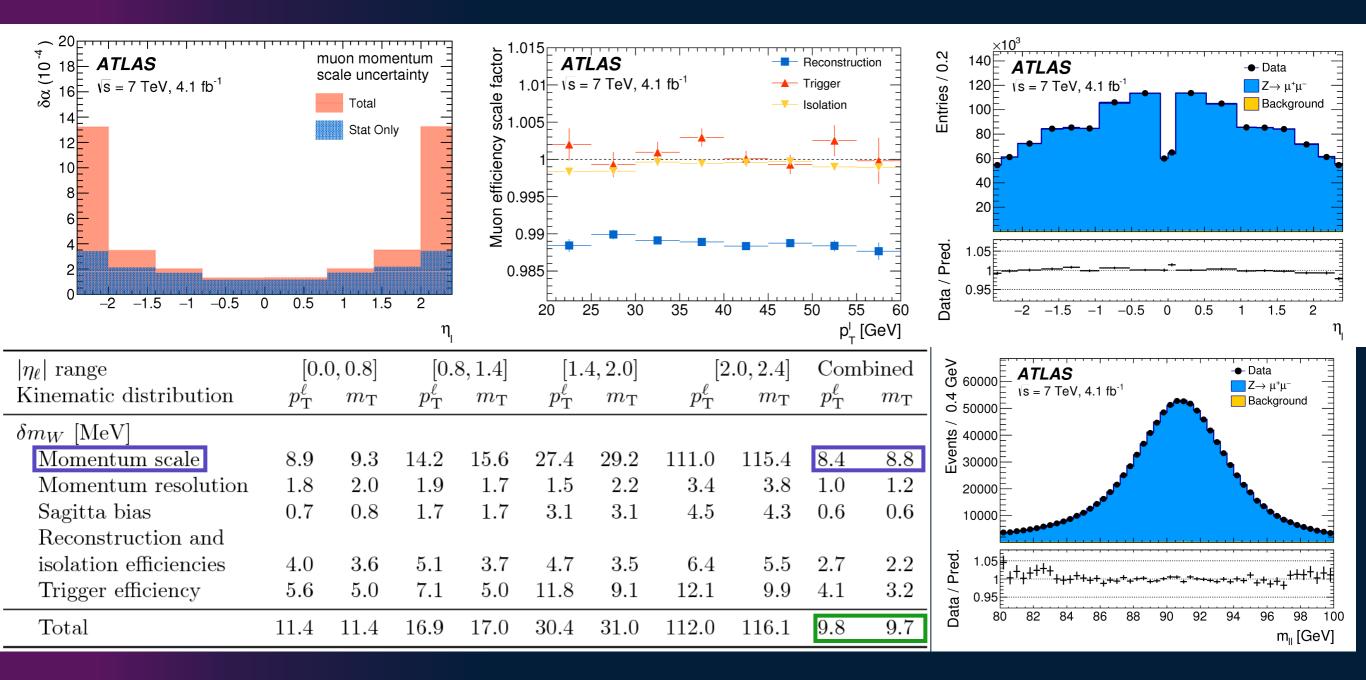

Background fractions

$W o \mu \nu$						
Category	$W \to \tau \nu$	$Z \to \mu \mu$	$Z \to \tau \tau$	Top	Dibosons	Multijet
$W^{\pm} \ 0.0 < \eta < 0.8$	1.04	2.83	0.12	0.16	0.08	0.72
$W^{\pm} \ 0.8 < \eta < 1.4$	1.01	4.44	0.11	0.12	0.07	0.57
$W^{\pm} 1.4 < \eta < 2.0$	0.99	6.78	0.11	0.07	0.06	0.51
$W^{\pm} 2.0 < \eta < 2.4$	1.00	8.50	0.10	0.04	0.05	0.50
W^{\pm} all η bins	1.01	5.41	0.11	0.10	0.06	0.58
W^+ all η bins	0.99	4.80	0.10	0.09	0.06	0.51
W^- all η bins	1.04	6.28	0.14	0.12	0.08	0.68
		$W \rightarrow$	$e\nu$			
Category	$W \to \tau \nu$	$Z \rightarrow ee$	$Z \to \tau \tau$	Top	Dibosons	Multijet
$W^{\pm} \ 0.0 < \eta < 0.6$	1.02	3.34	0.13	0.15	0.08	0.59
$W^{\pm} \ 0.6 < \eta < 1.2$	1.00	3.48	0.12	0.13	0.08	0.76
$W^{\pm} 1.8 < \eta < 2.4$	0.97	3.23	0.11	0.05	0.05	1.74
W^{\pm} all η bins	1.00	3.37	0.12	0.12	0.07	1.00
W^+ all η bins	0.98	2.92	0.10	0.11	0.06	0.84
W^- all η bins	1.04	3.98	0.14	0.13	0.08	1.21

Electron calibration

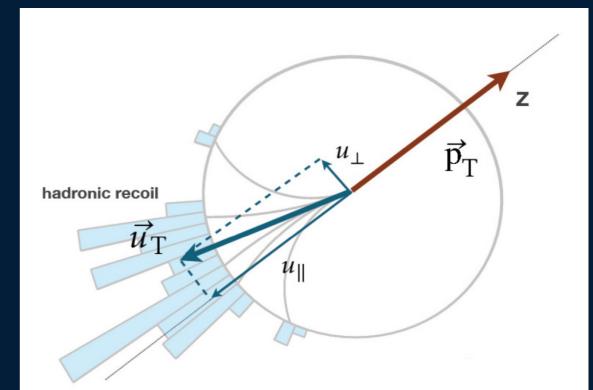


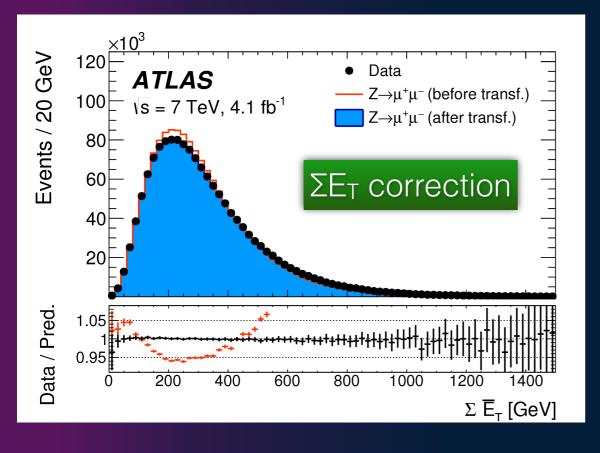
ightarrow

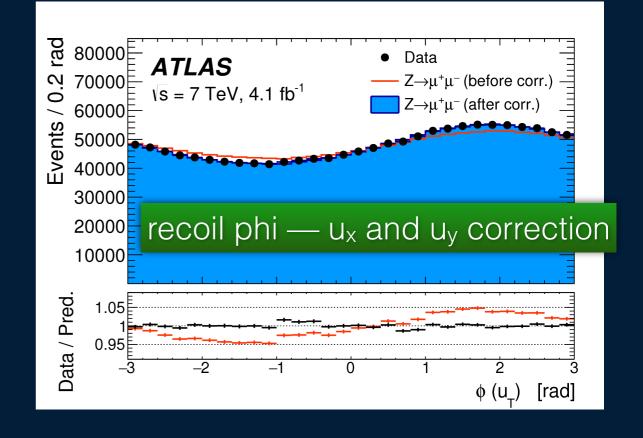

$ \eta_\ell $ range	[0.	0, 0.6]	[0.	6, 1.2]	[1.8	2, 2.4]	Com	bined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$								
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3

φ modulation due to mechanical deformation under gravity of the calorimeter ('pear-shape') corrected with W and Z events

Muon calibration

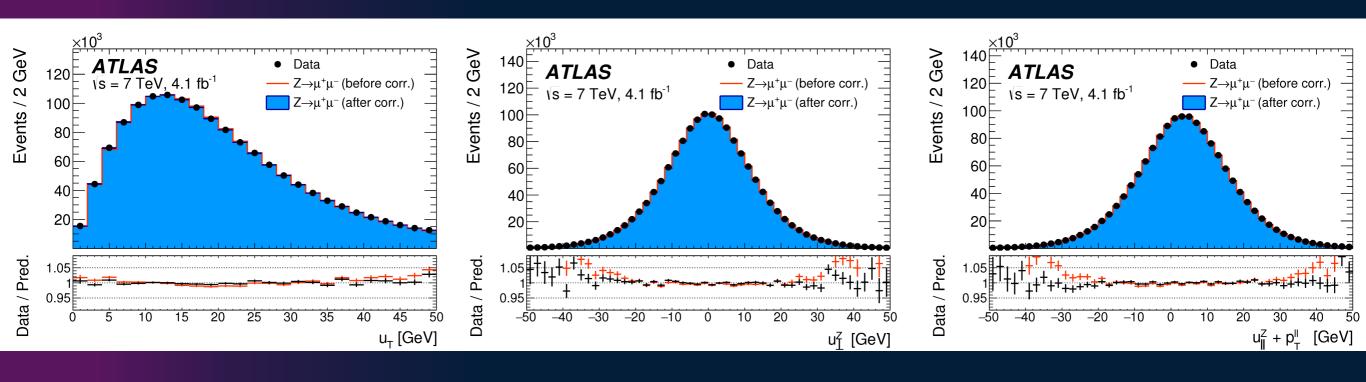

As expected, uncertainties are smaller than for electron

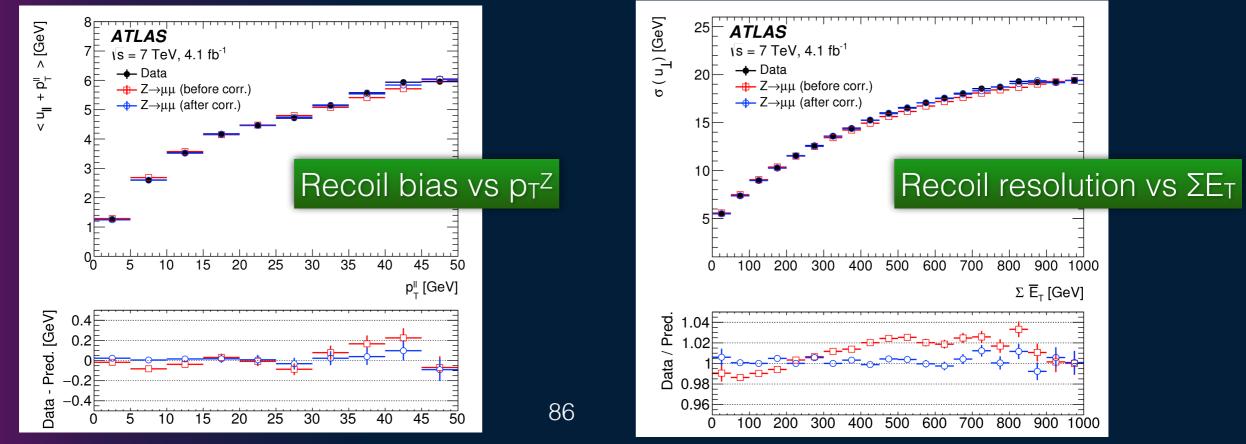



Hadronic recoil calibration

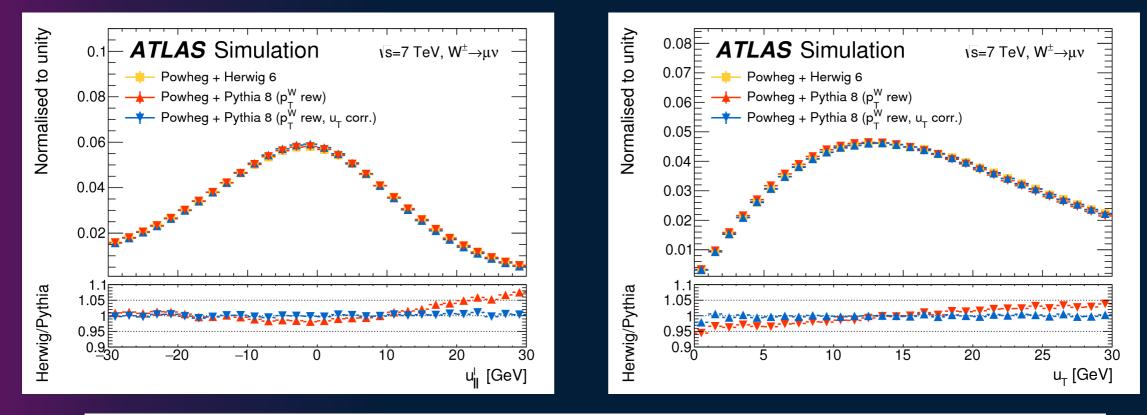
85

- Several steps of the correction :
 - Correct pile-up activity
 - Correct ΣE_T distribution in p_T bins
 - residual response and resolution corrections in Z events, extrapolated to W
 - Includes a correction of recoil phi





Hadronic recoil calibration



Hadronic recoil calibration

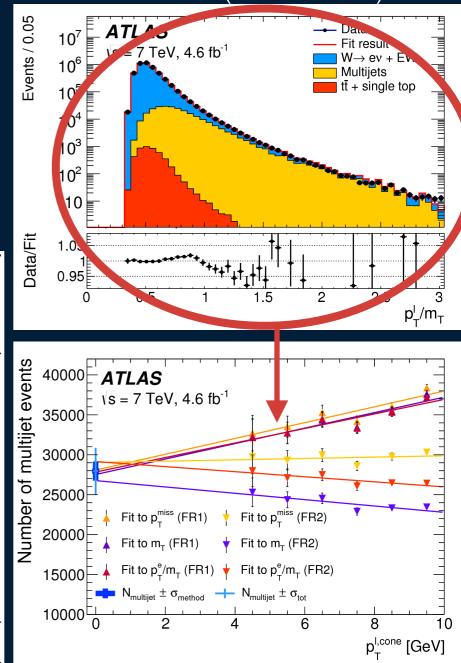
Validation check using Powheg+Herwig6 as pseudo-data

W-boson charge	И	7+	И	7-	Com	bined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma \bar{E_{T}}$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \to W \text{ extrapolation})$	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

Multijet background

- Use of a data-driven technique :
 - 2 different fitting regions to extract multijet fraction (FR1, FR2) mainly for uncertainty purposes
 - Templates obtained in an MJ enriched region by reverting isolation
 - EW and top contamination subtracted with MC estimation
 - Scan in lepton isolation variable for MJ shape template building
 - 3 different observables : mT, pTe/mT, pT^{miss}
 - Fitted fraction corrected for signal region selection efficiency
 - linear extrapolation to signal region

Cuts	Lepton isolation		E_T^{miss}	m_T^W	p_T^W
Selection	SR sample	CR sample			
Signal region			$E_T^{miss} > 30 \text{GeV}$	$m_T^W > 60 \text{GeV}$	$p_T^W < 30 \text{GeV}$
FR1	<i>Iso</i> < 0.1	0.2 < Iso < 0.4	-	-	$p_T^W < 30 \text{GeV}$
FR2			-	-	-



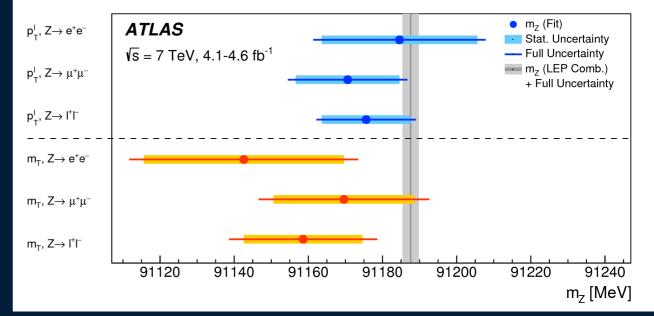
Multijet background

- Differences in the extrapolation to signal region are taken as (main) fraction uncertainty
- Shapes of observables obtained by an linear extrapolation from CR to SR using the ratio of different anti-isolated regions
 - Uncertainty dominated by statistics, evaluated by fluctuating the bin contents within stat. uncertainty before extrapolation

Kinematic distribution		p_{T}^ℓ				$m_{ m T}$			
Decay channel	W -	$\rightarrow e\nu$	- W -	$\rightarrow \mu \nu$	W –	$\rightarrow e\nu \qquad W$		$\rightarrow \mu \nu$	
W-boson charge	W^+	W^-	W^+	W^-	W^+	W^-	W^+	W^-	
$\delta m_W [{ m MeV}]$									
$W \to \tau \nu$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3	
$Z \to ee$ (fraction, shape)	3.3	4.8	—	_	4.3	6.4	_	—	
$Z \to \mu \mu$ (fraction, shape)	_	_	3.5	4.5	_	_	4.3	5.2	
$Z \to \tau \tau$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3	
WW, WZ, ZZ (fraction)	0.1	0.1	0.1	0.1	0.4	0.4	0.3	0.4	
Top (fraction)	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3	
Multijet (fraction)	3.2	3.6	1.8	2.4	8.1	8.6	3.7	4.6	
Multijet (shape)	3.8	3.1	1.6	1.5	8.6	8.0	2.5	2.4	
Total	6.0	6.8	4.3	5.3	12.6	13.4	6.2	7.4	

- Background fraction (η-dependent)
 - 0.6 1.7 % (e channel)
 - 0.5 0.7 % (mu channel)

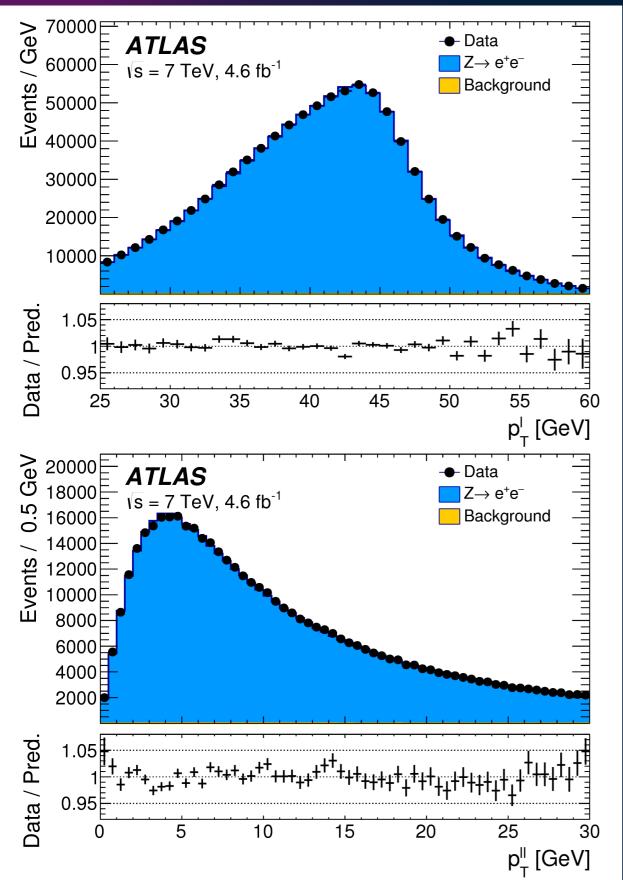
Extraction of mw

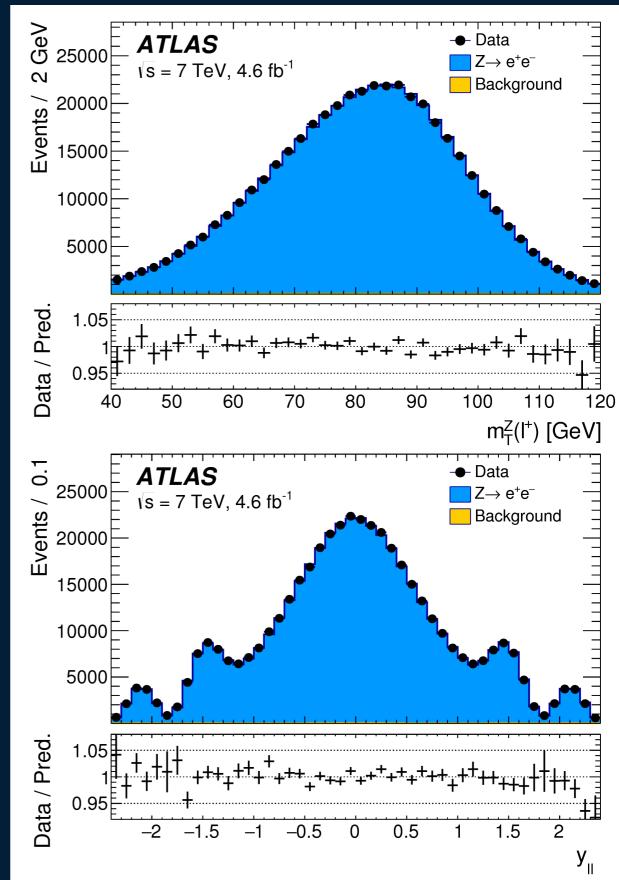


Preliminary cross-check with Z

Several cross-checks :

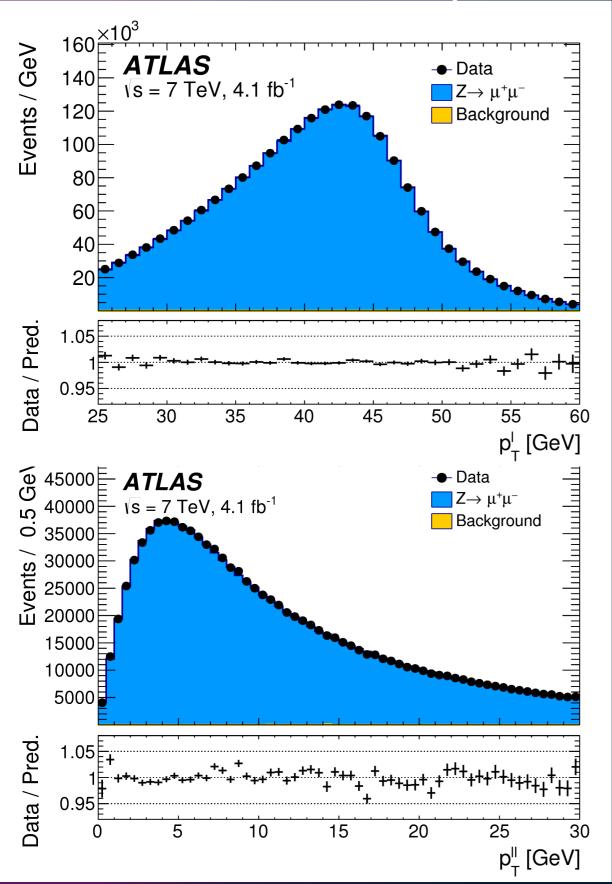
- χ^2 template fit to the reconstructed m_{II} distribution : $\Delta m_Z = 1(3) \pm 3(5)$ MeV for the electron (muon) channel
- Treat alternatively the negative or positive lepton as 'invisible' to mimic a neutrino,
 - fit to p_T*e* and m_T distributions as in W analysis

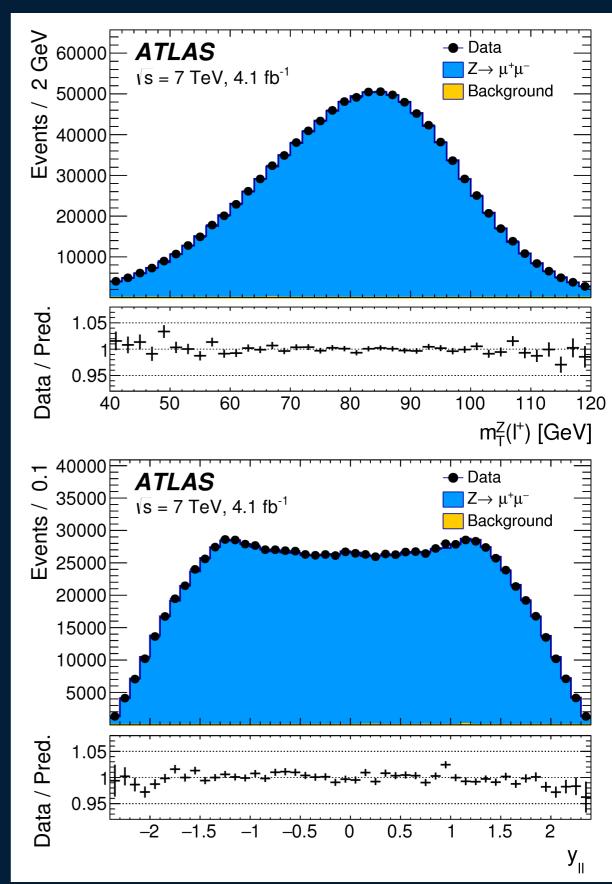

Lepton charge		ℓ^+		ℓ^-		Combined
Distribution	$p_{ m T}^\ell$	$m_{ m T}$	p_{T}^ℓ	$m_{ m T}$	p_{T}^ℓ	$m_{ m T}$
$\Delta m_Z [{ m MeV}]$						
$Z \rightarrow ee$	$13\pm31\pm10$	$-93\pm38\pm15$	$-20\pm31\pm10$	$4\pm 38\pm 15$	$-3\pm21\pm10$	$-45\pm27\pm15$
$Z o \mu \mu$	$1\pm22\pm$ 8	$-35\pm28\pm13$	$-36\pm22\pm$ 8	$-1\pm27\pm13$	$-17\pm14\pm~8$	$-18\pm19\pm13$
Combined	$5\pm18\pm~6$	$-58\pm23\pm12$	$-31\pm18\pm~6$	$1\pm22\pm12$	$-12 \pm 12 \pm 6$	$-29\pm16\pm12$


Difference between measured Z boson mass in ATLAS and the combined LEP result

Z ee plots after all corrections

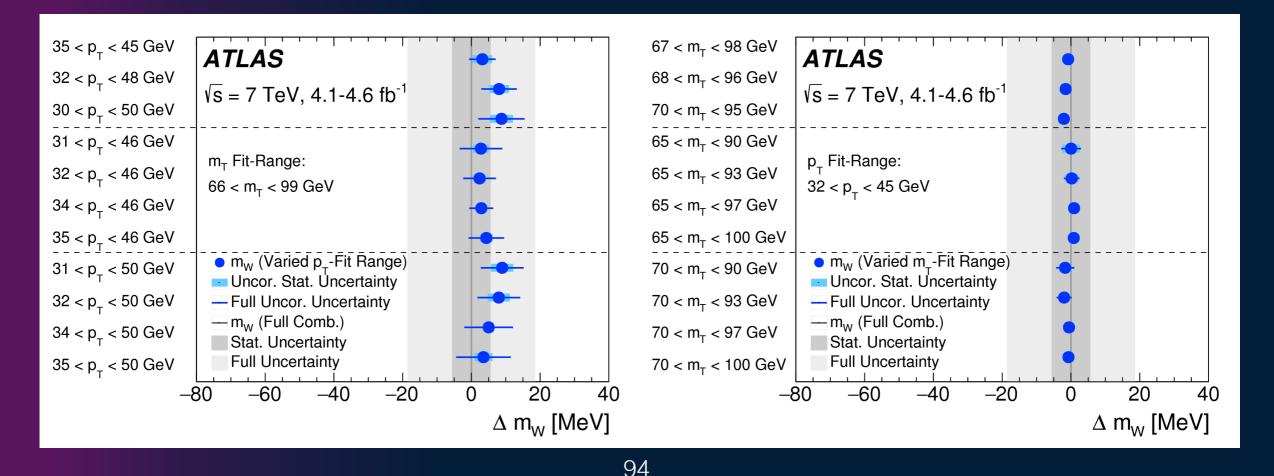
92

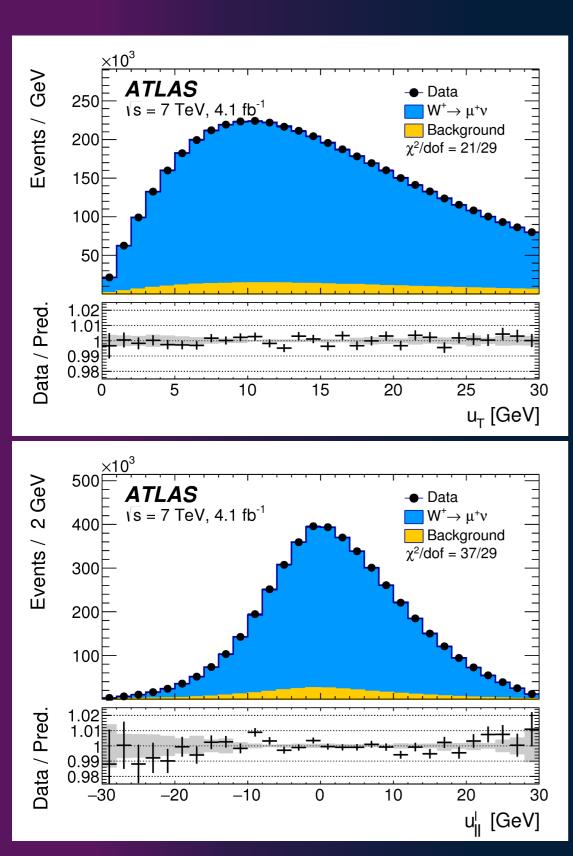


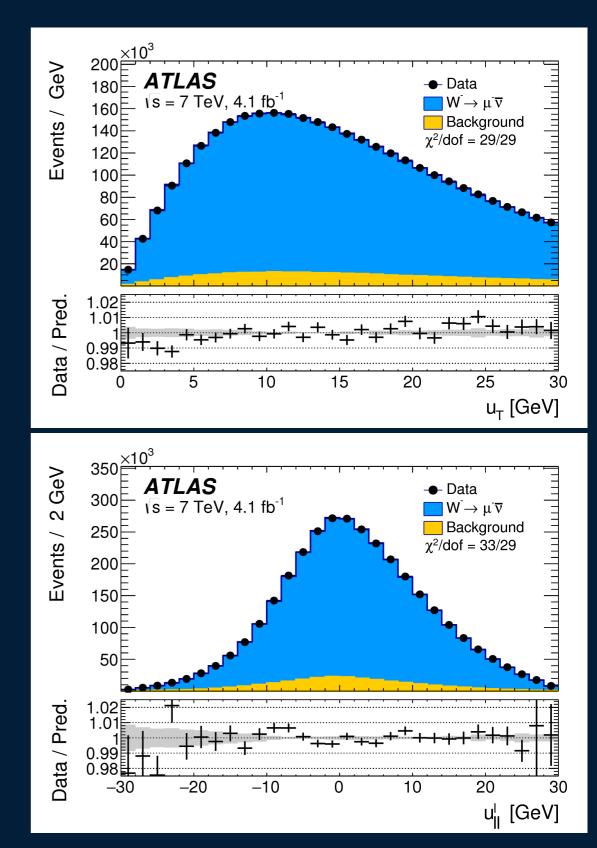


Z mumu plots after all corrections

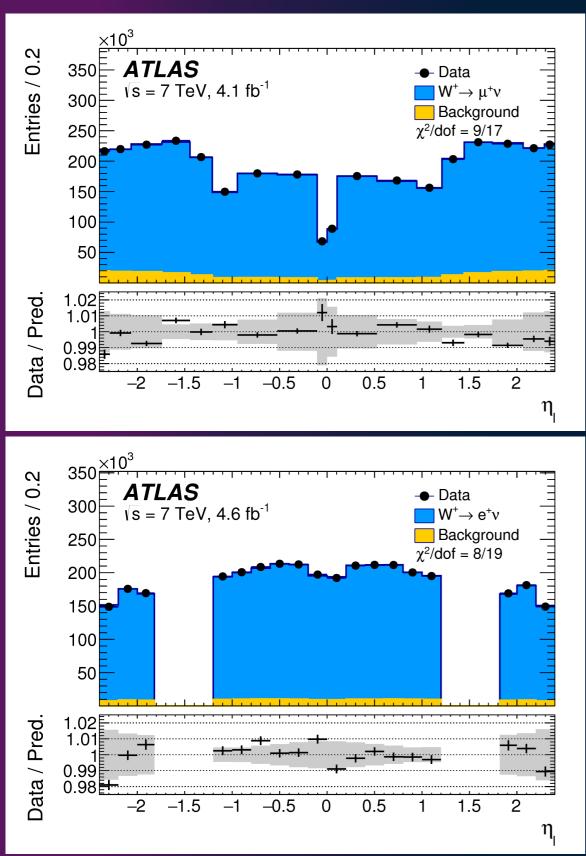
93

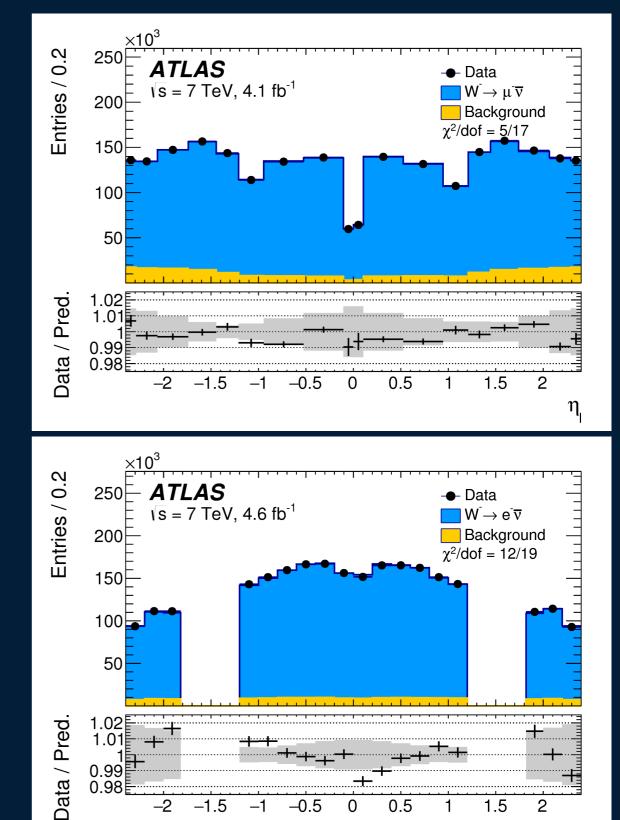



Fitting range stability


- Fitting range of the distributions optimised in the simulation
- Check the stability of the full combination when varying either m_T or p_Te fitting range
 - Check that the result on the difference with respect to the central value is within ~1-2 standard deviations (fully uncorrelated uncertainty)

Distributions - hadronic recoil





95

Distributions - lepton eta

-0.5

-1

0.5

0

2

η

1.5

1

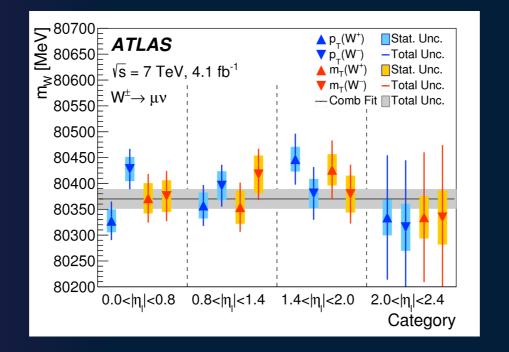
96

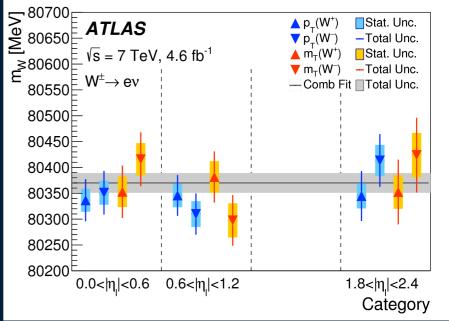
0.99

0.98

-2

-1.5


mw extraction

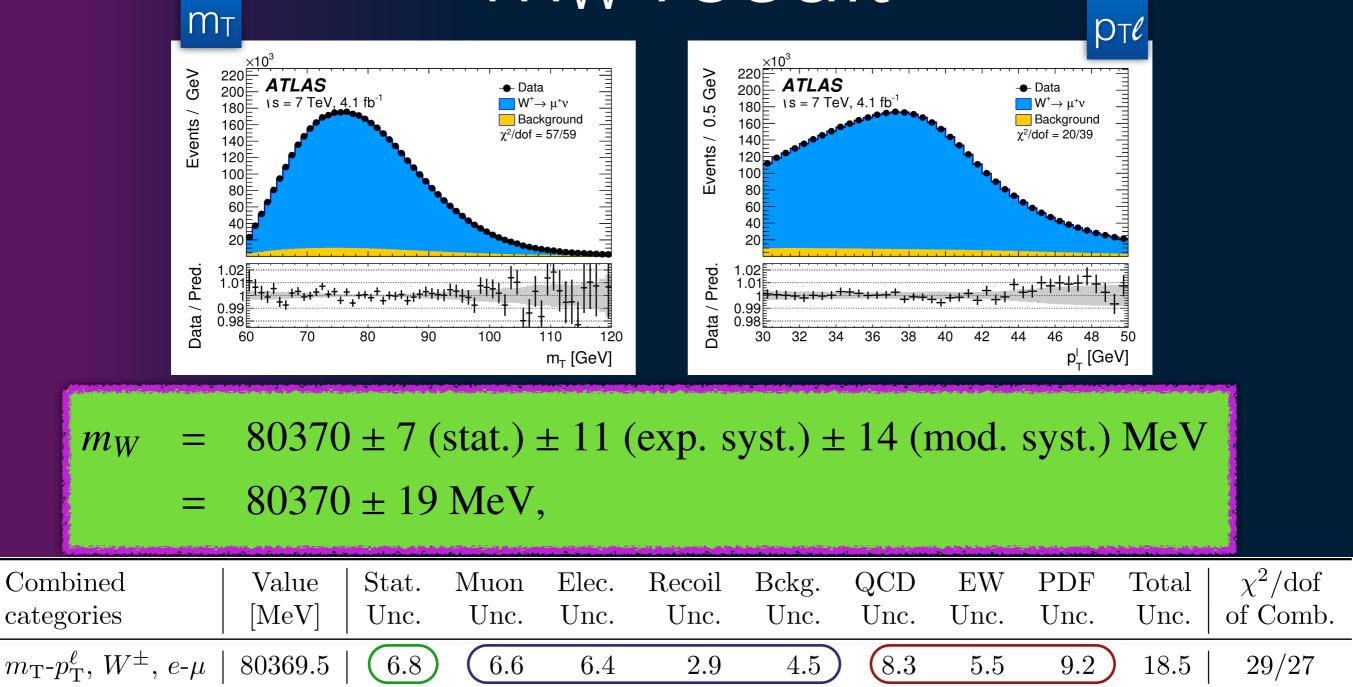

- χ2 template fit to the data in each category (distribution, charge, lepton channel, ηε bin)
- All categories give consistent result

 strength of detector calibration
 and physics modelling
- Also cross-check in more categories (bins of recoil, mu...)
- Several combinations performed, using BLUE method

$p_T^l, W^+ \rightarrow l^+ \nu$	• m _w (Partial	
$p_T^l, W^- \rightarrow \Gamma v$	ATLAS Stat. Uncert	
$p_T^I, W^{\pm} \rightarrow I^{\pm} v$	$\sqrt{s} = 7 \text{ TeV}, 4.1-4.6 \text{ fb}^{-1}$ — Full Uncerta	-
$\bar{m}_{T}^{-}, \bar{W}^{+} \rightarrow \bar{I}^{+} \bar{\nu}^{-}$	Stat. Uncert	,
$m_T^{}, W^{-} \rightarrow \Gamma v$	Full Uncerta	-
$m_T^{}, W^{\pm} \rightarrow f^{\pm} v$		
$\bar{p}_{T}^{I}, \bar{W}^{\pm} \rightarrow \bar{e}^{\pm} \bar{v}^{-}$		
$m_T^{},W^\pm\!\!\rightarrow e^\pm\!\nu$		
$p_T^l, W^{\pm} \rightarrow \mu^{\pm} \nu$		
$\underline{m}_{I}, \underline{W}^{\pm} \rightarrow \underline{\mu}^{\pm} v_{-}$		
$m_T^- p_T^l, W^+ \rightarrow l^+ \nu$		
$m_T^- p_T^{I}, W \rightarrow I \nu$		
$m_{T}^{-}p_{T}^{l}, W^{\pm} \rightarrow l^{\pm} v$		
802	280 80300 80320 80340 80360 80380 80400 80420 80440 8	30460
	m _w	[MeV]
	vv	

Combination	Weight
Electrons Muons	$0.427 \\ 0.573$
$m_{\mathrm{T}} \ p_{\mathrm{T}}^{\ell}$	$\begin{array}{c} 0.144 \\ 0.856 \end{array}$
W^+ W^-	$\begin{array}{c} 0.519 \\ 0.481 \end{array}$

CONCLUSION AND SUMMARY

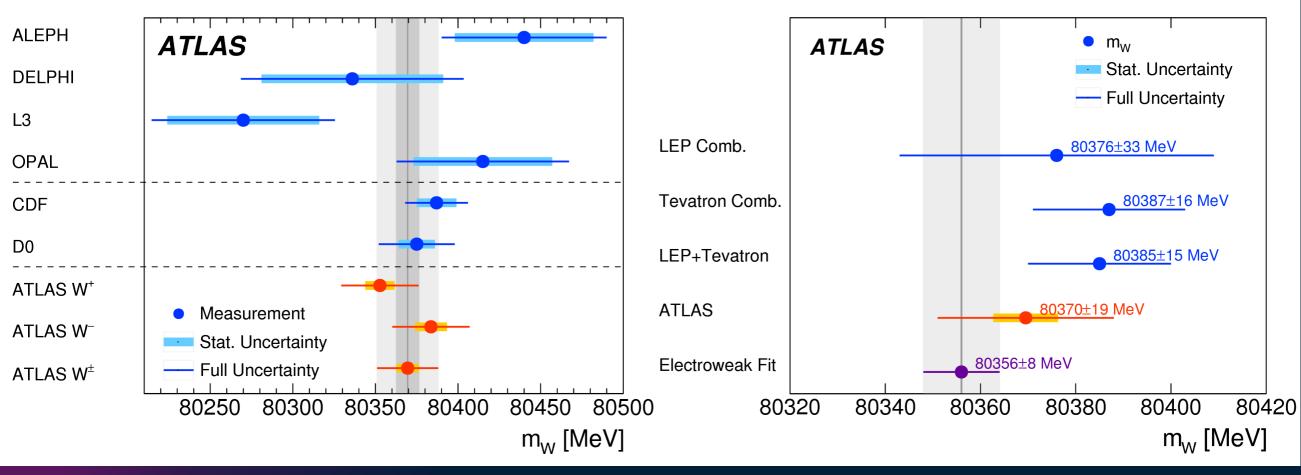

Δm_W result

- Measurement of mw⁺ mw⁻
 - Not blinded
 - Many uncertainties cancel as they are not charge-dependent
 - Dominant uncertainty from the PDFs
 - Result compatible with 0 within ~1 sigma

Channel	$ m_{W^+} - m_{W^-}$	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total
	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
$W \to e\nu$	-29.7	17.5	0.0	4.9	0.9	5.4	0.5	0.0	24.1	30.7
$W o \mu \nu$	-28.6	16.3	11.7	0.0	1.1	5.0	0.4	0.0	26.0	33.2
Combined	-29.2	12.8	3.3	4.1	1.0	4.5	0.4	0.0	23.9	28.0

mw result

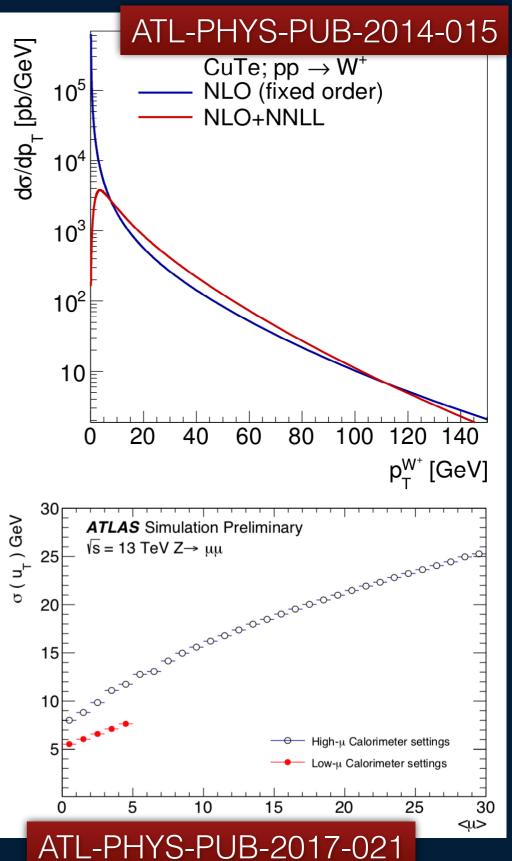
Dominant uncertainty comes from the physics modelling


Largest contribution from QCD

Comparison to other measurements

- Same precision as single best measurement from CDF
- Pulling the m_W towards a value close to Standard Model prediction from EW fit

What's next?

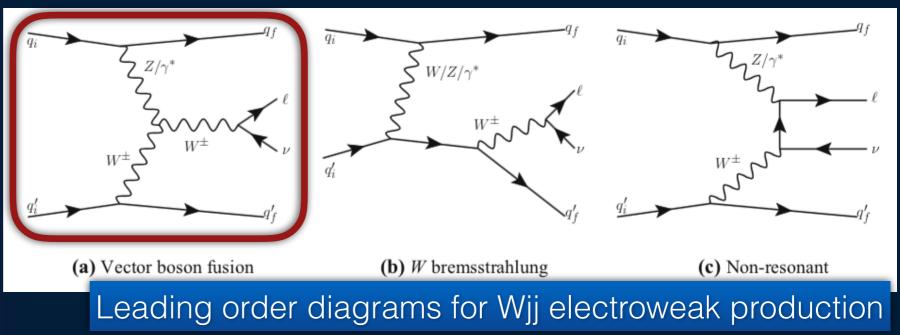

- What can be done to improve the precision in the coming (<10) years ?

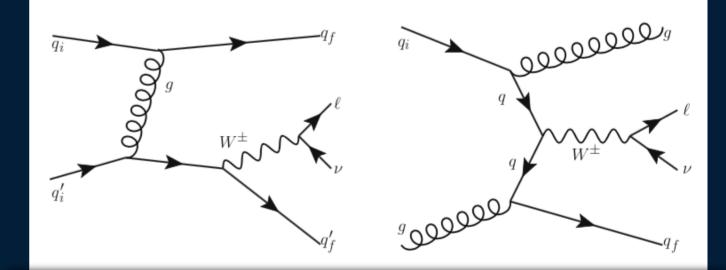
 - Experimental innovations : e.g. pile-up mitigation techniques, more and more ancillary measurements like W p_T, polarisation...
 - Run at low pile-up (mu~1) very interesting in this respect
 - Combinations with existing/future measurements (*e.g* Tevatron)

Low mu runs : W p_T

- Strong motivation to measure W p_T with an uncertainty below 1% in the Sudakov region (p_T ~< 20 GeV), with a resolution of ~5 GeV to catch the variation of the Sudakov peak
 - crucial input to m_W : with comparable precision, does not need to rely on Z anymore (—>no extrapolation uncertainty)
 - stringent test of resummed predictions and parton showers
- Pile-up degrades the reconstructed p_T(W) resolution
 (== hadronic recoil) as √(<µ>)
 - —>need very low pile-up data taking
 - ~300 pb⁻¹ at 13 TeV needed for enough statistical precision
 - ~150 pb⁻¹ taken in 2017, ~200 taken last month (mu~2) : stay tune!
 - 250 pb⁻¹ at 5 TeV (2017) : allows to check energy dependence of the models for p_T(W)

And now for something completely different...


Eur. Phys. J. C (2017) 77:474



Electroweak *W j j* production and constraints on anomalous gauge couplings (aGC) with 7 and 8 TeV data

105

- Opportunity to probe anomalous (triple) gauge couplings through VBF topology
 - probe for new fundamental interactions
 - First VBF W observation
- Largest background from strong Wjj production (~O(10) times larger than EW)
- Signal :
 - Large interval in jet rapidities (rapidity gap) —>large invariant dijet mass M_{jj}
 - W boson in rapidity gap
 - Little hadronic activity in the rapidity gap due to the absence of colour flow between the interacting partons

Leading order diagrams for Wjj strong production

Eur. Phys. J. C (2017) 77:474

Modeling

- Wjj MC : Powheg+Pythia8, using MiNLO for strong production (sets the QCD emission scales), PDF set is CT10
 - strong production
- Sherpa 1.4 at leading order is used to estimate interference between strong and EW (using QCD+EW vs separate QCD and EW Wjj samples)
 - Also used in cross-section comparisons
- Other backgrounds are modelled with MC except for multi jet (data-driven)

Cross-section measurement

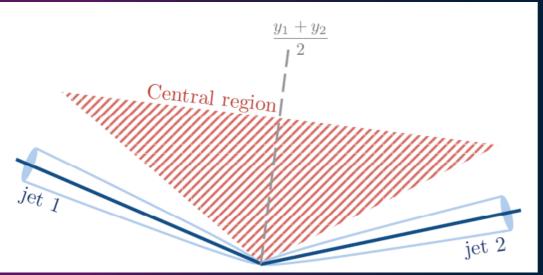
106

- Binned likelihood fit to the M_{jj} distribution with Gaussian constraints to every background
- Determination of μ_i
 - i = QCD or EW
 - N_i : measured number of (background subtracted) events
 - C_i: N(reco)/N(truth) passing the selection
 - A_i : acceptance of fiducial volume

$$(\sigma_i^{\ell \nu j j} \times \mathcal{A}_i)^{\text{meas}} = \mu_i (\sigma_i^{\ell \nu j j} \times \mathcal{A}_i)^{\text{theo}}$$
$$= \frac{N_i}{C_i \mathcal{L}},$$

fiducial cross-section

normalisation factor (=1 in SM)


Event selection

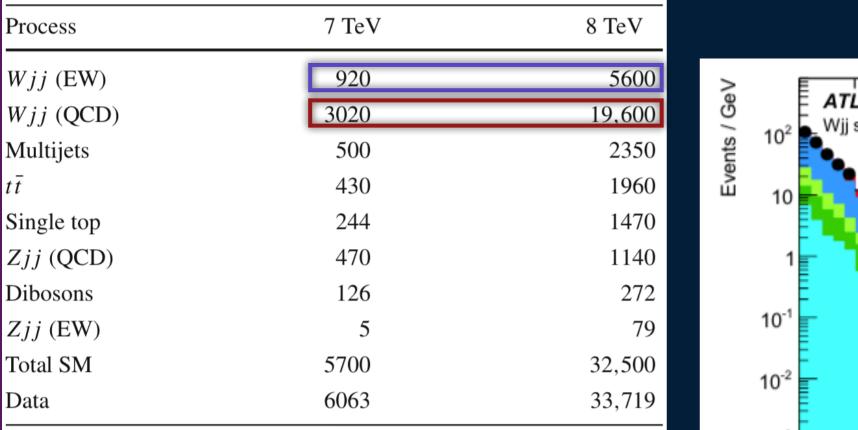
- Using single lepton trigger
- Leptons and jets reconstruction/calibration/preselection similar as the W+jets analysis presented before
- Use of lepton and jet centrality defined as

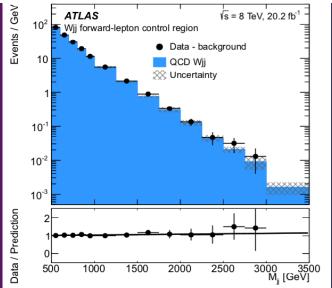
 $C_{\ell(jet)} = \left| \frac{y_{\ell(jet)} - \frac{y_1 + y_2}{2}}{y_1 - y_2} \right|$

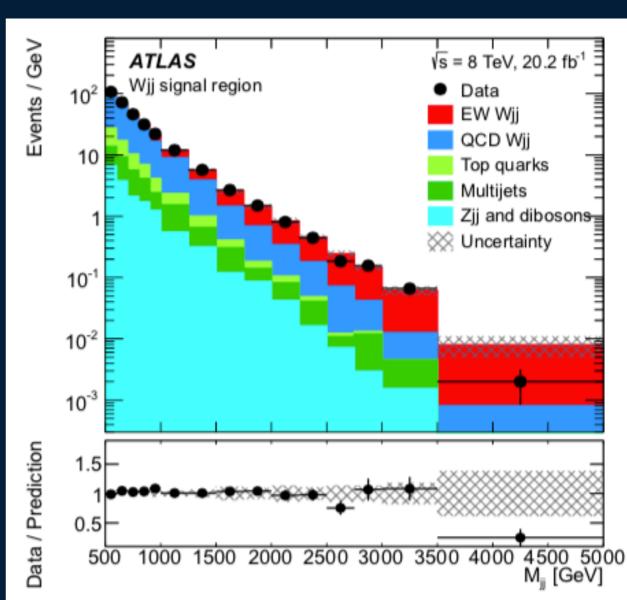
• Such that C < Cmax = 0.4 implies y to be in the range :

$$\frac{y_1 + y_2}{2} - C_{max} \times |y_1 - y_2|, \frac{y_1 + y_2}{2} + C_{max} \times |y_1 - y_2|]$$

- Forward lepton CR used to constrain strong Wjj production
- Validation region (for multi jet and QCD Wjj) has >=1 central jet

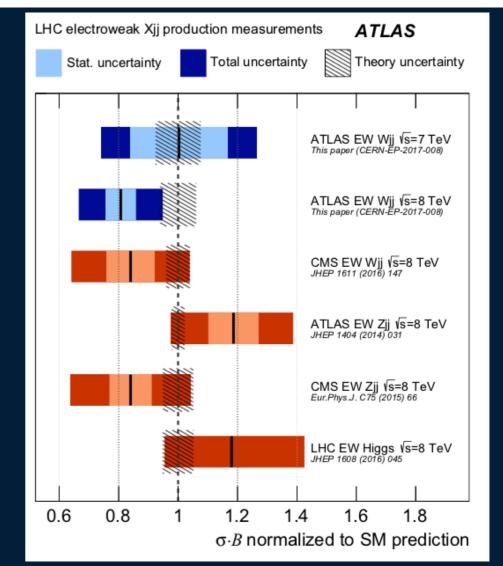

	Region name	Requirements					
	Preselection	Lepton $p_{\rm T} > 25 {\rm ~GeV}$					
		Lepton $ \eta < 2.5$					
		$E_{\rm T}^{\rm miss} > 25 {\rm ~GeV}$					
		$m_{\rm T} > 40 {\rm ~GeV}$					
		$p_{\rm T}^{j_1} > 80 { m GeV}$					
		$p_{\rm T}^{j_2} > 60 {\rm GeV}$					
		y < 4.4					
1		$M_{ii} > 500 \text{ GeV}$					
IJ		$\Delta y(j_1, j_2) > 2$					
		$\Delta R(j, \ell) > 0.3$					
	Fiducial and differential measurements						
	Signal region	$N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} = 0$					
	Forward-lepton control region	$N_{\text{lepton}}^{\text{cen}} = 0, N_{\text{jets}}^{\text{cen}} = 0$					
	Central-jet validation region	$N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} \ge 1$					
	Differential measurements only						
	Inclusive regions	$M_{jj} > 0.5$ TeV, 1 TeV, 1.5 TeV, or 2 TeV					
	Forward-lepton/central-jet region	$N_{\text{lepton}}^{\text{cen}} = 0, N_{\text{jets}}^{\text{cen}} \ge 1$					
	High-mass signal region	$M_{jj} > 1$ TeV, $N_{\text{lepton}}^{\text{cen}} = 1$, $N_{\text{jets}}^{\text{cen}} = 0$					
	Anomalous coupling measurements only	1 5					
	High- q^2 region	$M_{jj} > 1$ TeV, $N_{\text{lepton}}^{\text{cen}} = 1$, $N_{\text{jets}}^{\text{cen}} = 0$, $p_{\text{T}}^{j_1} > 600$ GeV					


107


Event yields

- EW signal represents ~15 % of the total number of events
- Dominant background is strong Wjj production (~50% of total number of events)

constraint to QCD Wjj from the control region (all backgrounds subtracted)

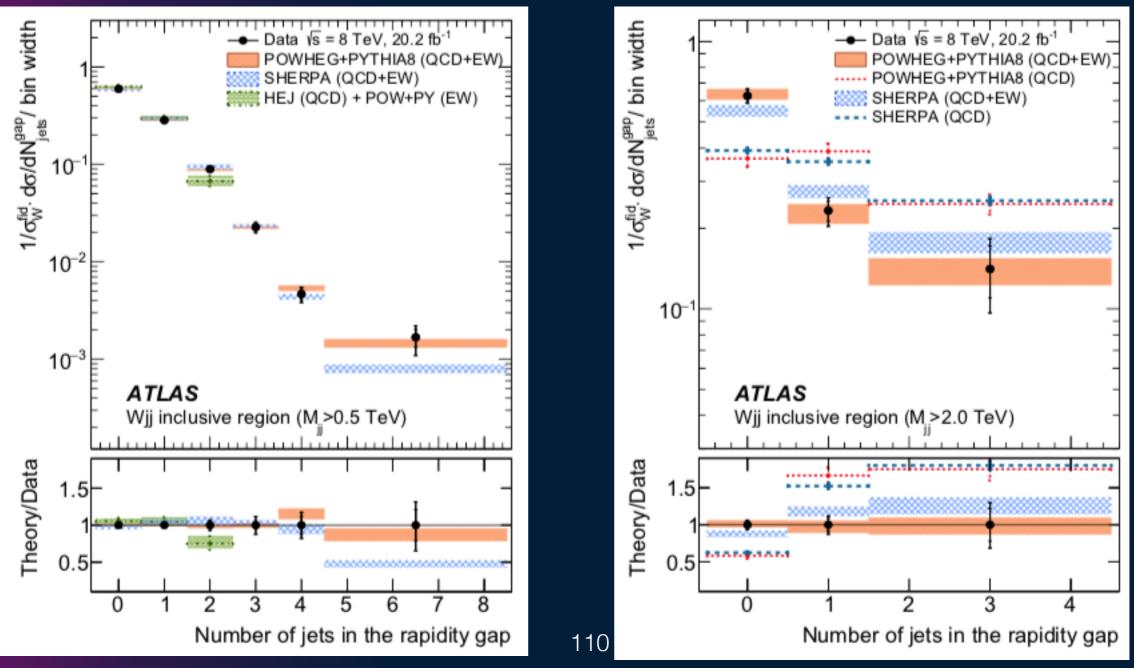


SM Cross-section result

\sqrt{s}	$\sigma_{\rm meas}^{\rm fid}$ [fb]	$\sigma_{\rm SM}^{\rm fid}$ [fb]	Acceptance \mathcal{A}	$\sigma_{\rm meas}^{\rm inc}$ [fb]
7 TeV	$144 \pm 23 \text{ (stat) } \pm 23 \text{ (exp) } \pm 13 \text{ (th)}$	144 ± 11	0.053 ± 0.004	2760 ± 670
8 TeV	$159\pm10~(stat)~\pm17~(exp)~\pm15~(th)$	198 ± 12	0.058 ± 0.003	2890 ± 510

Source	Uncertainty	/ in $\mu_{\rm EW}$	μ
	7 TeV	8 TeV	μ
Statistical			
Signal region	0.094	0.028	
Control region	0.127	0.044	
Experimental			
Jet energy scale (η intercalibration)	0.124	0.053	
Jet energy scale and resolution (other)	0.096	0.059	
Luminosity	0.018	0.019	
Lepton and $E_{\rm T}^{\rm miss}$ reconstruction	0.021	0.012	
Multijet background	0.064	0.019	
Theoretical			
MC statistics (signal region)	0.027	0.026	
MC statistics (control region)	0.029	0.019	
EW Wjj (scale and parton shower)	0.012	0.031	
QCD Wjj (scale and parton shower)	0.043	0.018	
Interference (EW and QCD Wjj)	0.037	0.032	
Parton distribution functions	0.053	0.052	
Other background cross sections	0.002	0.002	
EW Wjj cross section	0.076	0.061	
Total	0.26	0.14	109

 $\mu_{\text{EW}} (7 \text{ TeV}) = 1.00 \pm 0.16 \text{ (stat)} \pm 0.17 \text{ (exp)} \pm 0.12 \text{ (th)},$ $\mu_{\text{EW}} (8 \text{ TeV}) = 0.81 \pm 0.05 \text{ (stat)} \pm 0.09 \text{ (exp)} \pm 0.10 \text{ (th)}.$



• First 5 sigma Wjj EW measurement

Unfolded differential cross-sections : Wjj EW vs QCD

- Many unfolded differential cross-sections obtained in the fiducial region
 - Direct probes of new physics
 - Here, just one exemple : for M_{jj} > 500GeV (left), dominated by QCD ; EW Wjj appears for M_{jj} > 2TeV (right) !

 $W^\pm_{\mu
u}=\partial_\mu W^\pm_
u-\partial_
u W^\pm_\mu.$

Constraints on aGC

- Effective Lagrangian for WWV coupling with operators up to dimension 6 (V=Z, gamma)
- Deviation from SM : $g_1^V \neq 1$, $\kappa_V \neq 1$, $\lambda_V \neq 0$, $\tilde{\kappa}_V \neq 0$

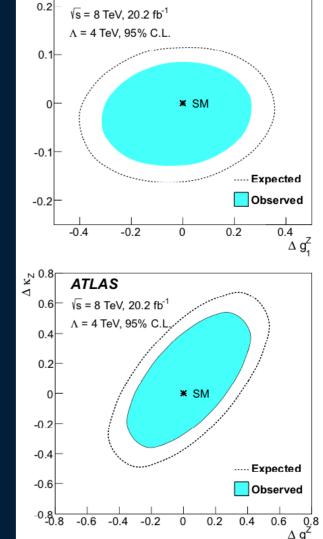
$$i\mathcal{L}_{\text{eff}}^{WWV} = g_{WWV} \left\{ \begin{bmatrix} g_1^V V^\mu (W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}) \\ + \kappa_V W_\mu^+ W_\nu^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_\nu^{+\rho} W_{\rho\mu}^- \end{bmatrix} \right\}$$

$$- \begin{bmatrix} \tilde{\kappa}_V \\ 2 W_\mu^- W_\nu^+ \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} \\ + \frac{\tilde{\lambda}_V}{2m_W^2} W_{\rho\mu}^- W_\nu^{+\mu} \epsilon^{\nu\rho\alpha\beta} V_{\alpha\beta} \end{bmatrix} \right\},$$
(P violating)

• Gauge invariance requires :

$$\Delta g_1^Z = \Delta \kappa_Z + \Delta \kappa_\gamma \tan^2 \theta_W, \quad \lambda_\gamma = \lambda_Z \equiv \lambda_V, \quad g_1^\gamma = 1, \\ \tilde{\kappa}_\gamma = -\tilde{\kappa}_Z \cot^2 \theta_W, \quad \text{and} \quad \tilde{\lambda}_\gamma = \tilde{\lambda}_Z \equiv \tilde{\lambda}_V.$$

• To preserve unitarity one can introduce : $\alpha(q^2) = \frac{\alpha}{(1+q^2/\Lambda^2)^2}$


- With A = 4 TeV (preserves unitarity) for all parameters in sensitivity range
- Or in EFT : assume perturbative coupling coefficients ci and scale of new interaction Λ, O_i are dimension 6 field operators :
- One can relate the c_i to the aTGC parameters

$$\mathcal{L}_{\rm EFT} = \sum_{i} \frac{c_i}{\Lambda^2} O_i$$

Constraints on aGC

- Effect of anomalous couplings modelled within Sherpa
- Fit using the yield in signal region with M_{jj} > 1 TeV, p_T of leading jet > 600 GeV
 - last requirement maximises sensitivity to aTGC
 - Fit each aTGC parameter, fixing the other parameters to SM value

2ہے

ATLAS

No deviation from SM is observed

					$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
	$\Lambda = 4 \text{ TeV}$			Parameter Expected (Tev		Expected (TeV $^{-2}$)	Observed (TeV $^{-2}$)
	Expected	Observed	CW	r	5 00 003		
. 7	5 0 20 0 251	F 0 22 0 201	$\frac{c_W}{\Lambda^2}$	[-39, 37]	[-33, 30]		
Δg_1^Z	[-0.39, 0.35]	[-0.32, 0.28]	$\frac{c_B}{\Lambda^2}$	[-200, 190]	[-170, 160]		
$\Delta \kappa_Z$	[-0.38, 0.51]	[-0.29, 0.42]		[-16, 13]			
λ_V	[-0.16, 0.12]	[-0.13, 0.090]	$\frac{c_{WWW}}{\Lambda^2}$	[-10, 15]	[-13, 9]		
κ _Z	[-1.7, 1.8]	[-1.4, 1.4]	$\frac{c_{\tilde{W}}}{\Lambda^2}$	[-720, 720]	[-580, 580]		
				[-14, 14]	[-11, 11]		
$\tilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	$\frac{c_{\tilde{W}WW}}{\Lambda^2}$	[-14, 14]			

EW Wjj : summary

- First observation (>5 sigma) of EW Wjj
 - systematic uncertainty dominates the 8 TeV measurement
- Many unfolded differential cross-sections provided
 - Allowing to check theoretical models (high order calculations)
- aTGC constraint
 - λ_V intervals competitive with those from WW
 - No deviation from SM is observed

Concluding remarks

- Wide range of physics 'touched' using Ws at LHC
 - I just talked about a few selected items (linked with the most recent publications, mainly) ...
 - Precise tests of SM
 - Key input to PDFs
 - validation of predictions that are essential for signal/background modelling in other analyses
 - W mass measurement and global EW fit
 - Wjj electroweak direct probe of new physics
 - Many other topics
 - W+charm
 - new physics searches at high m_T
 - ...

Thank you for your attention!

BACKUP

PDF profiling : methodology

- PDF profiling and full PDF fits heavily rely on methods used in DIS experiments (esp. HERA)
- Software used is xFitter, that makes use of APPLGRID for theory predictions, together with k-factors from the accurate theory tools described before (NNLO QCD from DYNNLO 1.5, NLO EW from PHOTOS and MCSANC)
- Profiling : use of xFitter software
 - start from existing PDF set
 - Use a $\chi^2(b_{exp}, b_{th})$ that minimises difference between observed and predicted crosssection allowing nuisance parameters (b_{exp} , b_{th}) to shift
 - New PDF f₀' is :

$$f_0' = f_0 + \sum_k \left[b_{k,\text{th}}^{\min} \left(\frac{f_k^+ - f_k^-}{2} \right) + (b_{k,\text{th}}^{\min})^2 \left(\frac{f_k^+ + f_k^- - 2f_0}{2} \right)^2 \right],$$

- f_0 is the central PDF set and f_{k^+} and f_{k^-} the corresponding up/down eigenvectors
- Allows for quantitative estimate of the agreement between the data and the PDF sets from global fits, and study further constraining power from the new measurement
 - Best χ^2 is obtained with CT14nnlo, CT10nnlo, and reasonable with MMHT14nnlo

PDF profiling : results

Data set	n.d.f.	ABM12	CT14	MMHT14	NNPDF3.0	ATLAS-epWZ12
$W^+ \to \ell^+ \nu$	11	11 21	10 26	11 37	11 18	12 15
$W^- \to \ell^- \bar{\nu}$	11	12 20	8.9 27	8.1 31	12 19	7.8 17
$Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 4666 \text{ GeV})$	6	17 21	11 30	18 24	21 22	28 36
$Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 66116 \text{ GeV})$	12	24 51	16 66	20 116	14 109	18 26
Forward $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 66-116 \text{ GeV})$	9	7.3 9.3	10 12	12 13	14 18	6.8 7.5
$Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 116\text{-}150 \text{ GeV})$	6	6.1 6.6	6.3 6.1	5.9 6.6	6.1 8.8	6.7 6.6
Forward $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 116150 \text{ GeV})$	6	4.2 3.9	5.1 4.3	5.6 4.6	5.1 5.0	3.6 3.5
Correlated χ^2		57 90	39 123	43 167	69 157	31 48
Total χ^2	61	136 222	103 290	118 396	147 351	113 159
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

- 'correlated chi2' is the contribution from the penalty term
- left of '|' is including PDF set uncertainties, right is excluding PDF set uncertainties

Full PDF fit

- More complex than PDF profiling
 - Requires parametrisation of the PDFs at a starting scale $Q_0^2 = 1.9 \text{GeV}^2$

 $\begin{aligned} xu_{v}(x) &= A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}), \\ xd_{v}(x) &= A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ x\bar{u}(x) &= A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x) &= A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}}, \\ xg(x) &= A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ x\bar{s}(x) &= A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}}, \end{aligned}$

- Parameter scans requiring χ^2 saturation (no χ^2 decrease when adding free parameters)
- Some constraints by sum rules
 - —>15 parameters
- $A_{\bar{s}}$ and $B_{\bar{s}}$ appear as free parameters
- assume $\bar{s} = s$
- PDFs are evolved to the scale of the measurements and convolved with hard-scattering coefficients to obtain the theoretical cross- section predictions
 - Done with a variable flavour number scheme that switches on c- and b-quark PDFs at m_{c} and m_{b}
- Then, fit using similar (but different) χ^2 as in profiling, with parameters left free
- Fit done with HERA and new ATLAS data
 - New set termed ATLAS-epWZ16
 - Includes experimental and theory uncertainties

Comparison CDF vs ATLAS

Similar PDF uncertainties

p_{T} W uncertainties are larger for p_{T} lepton

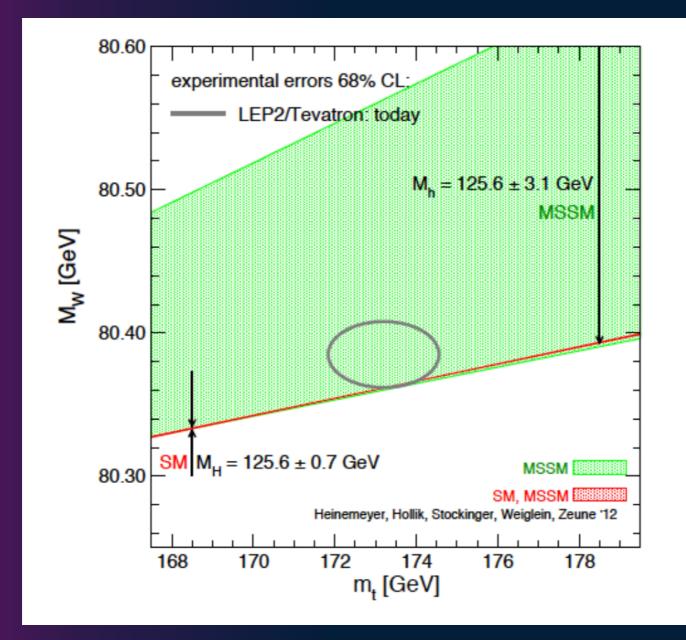
than m_{-} at CDF, but similar in ATLAS

m _T	fit uncertaintie	es		p_T^ℓ fit uncertainties						
Source	$W ightarrow \mu u$	$W \rightarrow ev$	Common	Source	$W ightarrow \mu \nu$	$W \rightarrow ev$	Common			
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5			
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0			
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0			
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0			
Recoil scale	5	5	5	Recoil scale	6	6	6			
Recoil resolution	7	7	7	Recoil resolution	5	5	5			
Backgrounds	3	4	0	Backgrounds	5	3	0			
PDFs	10	10	10	PDFs	9	9	9			
W boson p_T	3	3	3	W boson p_T	9	9	9			
Photon radiation	4	4	4	Photon radiation	4	4	4			
Statistical	16	19	0	Statistical	18	21	0			
Total	23	26	15	Total	25	28	16			

Includes also Ai uncertainties

						(
Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7

Comparison D0 vs ATLAS


Source	Section	m_T	p_T^e	E T	=
Experimental					-
Electron Energy Scale	VIIC4	16	17	16	
Electron Energy Resolution	VIIC5	2	2	3	
Electron Shower Model	VC	4	6	7	
Electron Energy Loss	VD	4	4	4	
Recoil Model	VIID 3	5	6	14	
Electron Efficiencies	VIIB10	1	3	5	
Backgrounds	VIII	2	2	2	
\sum (Experimental)		18	20	24	-Similar PDF
W Production and Decay Model					
PDF	VIC	11	11	14	uncertainties
QED	VIB	7	7	9	
Boson p_T	VIA	2	5	2	-Smaller p_{T} W
\sum (Model)		13	14	17	•
Systematic Uncertainty (Experimental and Model)		22	24	29	uncertainties at D0
W Boson Statistics	IX	13	14	15	
Total Uncertainty		26	28	33	

Includes also Ai uncertainties

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.			Unc.		Unc.	of Comb.
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}^{-}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T}^{-}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7

MSSM fit

MSSM band:

scan over SUSY masses

overlap:

SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

122

Comparison CDF vs ATLAS

Similar PDF uncertainties

courtesy of M. Boonekamp

p_{T} W uncertainties are larger for p_{T} lepton

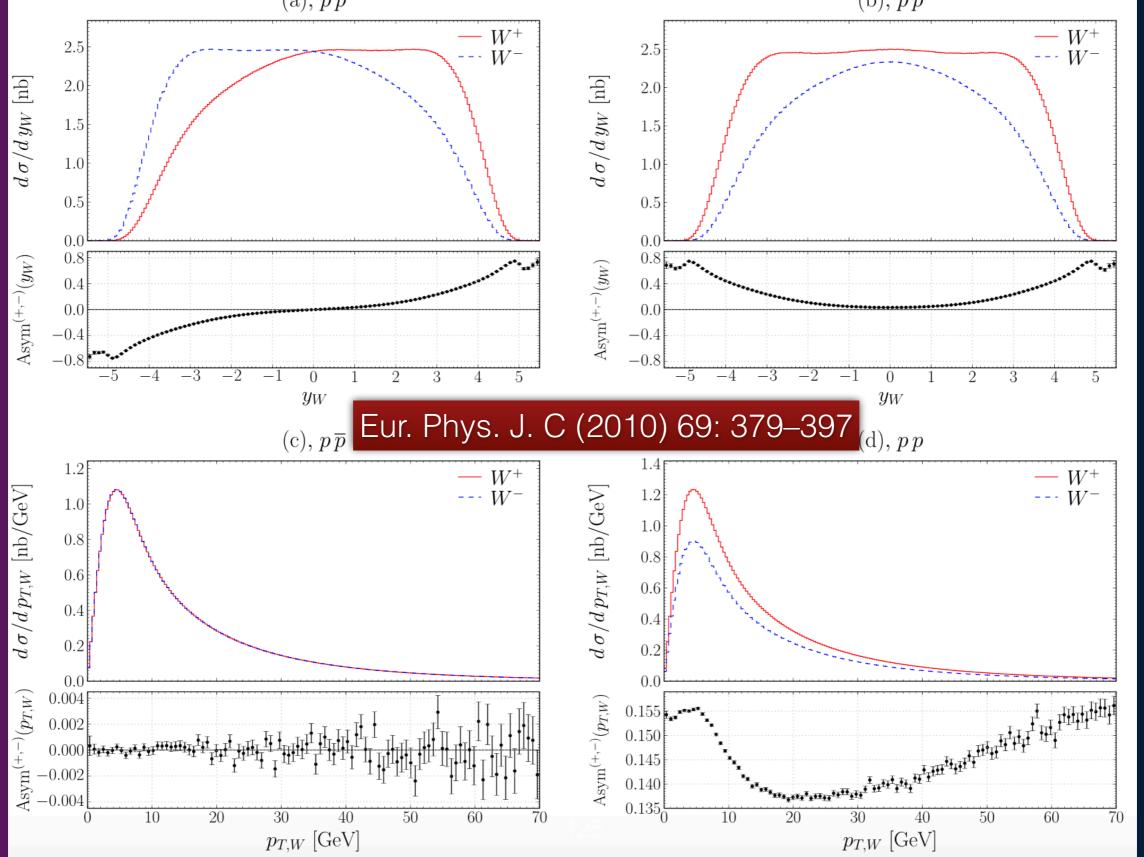
than m_{-} at CDF, but similar in ATLAS

m _T	fit uncertaintie	es		p_T^ℓ fit uncertainties						
Source	$W ightarrow \mu u$	$W \rightarrow ev$	Common	Source	$W ightarrow \mu u$	$W \rightarrow ev$	Common			
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5			
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0			
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0			
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0			
Recoil scale	5	5	5	Recoil scale	6	6	6			
Recoil resolution	7	7	7	Recoil resolution	5	5	5			
Backgrounds	3	4	0	Backgrounds	5	3	0			
PDFs	10	10	10	PDFs	9	9	9			
W boson p_T	3	3	3	W boson p_T	9	9	9			
Photon radiation	4	4	4	Photon radiation	4	4	4			
Statistical	16	19	0	Statistical	18	21	0			
Total	23	26	15	Total	25	28	16			

Inc	lude	s al	SO	Ai	uncerta	inties

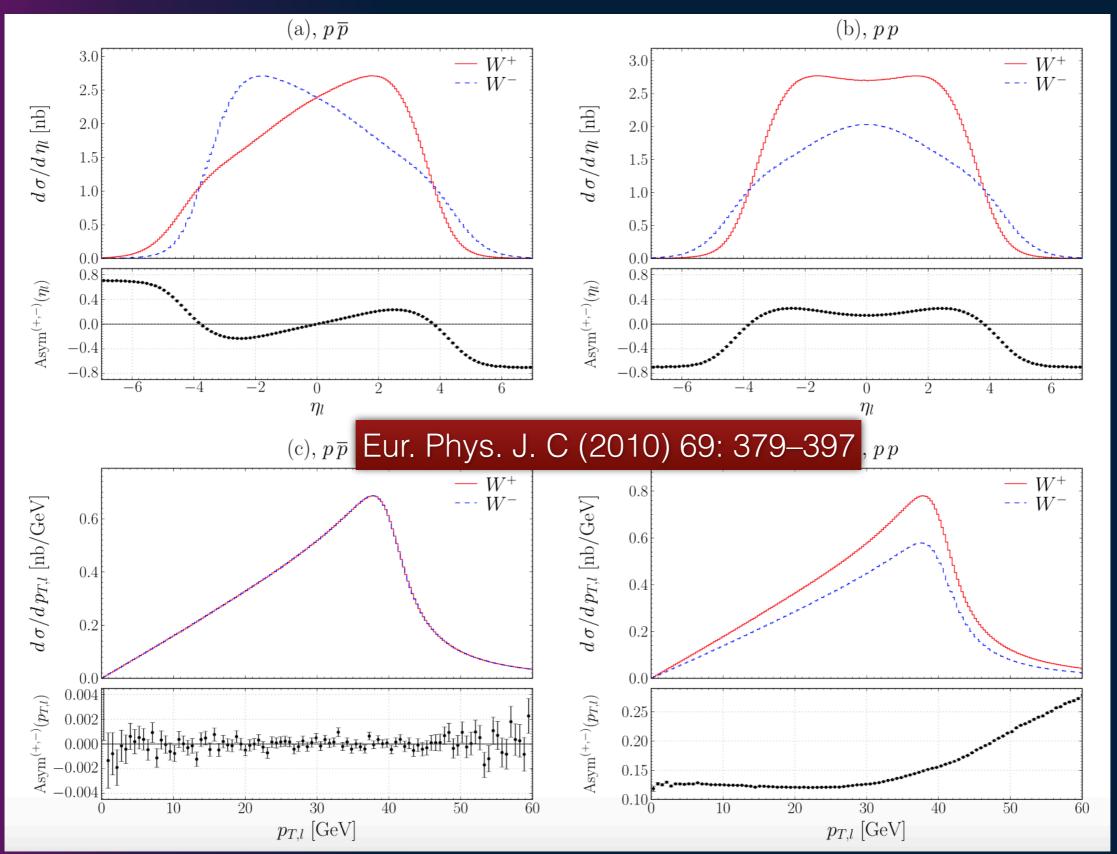
						(_
Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T}^{-}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7

Comparison D0 vs ATLAS


courtesy of M. Boonekamp Section E_T Source p_T^e m_T Experimental Electron Energy Scale VIIC4161716VIIC5Electron Energy Resolution 23 2Electron Shower Model VC4 7 6 Electron Energy Loss VD 4 4 4 VIID 3 Recoil Model 56 14 Electron Efficiencies VIIB101 3 5Backgrounds $_{\rm VIII}$ 2 $\mathbf{2}$ $\mathbf{2}$ \sum (Experimental) 18 2420Similar PDF W Production and Decay Model uncertainties PDF VIC 111114QED VIB 7 7 9VIA25 $\mathbf{2}$ Boson p_T Smaller $p_{-}W$ 17 \sum (Model) 1314 uncertainties at D0 Systematic Uncertainty (Experimental and Model) 292224W Boson Statistics \mathbf{IX} 1314 15**Total Uncertainty** 262833

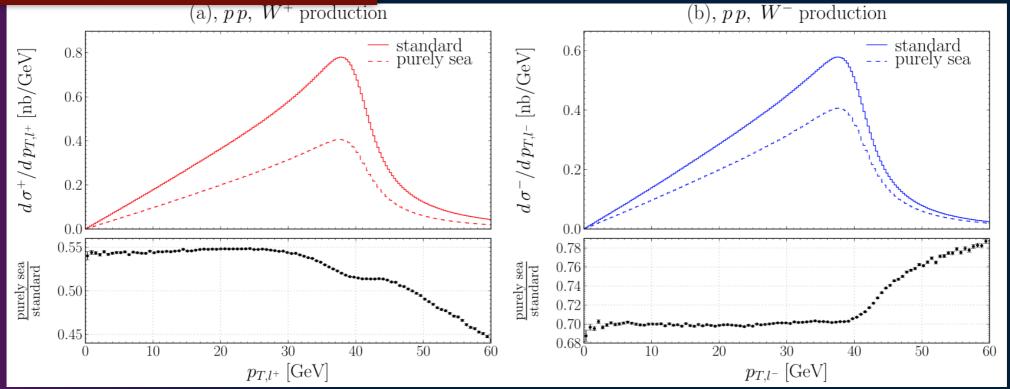
Includes also Ai uncertainties

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.			Unc.		Unc.	of Comb.
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}^{-}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{ m T}^{-}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7


Difference Tevatron vs LHC

Cea

Difference Tevatron vs LHC


Cea

Spectra differences between 'purely sea' and 'standard' quark induced W production

Eur. Phys. J. C (2010) 69: 379-397

 Uncertainty on sea and valence PDFs —>uncertainty on W helicity —> on the measured spectra

$$\sigma_{W^+}(y) \propto u(x_1) \cdot \bar{d}(x_2) + \bar{d}(x_1) \cdot u(x_2)$$

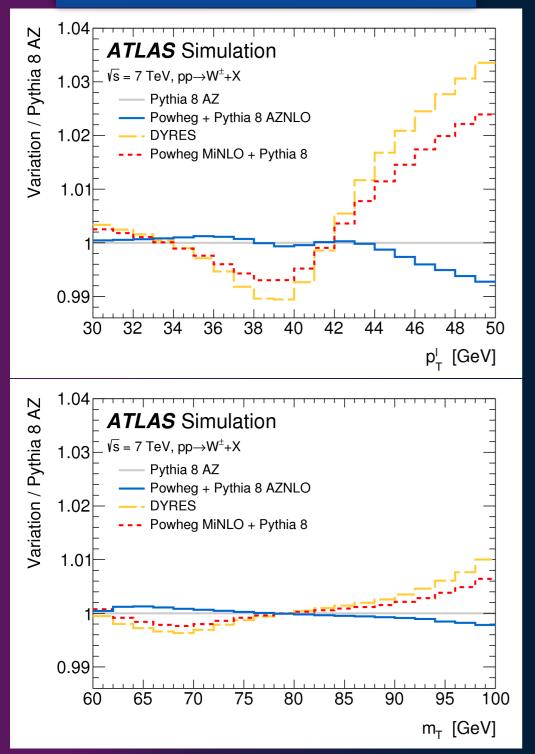
$$\sigma_{W^-}(y) \propto d(x_1) \cdot \bar{u}(x_2) + \bar{u}(x_1) \cdot d(x_2)$$

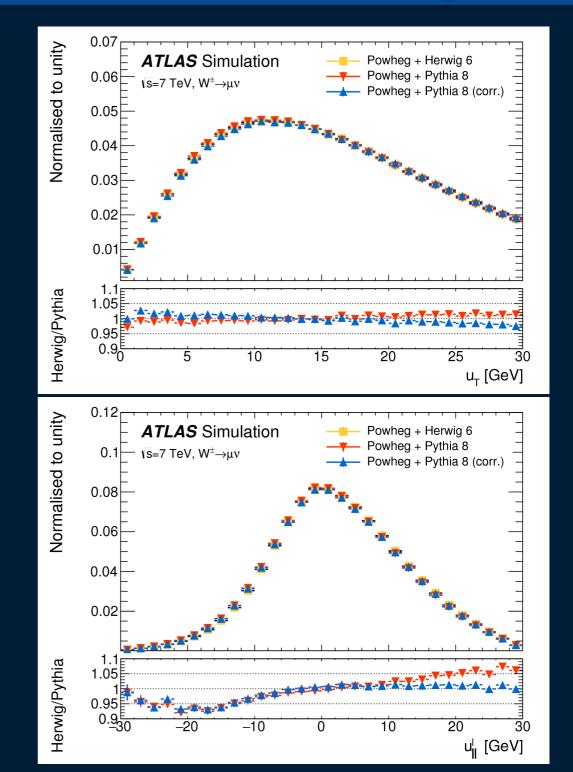
Full uncertainty table

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
$m_{\rm T}, W^+, e^{-\mu}$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
m_{T}, W^{-}, e - μ	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\mathrm{T}}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\rm T}^{\ell}, W^+, e^{-\mu}$	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{ar{\ell}},W^-,e ext{-}\mu$	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\hat{\ell}},W^{\pm},e ext{-}\mu$	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$\bar{m_{\mathrm{T}}}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
m_{T} - $p_{\mathrm{T}}^{\ell}, W^+, e$	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
m_{T} - $p_{\mathrm{T}}^{ar{\ell}},W^{-},e$	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
m_{T} - $p_{\mathrm{T}}^{\bar{\ell}}, W^{\pm}, e$	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\mathrm{T}}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
m_{T} - $p_{\mathrm{T}}^{\ell},W^{+},\mu$	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
m_{T} - $p_{\mathrm{T}}^{\ell},W^{-},\mu$	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - $p_{\mathrm{T}}^{ar{\ell}},W^{\pm},\mu$	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, e$ - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
m_{T} - $p_{\mathrm{T}}^{ar{\ell}},W^{-},e$ - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

129

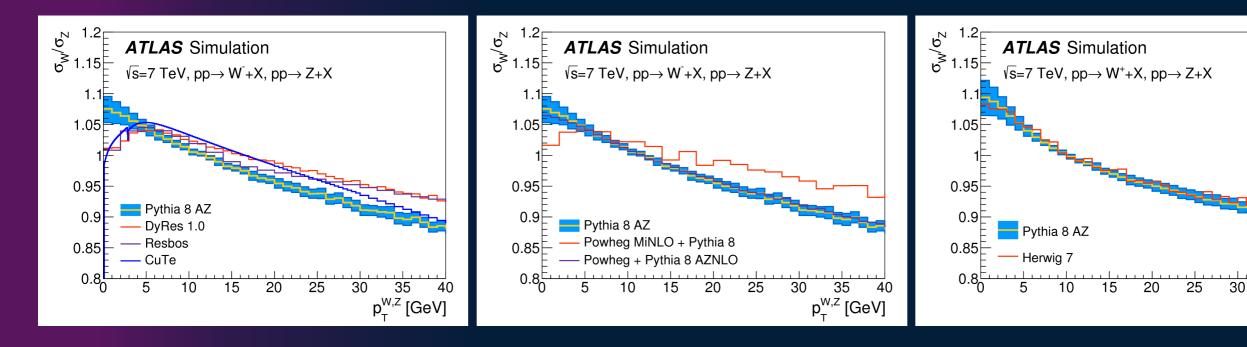
Observable	Channel	η range	Weight
	$W^+ \to \mu \nu$	$ \eta < 0.8$	0.018
-	,	$0.8 < \eta < 1.4$	0.022
		$1.4 < \eta < 2.0$	0.003
		$2.0 < \eta < 2.4$	0.006
	$W^- ightarrow \mu \nu$	$ \eta < 0.8$	0.020
		$0.8 < \eta < 1.4$	0.018
		$1.4 < \eta < 2.0$	0.022
		$2.0 < \eta < 2.4$	0.001
	$W^+ \to e \nu$	$ \eta < 0.6$	0.013
		$0.6 < \eta < 1.2$	0.001
		$1, 8 < \eta < 2.4$	0.010
	$W^- \to e \nu$	$ \eta < 0.6$	0.008
		$0.6 < \eta < 1.2$	0.000
		$1.8 < \eta < 2.4$	0.002
p_{T}^{ℓ}	$W^+ \to \mu \nu$	$ \eta < 0.8$	0.101
		$0.8 < \eta < 1.4$	0.076
		$1.4 < \eta < 2.0$	0.050
		$2.0 < \eta < 2.4$	0.011
	$W^- \to \mu \nu$	$ \eta < 0.8$	0.097
		$0.8 < \eta < 1.4$	0.071
		$1.4 < \eta < 2.0$	0.047
		$2.0 < \eta < 2.4$	0.010
	$W^+ \to e \nu$	$ \eta < 0.6$	0.056
		$0.6 < \eta < 1.2$	0.071
		$1, 8 < \eta < 2.4$	0.081
	$W^- \to e \nu$	$ \eta < 0.6$	0.062
		$0.6 < \eta < 1.2$	0.056
		$1.8 < \eta < 2.4$	0.067


Weights of all categories

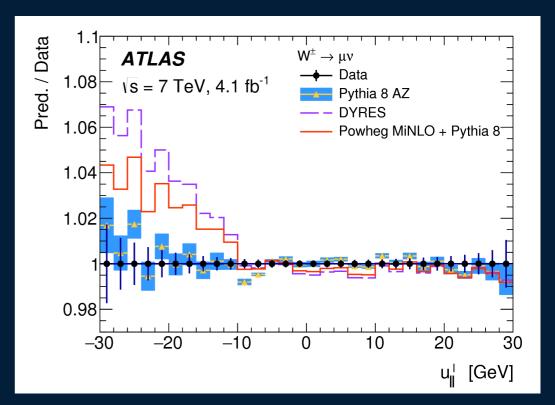

pt modeling strategy

130

various predictions of the 2 observables



Recoil distributions without modelling corrections

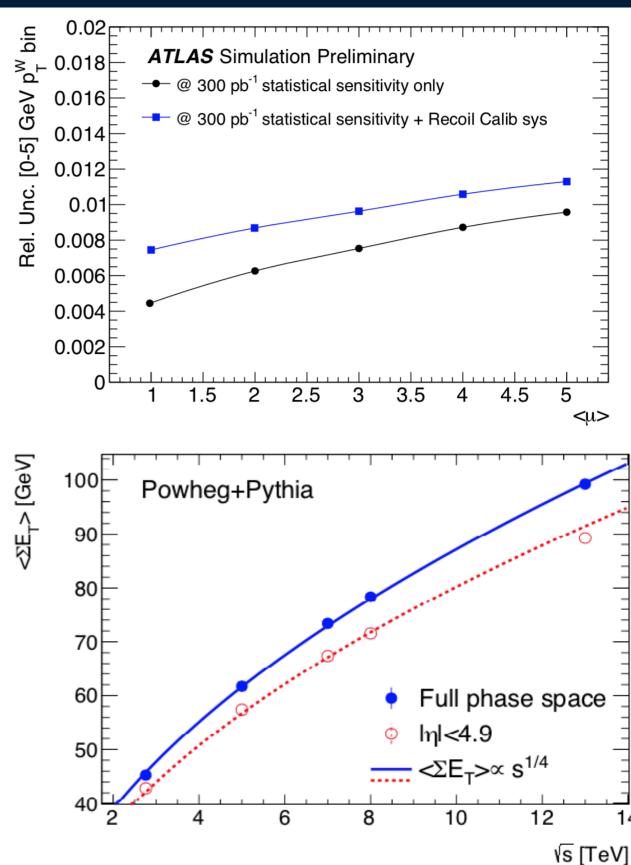


pt modeling strategy

- Very different prediction of p_T(W)/p_T(Z) ratio from resummed technique or Powheg MiNLO with respect to Pythia 8 AZ
 - This is a high topic of interest and subject to many discussions in the LHC EW working group
- Pythia8 AZ is validated by the data (u//) contrary to other predictions
- Negligible impact of the parton shower model (Herwig 7)

35

p_^{w,z} [GeV]



Low mu runs

132

 Dependence of uncertainty (statistical + recoil calibration systematic) in first pT(W) bin (0-5 GeV) vs mu for 300 pb-1 integrated luminaosity

 Dependence of SET with sqrts

