

W physics in ATLAS

Fabrice Balli, CEA Saclay

THE XIV-th INTERNATIONAL SCHOOL-CONFERENCE "THE ACTUAL PROBLEMS OF MICROWORLD PHYSICS"

Grodno, Belarus, 12–24 August , 2018

Outline

- Introduction
- Theoretical context of precise W measurements
	- Exemple physics motivation : mw measurement
	- W production at LHC
	- W detection at ATLAS
- Recent ATLAS measurements
	- W cross-sections at 7 TeV
	- W+jets at 8 TeV
	- W mass measurement at 7 TeV
	- Wjj and aGC at 7 and 8 TeV
- Conclusive remarks

Introduction

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018 Le Modele Standard (MS) de la physics at ATLAS — Grodno, 12–24 August , 2018

The Standard Model (SM)

- Standard Model : basic model of elementary particle physics constituents à l'antication de la constitution de l a matura de la materiale de la materiale della del
Del model of elements
- electromagnetic force photon
- in interaction $=$ \angle , vv \cdot , vv • weak interaction — Z, W+, W-
- \log interaction \sim o giuons • strong interaction — 8 gluons
- Higgs boson confers mass to ULLION PULLIOIUU ; UNUUVIULU I
2 hy ATI AS and CMS the other particles ; discovered in 2012 by ATLAS and CMS
- interaction distance α individual must define the matrix α interaction direction α interaction α • Gravitational interaction — not described by the SM

The W boson

- Discovered in UA1 and UA2 at CERN SPS in 1983
	- 1984 Nobel prize awarded to Carlo Rubbia and Simon van der Meer
- Charge : ±1e
- Width: 2.085±0.042 GeV
- Spin : 1
- Mass: 80.385±0.015 GeV
- Decay channels :
	- e, μ, τ : BR ~11 % each
	- hadrons : BR \sim 67 %

- A well-known pillar of SM : why worry about further measurements ?
	- Background to other processes (Higgs, ttbar...)
	- Stringent tests of SM consistency (EW fit), probe of pQCD, of anomalous gauge couplings —> **More precise** measurements of differential cross-sections and mass is **necessary**

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

The Large Hadron Collider at CERN

- 27 km circumference
- The only high-energy physics proton-proton collider currently running Le plus ienergietigetigue en fonctionnement :
Le plus dans le plus de masseur : relevaire en rendere renadere realisateur en massath : renadire en massiment en 2011 (2011) (14 Tenergie nominale) (14 Tenerale) (14 Tenerale) (14 Tenerale) (14 Tenerale) (14 Tenerale) (1
- Has successfully delivered big amounts of collision data over the last 7 years to the 4 and successions denvered big amodites of comsion data over the fast right.
detectors : LHCb, ALICE, CMS and ATLAS
	- Center of mass energy is **7 TeV (2011), 8 TeV (2012)**, 13 TeV (2015 up to now)

The ATLAS experiment at LHC in Run1 (2011-2012) ATLAS

Recorded 4.6/20.2 fb-1 luminosity in 2011/2012

- Inner tracker vertices reconstruction, charged tracks
- Electromagnetic calorimeter - electrons, photons
- Hadronic calorimeter jets
- Muon spectrometer in a toroidal magnetic field

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

W events at ATLAS Run1

8

- W cross-section ~ 10² nb
	- $\bullet \rightarrow$ 7 TeV N_W \sim 470M
	- \rightarrow 8 TeV N_W \sim 2.02B
	- cleanest signature : e, μ
		- \sim 47 (202) M events per channel
			- detector acceptance, event selection and reconstruction efficiencies to be taken into account (conservative factor 10 : still a few M just for 7 TeV)

Recommended readings :

- CTEQ Lecture from Jeff Owens (2000)
- QCD and Collider Physics, R.K. Ellis, W.J. Stirling, and B.R. Webber

Theory context

(an experimentalist's view!)

- Theory motivation to m_w measurement
- W production at LHC
- W detection at ATLAS

mW and the EW fit

– *v* est la valeur moyenne du Higgs dans le vide (vev).

One illustration : W mass (m_W) and the EW fit ⇡↵(*µ*) = ^p 2*Gµm*² W sin2 ∪ w sin2 ∪

- Electroweak theory (true at all orders) (1)
- Also, one has (2)
- After solving the 2nd order equation in mw² one $\begin{bmatrix} 4 & 4 \\ 4 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 &$ donnaets, inclusion ou n'inclusion de masse du bosonie de masse du bosonie de masse du bosonie de masse du bos gets (3)
- Le quark top • Where radiative corrections to the W boson contributions) can be expressed as : de Higgs mesur´ee. Les valeurs de *m^W* et de *m*top et leurs d´eviations standards sont ´egalement propagator (dominated by top and Higgs

$$
\Delta r = \Delta \alpha - \frac{\cos^2 \theta_W}{\sin^2 \theta_W} \Delta \rho + \Delta r_{res},
$$

• Top quark mass dependence la by design during the Higgs (corrections) and determines the Higgs (corrections) and determines of \sim et *r*^{*r*} dominated by : <u>contient des `energies propres des `energies propres de bosons, corrigies propres de bosons, corrig</u>

$$
\Delta \rho^{top} \approx \frac{3\sqrt{2}G_{\mu}m_{\text{top}}^2}{16\pi^2}
$$
 G. Burgers and F. Jegerlehner
10.5170/CERN 1989,008 V 1.55

• Higgs boson mass dependence
dominated by : dominated by : **Firm** top

dominated by :
\n
$$
\Delta r_{res}^{Higgs} \approx \frac{\sqrt{2}G_{\mu}m_W^2}{16\pi^2} \left[\frac{11}{3}(\ln\frac{m_h^2}{m_W^2} - 5/6)\right].
$$

equation in
$$
m_W^2
$$
 one
\n
$$
m_W^2 = \frac{g_W^2 v^2}{4}, \ m_Z^2 = \frac{g_W^2 v^2}{4\rho_0 \cos^2 \theta_W} = \frac{m_W^2}{\rho_0 \cos^2 \theta_W} (2)
$$
\n\no the W boson
\np and Higgs
\n
$$
= \frac{m_Z^2}{2} (1 + \sqrt{1 - \frac{4\pi \alpha}{\sqrt{2} G_\mu m_Z^2}})
$$
\n
$$
= \frac{m_Z^2}{2} (1 + \sqrt{1 - \frac{4\pi \alpha_{tree}}{\sqrt{2} G_\mu m_Z^2}}) (3)
$$

 $m_W^2 = \frac{\pi \alpha_{tree}}{\sqrt{2}C \sin^2 \theta_{CC}}$ (1)

(1)

W

Corrections `a une boucle au propagateur

Relationship between W mass, top mass and Higgs mass (and EW parameters) !

10.5170/CERN-1989-008-V-1.55

The global EW fit

- Idea of electroweak fits
	- Measure many different observables in experiments
	- Calculate the relations between all observables in the Standard Model
	- Probe the consistency of the SM by predicting observables
- Input for the gobal electroweak fit mostly from
	- LEP: Z boson observables (e.g. $sin^2\theta_W$)
	- Tevatron: W boson, top quark mass
	- LHC: Higgs boson, top quark mass
- Overall good consistency between indirect determination (i.e. physics parameter left free) and the direct measurements

 \tilde{z}

The global EW fit

- Test the consistency of the Standard Model
	- e.g. predict mw, provided all other input measurements
- needs 7 MeV precision to compete with indirect determination from theory fit (10-4 relative uncertainty!)
- Electroweak precision measurements also sensitive to several new physics scenarios
	- For this, need a 5 MeV precision on mw
- \rightarrow this measurement needs very accurate prediction for W production and kinematics of decay products :
	- W p_T and rapidity spectrum
	- polarisation (spin correlations)
	- high order EW (NLO)
- Proton PDFs are an essential ingredient for this
- It also needs detector calibration at the same level of precision! 13

arXiv:1803.01853

parenthesis : sin2θ^W

- One of the key inputs to EW and BSM fits
- Observed tension between LEP and SLD measurements (~3 sigmas)
- New preliminary measurement from ATLAS

ATLAS-CONF-2018-037

W production

Drell-Yan production

• factorization theorem :

$$
\sigma_{pp \to X}(\alpha_s, Q^2) = \sum_{a,b} \int_0^1 f_a(x_1, Q^2) f_b(x_2, Q^2) \times \hat{\sigma}_{ab \to X}(\alpha_s, Q^2) dx_1 dx_2
$$

- weight the partonic cross-section by non-perturbative fonctions (parton distribution functions, PDFs) considered at high scale $Q^2 = \mu F^2$ (separates perturbative and nonperturbative regime)
- partonic cross-section can be calculated perturbatively and is only known up to NNLO and thus depends on a renormalisation scale μ _R² (=Q²):

$$
\hat{\sigma}_{ab\to X}(\hat{s}) = \underbrace{\hat{\sigma}_{0}(\hat{s})}_{LO} + \underbrace{\alpha_{s}(\mu_{R}^{2})\hat{\sigma}_{1}(\hat{s})}_{NLO} + \underbrace{\alpha_{s}^{2}(\mu_{R}^{2})\hat{\sigma}_{2}(\hat{s})}_{NNC}
$$
\n
$$
= \underbrace{\hat{\sigma}_{0}(\hat{s})}_{U}
$$
\n
$$
\underbrace{\mu_{0}}_{U}
$$
\n<math display="</math>

W production : PDFs

- W+(W-) production is dominated by ud (dū)
- u_v is higher at high $x \rightarrow$ increase of W^+ production at high rapidities (next slide)
- Contribution from 2nd quark generation is not negligible : ~25%
	- induces larger uncertainties than in pp
- Gluon contribution starting at NLO

W production : rapidity

- Rapidity y is defined as : $y = 1/2 \ln \left[\frac{E + p_z}{E p_z} \right]$
- Assuming intrinsic transverse momentum of partons $k_T=0$, we have (in center of mass frame) : $p_a = \sqrt{s/2}$ * x_a (1,0,0,1) and $p_b = \sqrt{s/2}$ * x_b (1,0,0,-1)

•
$$
\longrightarrow
$$
 y = 1/2 ln (x_a/x_b)

• Leading to : $x_a =$ *M s* e^y *x_b* = *M s e*−*^y*

- low $|y|$: mainly sea quarks $(x \sim 10^{-2})$
- high |y| : 1 sea quark and 1 valence quark (x~10-4, a few 0.1)
- One has at lowest order :

$$
\frac{d\sigma}{dy} = \frac{1}{s} \sum_{a,b} \sigma_0^{ab \to W}(M) f_a(x_a, M^2) f_b(x_b, M^2)
$$

- Boson rapidity directly sensitive to PDFs
- allows to constrain them from differential cross-section measurements

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

W p_T : where does it come from?

Fig. 9.2. The lepton pair transverse momentum from the CFS collaboration [4]. The curve corresponds to a Gaussian intrinsic k_T distribution for the annihilating partons.

- Intrinsic k_T of the partons : good agreement with the data (fixedtarget pn collisions) up to $p_T \sim 2$ GeV \rightarrow assume Gaussian form with $\langle k_T(\text{parton}) \rangle \sim 760 \text{ MeV}$
- Not sufficient to describe higher values of W p_T

W p_T : where does it come from?

- Need additional hard parton emissions to explain higher p_T region
	- NLO (qg—>Wq, qq'—>Wg), NNLO QCD
	- NNLO diagrams are typically :

W p_T : let's diverge a little bit

- spoiled by large logarithms of the type $\alpha_S^n\ln^m(M^2/p_T^2)$ • Pure fixed-order NNLO predictions : diverge when $p_T \rightarrow 0$ (p_T << M) due to the presence of soft and collinear emissions —
- This can (has to) be resummed at all orders and gives

$$
\frac{d\sigma}{d\tau dy dp_T^2} = \left(\frac{d\sigma}{d\tau dy}\right)_{Born} \frac{4\alpha_s}{3\pi} \frac{\ln s/p_T^2}{p_T^2} \exp\left(-\frac{2\alpha_s}{3\pi} \ln^2 s/p_T^2\right)
$$

ATL-PHYS-PUB-2014-015

- Where the exponential is referred to as the 'Sudakov form factor'
- However, does not include the cases where multiple gluons are emitted with $k_T \sim$ p_T, nor the cases where gluon momenta add to 0.
- Several resummation formalisms and calculations to resum the leading, next-toleading and next-to-next-to leading logs
	- e.g., RESBOS, DYRES, Geneva, RADISH…
- Can also use parton showers (typically done in simulations) : Sherpa, Pythia, Herwig…
	- Evolution of fragmentation functions through DGLAP formalism

- high p_T~M : fixed-order V+1 jet (MC : fixed-order matrix elements) ; resummation does not work
	- d σ /d p_T ² goes as $1/p_T$ ²
- low $p_T << M$: fixed-order breaks down, resummation comes in (MC : Parton showers)
- Transition region : no fixed boundary
	- resummation works but fixed-order gives sensible results as well
		- Best prediction from consistent combination of the two
	- 22 • MC : Matrix element + parton shower merging/matching

NLO EW emissions

• Corrections to W production take into account $O(\alpha_{EM})$ corrections : photon radiation (ISR, FSR), loop corrections (pure weak), ISR/FSR interference (IFI)

- ISR factorised in the PDF evolution, FSR is the most important numerically among the rest
- Several tools to handle this. In ATLAS W/Z simulated samples, typically :
	- Pythia8 parton shower handles the ISR
	- Photos handles FSR and electron pair emissions from virtual photon (higher order, uncertainty only)
	- pure weak and IFI corrections not included but impact is estimated with other tools (YFS, Winhac…) (and often simply added as uncertainty)

W detection

Event topology, definitions of observables

- Detect single (inclusive) W boson decaying into a lepton and a neutrino
- The ATLAS detector measures :
	- The **lepton** charge and 4-vector (transverse momentum $\vec{\mathsf{p}}$ _Te)
	- The activity recoiling against the W **(hadronic recoil** ū̇̃⊤)
		- measures additional jets from signal
		- Sensitive to additional interactions (pile-up) and underlying event
		- Enables to indirectly reconstruct the neutrino transverse momentum \vec{p}_{T} ^{miss} = - (\vec{u}_{T} + $\vec{p}_{\text{T}}\ell$)
		- Some analyses use a direct reconstruction of p_Tmiss, some use a direct reconstruction of the recoil —> different algorithms, impact is significant \sim only for mw here 5, Impact is

ruct the neutrino \overrightarrow{u} : vector sum of calorimeter $\epsilon = -\vec{u}_{\text{T}} + \vec{p}_{\text{T}}\ell$ deposits excluding lepton deposits

 $\text{m}_\text{T} = \sqrt{[2 \text{ pr} \ell \text{ pr}^{\text{miss}} (1-\text{cos} \Delta \varphi)]}$

Impossible to fully reconstruct mw because of the neutrino

The Jacobian peaks : m_T and lepton p_T

The Jacobian peaks : m_T and lepton p_T

- Unlike the Z, not possible to fully reconstruct the W mass due to neutrino
- One can use the transverse mass m_T(*iv*):

 $m_T(\ell \nu)^2 = (\mid p_T^{\ell} \mid + \mid \overline{p_T^{\nu}} \mid)^2 - (p_T^{\ell} + \overline{p_T^{\nu}})^2 = 2 \mid p_T^{\ell} \mid \mid \overline{p_T^{\nu}} \mid (1 - \cos \Delta \phi_{\ell \nu})$

• Can be compared to the invariant mass :

$$
m(\ell \nu) = (|\overrightarrow{p^{\ell}}| + |\overrightarrow{p^{\nu}}|)^2 - (\overrightarrow{p^{\ell}} + \overrightarrow{p^{\nu}})^2
$$

- For small $p_T(W)$, m_T is invariant to leading order
- \bullet Jacobian peak at m_w
- In the context of m_w measurement :
	- \bullet lepton p_T sensitive to modelling of W p_T and not so much to detector resolution
	- m_T is not sensitive to W p_T but is very sensitive to MET resolution

Recent ATLAS measurements

W cross-sections at 7 TeV

Eur. Phys. J. C (2017) 77:367

W cross-sections at 7 TeV : introduction

- Very precise measurement (<1%) of W and Z cross-sections at 7 TeV
- W cross-section is measured in a fiducial volume, extrapolated to full phasespace and differentially in lepton η absolute value, |η*l*|
- QCD analysis: PDF fits, strange-quark density, determination of CKM matrix $|V_{cs}|$
- Signal MC sample: Powheg+Pythia6 using CT10 NLO PDF set for the matrix element, CTEQ6L1 for the parton shower
	- Assess uncertainties with alternative samples : MC@NLO+Herwig, Powheg+Herwig : matrix element variation, parton shower/underlying event
	- W p_T is reweighed to Powheg+Pythia8AZNLO, generator tuned to ATLAS Z data
	- Normalised to NNLO prediction from FEWZ with a 5% uncertainty (PDF, scales)
- Background is also using simulated samples except for multi-jet (data-driven)

Event selection

- at least one primary vertex with 3 tracks of $p_T > 500$ MeV
- MET > 25 GeV
- $m_T > 40$ GeV
- electron channel :
- $\Delta R = \sqrt{\Delta \phi^2 + \Delta y^2}$
- single electron trigger with medium ID and $p_T > 20$ or 22 GeV (depending on the period)
	- Identification (ID) : based on shower shape, track properties and track-to-cluster matching
- Calorimeter isolation : upper limit on sum of energy in a cone of size $\Delta R = 0.2$ ('topoetcone20')
- Tracking isolation : upper limit on sum of p_T of tracks in a 0.4 cone ('ptvarcone40')
- exactly one tight ID electron that matches the trigger, in the acceptance ($|\eta|$ < 1.37 or $1.52 < |n| < 2.47$, with $p_T > 25$ GeV
- reject events with $>=1$ medium ID electron with $p_T > 20$ GeV (cuts the Z background)
- Charge-separated analyses (W+ vs W-) : sensitive to charge misID
	- Evaluated from same-sign Z—>ee events in the data and the MC as a function of η, corrected for in the MC

Event selection

- Muon channel
	- single muon trigger with $p_T > 18$ GeV
	- reconstructed using a combination of muon spectrometer and inner detector information
	- $|z_0-z_{PV}|$ < 1cm (remove background from cosmic rays) : z extrapolated to the beam line
	- $p_T > 25$ GeV, $|\eta| < 2.4$
	- isolation : ptvarcone40/ $p_T < 0.1$
	- events with $>= 1$ muon with $p_T > 20$ GeV are rejected (cuts the Z background)
	- charge misID negligible

Fiducial volume : phase-space to where the distributions are unfolded at generation level (i.e. remove detector effects):

- lepton $p_T > 25$ GeV, lepton $|\eta| < 2.5$ Born level for the leptons
- $p_T v > 25$ GeV
- $m_T > 40$ GeV
- 11 lepton |η bins (common to electron and muon channels) : [0.00, 0.21, 0.42, 0.63, 0.84, 1.05, 1.37, 1.52, 1.74, 1.95, 2.18, 2.50]

Muon calibration among the correlation uncertainties can appear. These correlations were investigated and found to be correlated

- Use a combination of ID and MS, calibrate transverse momentum as a function of η
- Momentum resolution : obtained by fitting the Z invariant mass, as well as 1/p_T ^{*ID*} − 1/p_T ^{*MS*} for both μ ⁺ and $\mu^{\scriptscriptstyle +}$ in Z and W $\,$
- Momentum scale : compare Z peak in data and MC As described in Section 5.1, the kinematic parameters of selected muons are determined from the as s_{S} information of accuracy of the momentum measurement is limited by imperfective momentum measurement is limited by imperfective momentum measurement is limited by imperfective momentum measurement in \mathcal{L}
- **longitudinal biases (sagitta biases**, from systematic misalignment modes) **comparise the magnetic field, and re**
- muon sagitta bias correction uses W events (E/p) and Z events material in the detector.
- Momentum corrections at the level of 0.1-0.4% and uncertainty of \sim 2.10⁻⁴
- Use tag-and-probe methods $(Z \rightarrow \mu\mu)$ for the scale factors (reconstruction, trigger, isolation) and uncertainties charge-independent momentum-scale correction. The latter typically original α is a correction of the latter typical corrections or α
- Same level of correction, a bit higher for trigger, 5-10% (still known with a relative uncertainty of 0.1-0.8%) factors proportional to **q** θ *p* (0.8%) and (0.8%)

Electron calibration

- Electron measurement : energy from the EM calorimeter; eta and phi from the ID
- Calibration sequence :
	- Calorimeter longitudinal intercalibration using muon energy deposits ($Z \rightarrow \mu \mu$ events)
	- Passive material and presampler response corrections derived using longitudinal shower profiles of electrons and photons
	- Overall energy scale and resolution from Z—>ee decays
- Selection efficiencies for reconstruction, identification, trigger, isolation
	- use tag-and-probe methods (Z—>ee) for the scale factors and uncertainties

MET calibration

- MET built from a soft term (tracks) + hard term that comprises leptons and jets
- Uncertainties from each hard object is propagated to the hard term
- Soft term uncertainty is obtained by looking at Z in MC and data (response and resolution)

Multijet background (QCD)

- non-isolated electrons, converted photons or hadrons misidentified as signal electrons, or heavy quarks or hadron decays into muons + MET cut is passed thanks to neutrinos from hadron decays/resolution effect
- multijet is poorly modelled in most ATLAS analyses (huge cross-section, tiny selection efficiency, bad modelling of non-prompt muons…)
	- Need to use the data to estimate its contribution
- Use a control region (CR) enriched in multijet to build shape templates
	- loosen lepton ID and invert isolation requirement, subtract EW/top contributions
- Fit the fraction in a 'normalization (or fit) region' $==$ signal region with relaxed m_T and MET cuts (enriched in QCD)
- Extrapolate the fitted fraction to the signal region by taking into account the selection efficiency
- Scan in m_T/MET relaxing cut values \rightarrow dependence \rightarrow additional linear extrapolation to signal region (10% correction, added as uncertainty here)
- Additional uncertainties for the template shapes : different requirements for CR, detector calibration uncertainties, alternative signal MC

Analysis method

37

- Measured fiducial cross-section where :
	- \bullet L is the integrated luminosity N_W is the total number of events, B_w is the estimated background, C_w is defined as :
- Then extrapolated to common fiducial volume, where E_W accounts for the different eta acceptances
- Total cross-sections can be then inferred from :
- where $A_W = \frac{N}{N}$ $\frac{1}{N}$ $\frac{1}{N}$ *NMC*,*generated*,*fiducial W NMC*,*generated*,*total*
- Luminosity uncertainty is 1.8%
- Theory uncertainties relate to : PDF, NLO ME/PS matching, hadronisation, underlying event

σ fiducial,*e*/*^μ W* = $N_W - B_W$ $C_W \times L$

 $C_W =$ *NMC*,*reconstructed W NMC*,*generated*,*fiducial W*

$$
\sigma_W^{fiducial,\ell\nu} = \frac{\sigma_W^{fiducial, e/\mu}}{E_W^{e/\mu}}
$$

$$
\sigma_W^{total, \ell\nu} = \frac{\sigma_W^{fiducial, \ell\nu}}{A_W}
$$

- C_w uncertainties amount to ~0.2(0.6)% in the μ (e) channel
- Ew has small uncertainties w.r.t. experimental
- Aw has larger uncertainties : 1.5-2%

Results

- Combine using technique introduced at HERA
- Properly taking into account the correlations between the measurements
- χ^2 minimisation allowing to have contributions of the correlated uncertainty sources to shift

Results

$$
\sigma_{W\to\ell\nu}^{\rm tot}~({\rm pb})
$$

 $W^+ \rightarrow \ell^+ \nu$ 6350 ± 2 (stat) ± 30 (syst) ± 110 (lumi) ± 100 (acc)

 $W^- \rightarrow \ell^- \bar{\nu}$ 4376 ± 2 (stat) ± 25 (syst) ± 79 (lumi) ± 90 (acc)

 $W \rightarrow \ell \nu$ 10720 ± 3 (stat) ± 60 (syst) ± 190 (lumi) ± 130 (acc)

$$
R_W = \frac{\sigma_{W \to e\nu}^{\text{fid,e}}/E_W^{\text{e}}}{\sigma_{W \to \mu\nu}^{\text{fid},\mu}/E_W^{\mu}} = \frac{\sigma_{W \to e\nu}^{\text{fid}}}{\sigma_{W \to \mu\nu}^{\text{fid}}} = \frac{BR(W \to e\nu)}{BR(W \to \mu\nu)}
$$

= 0.9967 ± 0.0004 (stat) ± 0.0101 (syst)
= 0.997 ± 0.010.

- Integrated cross-section : dominated by luminosity and acceptance factor uncertainties
- Test of lepton universality
	- Ratio result is more precise than LEP result of 1.007 ± 0.019

Systematic uncertainties : electron channel

• Dominated by multijet background and signal modelling (MC@NLO vs Powheg)

- Luminosity dominates
- Total experimental uncertainty (excluding luminosity) is $~1\%$

Systematic uncertainties : muon channel

- Dominated by multijet background, followed by various uncertainties ~at the same level
- Total uncertainty excluding luminosity is ~0.6%

Results : unfolded differential distributions

- Bayesian unfolding, purity > 90%
	- Unfolding is almost an efficiency correction

Comparison with theory

- Fixed-order NNLO QCD predictions use DYNNLO 1.5 (baseline) and FEWZ 3.1.b2 (used for NNLO uncertainty evaluation)
	- NLO EW corrections provided by MCSANC
- In DY cross-section calculations the value of α_{EW} can be fixed in different input-parameter schemes
	- Here 'G μ ' scheme (primary parameters are particle masses and Fermi constant with values taken from PDG) —>see I Dittmaier, S. & Huber, M. J. High Energ. Phys. (2010) 2010: 60

43

• Uncertainties in these plots is the dominating PDF uncertainty only

Comparison with theory : lepton η and asymmetry

Lepton charge asymmetry defined as :

 $d\sigma_{W+}/d|\eta_{\ell}| - d\sigma_{W-}/d|\eta_{\ell}|$ $A_{\ell} =$ $d\sigma_{W+}/d|\eta_\ell| + d\sigma_{W-}/d|\eta_\ell|$

- Significant constrain on u/d PDFs between $x \sim 10^{-1}$ and 10^{-3}
- Data overall well described (luminosity uncertainty of 1.8% is excluded in the plots)
- HERAPDF2.0, NNPDF3.0, MMHT14 and CT14 more or less agree with the data within uncertainties
	- ABM12 remarkably good, but does a poorer job describing Z distributions

PDF profiling : methodology

• PDF profiling and full PDF fits heavily rely on methods used in previous experiments (Tevatron, HERA) and global PDF fit groups, see e.g

Eur. Phys. J. C **75**, 458 (2015), JHEP **12**, 100 (2014), JHEP **09**, 061 (2012)

- Use of APPLGRID for theory predictions, together with k-factors from the accurate theory tools described before (NNLO QCD from DYNNLO 1.5, NLO EW from PHOTOS and MCSANC)
- Use of xFitter software
	- start from existing PDF sets
	- Use a $\chi^2(b_{\text{exp}}, b_{\text{th}})$ that minimises difference between observed and predicted cross-section allowing nuisance parameters (b_{exp} , b_{th}) to shift
	- Allows for quantitative estimate of the agreement between the data and the PDF sets from global fits, and study further constraining power from the new measurement
		- Best χ^2 is obtained with CT14nnlo, CT10nnlo, and reasonable with MMHT14nnlo

PDF profiling results (exemple of MMHT14)

Full PDF fit

- More complex than PDF profiling
	- Requires parametrisation of the PDFs at a starting scale $Q_0^2 = 1.9 GeV^2$

$$
xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}),
$$

\n
$$
xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}},
$$

\n
$$
x\bar{u}(x) = A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}},
$$

\n
$$
x\bar{d}(x) = A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}},
$$

\n
$$
xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}},
$$

\n
$$
x\bar{s}(x) = A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}},
$$

- PDFs are evolved to the scale of the measurements and convolved with hardscattering coefficients to obtain the theoretical cross-section predictions
- Then, fit using similar (but different) χ^2 as in profiling, with parameters left free
- Fit done with HERA and new ATLAS data
	- New set termed ATLAS-epWZ16
	- Includes experimental and theory uncertainties

Full PDF fit : result

- Theory uncertainties include : variation on the heavy quark masses, on Q_0 , on Q_{min} (smallest scale for HERA data), different parametrisation, $\alpha_S(m_Z)$ (= 0.118 \pm 0.002), NLO EW, FEWZ vs DYNNLO
- Experimental uncertainties on the new PDF set greatly reduced by a factor 3 w.r.t. the previous one (ATLAS-epWZ12)
- Data well described by the theory

strange quark density

- ATLAS 2010 W,Z : unsuppressed strangeness at $x \approx 0.023$ and $Q^2 = 1.9$ GeV², —> strange, down and up sea quarks of similar strength in that kinematic range
	- Supported by ATLAS W+c measurement
	- Not expected from neutrino scattering experiments, which have big weight in global PDF fits

$$
r_s = \frac{s + \bar{s}}{2\bar{d}}
$$

$$
r_s = 1.19 \pm 0.07
$$
 (exp) $\frac{+0.13}{-0.14}$ (mod + par + thy)

- Many checks were performed :
	- remove the constraint $\bar{u} = \bar{d}$ for $x \rightarrow 0$
	- Inclusion of E866 data for which there are tensions $(\bar{u} \bar{d})$
	- remove low/high mass Drell-Yan
	- How much the χ^2 increases when imposing suppressed strangeness ($r_s = 0.5$ and $C_{\bar{s}}$ $= C_{\bar{d}}$
- Everything points to strangeness values consistent with this measurement

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

strange quark density

50

- Uncertainties include :
	- experimental
	- model variations (heavy quark masses, starting scale, minimum scale of HERA data)
	- **• PDF parametrisation**
	- $\overline{\alpha_S}$
	- EW corrections

- **• factorisation and renormalisation scales**
- **• FEWZ vs DYNNLO**

|Vcs| measurement

- W production mainly from ud and cs quarks
	- $|V_{ud}|$ already measured with high precision, but not $|V_{cs}|$
	- W production rate and lepton η distributions are sensitive to $|V_{cs}|$
	- ->PDF fit with $|V_{cs}|$ allowed to vary (other CKM matrix elements fixed to the 2012 PDG value)
	- parametrisation variations ->Dominant uncertainty
	- Competitive with other measurements

$$
|V_{cs}| = 0.969 \pm 0.013 \text{ (exp)} \, {}^{+0.006}_{-0.003} \text{ (mod)} \, {}^{+0.003}_{-0.027} \text{ (par)} \, \frac{+0.011}{-0.005} \text{ (thy)}.
$$

W cross-section at 13 TeV

Physics Letters B 759 (2016) 601–621

- Shorter analysis was performed using 81pb-1 of early Run2 2015 data: W,Z fiducial and inclusive cross-sections
- Peak delivered instantaneous luminosity was L = 1.7×10^{33} cm⁻¹ s⁻¹, $\langle \mu \rangle = 19$.
- measurement compared with NNLO fixed-order predictions from DYNNLO using different PDF sets

W cross-section : conclusion and summary

- Remarkable precision on Drell-Yan cross-section, below 1% (when excluding luminosity uncertainty) even for W
- Allows for stringent tests of Standard Model
- High number of experimental points is a good input to constrain parton distribution functions and thus reduce their related uncertainty
	- Key ingredient for most physics analyses
- Competitive measurement of $|V_{cs}|$ CKM matrix element

W+jets at 8 TeV

JHEP05(2018)077

W+jets at 8 TeV : introduction

- Several differential cross-sections for $W + \geq 1$ jet in the electron channel
	- H_T (scalar sum of the transverse momenta of electron, neutrino and jets), $p_T(W)$, $p_T(j1)$, y(j1) (transverse momentum and rapidity of the leading jet, i.e. with highest p_T)
- And for $W + \geq 2$ jets
	- $p_T(j2)$, $y(j2)$, $\Delta R(j1,j2)$, M_{ij}
- W+/W- cross-section ratio
	- Cancelling of dominant systematic uncertainties
- Motivation : stringent tests of pQCD, constraints to PDFs fits, sensitivity to ME/PS matching schemes
- detector calibration for reconstructed objects (leptons, jets, missing E_T) are all from standard Combined Performance groups
- Main signal MC sample is Alpgen+Pythia6 with up to 5 partons in the ME
- All backgrounds estimated with MC except for multi jet (data driven)

W+jets at 8 TeV : event selection

- Trigger: electron, isolated (p_T>24 GeV) or not (p_T>60 GeV)
- exactly 1 electron with $p_T > 25$ GeV, within detector acceptance and matching the trigger
	- 'tight' identification
	- cut on impact parameters of associated track
	- isolation : ptvarcone30/p $_T$ < 0.07, topoetcone30/p $_T$ < 0.14
	- no other 'medium' electron with p_T>20 GeV
- Anti-k_T jets with $R=0.4$, $p_T>30$ GeV, $|y|<4.4$, separated from the electron
	- pile-up rejection for jets within tracking acceptance ('JVF' cut)
	- Veto on events with b-tagged jets ($p_T > 20$ GeV, $|\eta| < 2.5$) —>rejects tt
- jets-electron overlap removal
- MET > 25 GeV, $m_T > 40$ GeV

W+jets at 8 TeV : event yields

• Dominant background is multijet for lower jet multiplicity, tt becomes more important for events with higher multiplicity

W+jets at 8 TeV : comparison to various predictions

- All observables use Bayesian unfolding to account for detector effects (bin migrations)
- Comparison to various prediction (first 3 have non-perturbative corrections using Sherpa 2.2.1 to account for hadronisation and underlying event)
- NLO EW corrections investigated with Sherpa 2.2.1, PDF sensitivity investigated with MCFM
- Theory uncertainties include : renormalisation/factorisation scale variations, $\alpha_{\rm S}$, PDF uncertainties (only statistical uncertainty is shown for LO generators)

Theoretical predictions and the set of the space of the Fiducial phase space

W+jets cross-section and W+/W- ratio

- Overall good agreement of measured values with predictions
- NLO vs LO improves agreement (Sherpa 2.2.1)
- Better agreement for the ratio
	- \rightarrow probable cancelling of theoretical mismodeling (jet emission)

- High gain in precision from the ratio
- multijet uncertainty dominant at large jet multiplicity (ratio)
- Significant impact of jet energy scale at high multiplicity (dominant for W cross-section)

W cross-section

W+jets at 8 TeV : differential cross-sections

- Just a few exemples of distributions : W p_T for W $+ \ge 1$ jet (W and ratio), $ΔR, M_{ij}$ for W + $≥$ 2 jets
- W p_T : sensitive to PDFs, interesting for fits
	- best described by Alpgen+Pythia and LO Sherpa 1.4
	- Ratio : most predictions are off
- ΔR, M_{ii}: test hard parton radiation at large angles and matrix-element/ parton-shower matching
	- Good description from BlackHat+Sherpa
	- Much better description of large M_{ii}/ΔR values from Sherpa 2.2.1 as compared to Sherpa 1.4

W+jets at 8 TeV : a few conclusions

- High precision reached especially for the W+/W- ratio
- Overall good agreement between the data and the theory predictions
- Degradation at large jet rapidity, angular separation and energy
- Sensitivity of W+/W- ratio to PDFs
- Multi-leg generators (Alpgen, Sherpa) do best in many places
	- High multiplicities in the ME
- No single prediction describes each and every measured observable

 H_r [GeV]

W cross-section : conclusion and summary

Standard Model Production Cross Section Measurements Status: July 2018 σ [pb] Δ O total (2x) **ATLAS** Preliminary 10^{11} ╶╟┉┙╢╟ $\mathbf{\mathsf{\Gamma}}_{\boldsymbol{\Delta}}\mathbf{\mathsf{\mathsf{O}}}$ inelastic Theory Run 1,2 \sqrt{s} = 7,8,13 TeV o $10⁶$ incl LHC pp \sqrt{s} = 7 TeV $\overline{\Delta}_{\mathbf{O}}$ ю Data $4.5 - 4.9$ fb⁻¹ dijets $10⁵$ \overline{O} \sum_{25} GeV LHC pp $\sqrt{s} = 8$ TeV $10⁴$ Data $20.2 - 20.3$ fb⁻¹ \blacksquare Δ -O LHC pp \sqrt{s} = 13 TeV $10³$ Ð $p_T > 125$ GeV Δ -O ᅭი Data $3.2 - 79.8$ fb⁻¹ О ጟ_Ⴍ⊡ $\frac{p_T}{\Delta}$ $10²$ Δ o \Box œ \blacktriangle A $n_j \geq i$ 10^1 п \blacktriangle Δ -∩ $\begin{array}{c} n_j \geq 4 \\ \bigcirc \\ n_j \geq 5 \\ \bigcirc \end{array}$ $n_i \geq 3$ W_{γ} s-chan $\mathbf 1$ \overline{O} \overline{O} tZj О \blacktriangle \overline{Q} **AO** O 10^{-1} $n_j \geq 8$ Δ \mathbf{O} \bullet o $\overline{\mathbf{o}}$ $H\rightarrow \gamma\gamma$ 10^{-2} \blacktriangle A A A $\prod_{i=1}^{H}$ ◻ 10^{-3} H WV V γ ttw ttz tth tty v Y Wjj Zjj WWZ y W y y W z y jjVVjj pp γ W Z $t\bar{t}$ **VV** $\gamma\gamma$ **Jets** $\mathbf t$

tot.

tot.

tot. tot. tot.

EWK EWK Excl.

tot.

EWK

W mass at 7 TeV

Eur.Phys.J. C78 (2018) no.2, 110

Analysis strategy

- Measurement's methodology :
	- obtain predictions with simulated events for signal and background (except data-driven multijet background)
	- \bullet to extract the result, compare data and predictions for distributions sensitive to m_w by performing a template χ 2 fit
- Very simple in principle, but extremely challenging in practice as it requires at the 1/10,000 level :
	- Accurate theoretical description of W production and decay kinematics in the simulation
	- Precise calibration of the detector
- Fully reconstructed mass in Z-boson sample to validate the analysis and to provide significant experimental and theoretical constraints (ancillary measurements)

Measurement's categories

- Measurement performed in 2 channels, using 2 observables, 2 charge categories, 3 (4) |η(lepton)| bins in the electron (muon) channel
	- In total, 28 different values of mw are extracted
	- Allows to :
		- Thoroughly validate the physics modelling
		- benefit from different sensitivities to systematic uncertainties

Motivation

66

- See Introduction
- Current world average (Tevatron + LEP) provides the most precise value :
	- $m_W = 80.385 \pm 0.015$ GeV
- The natural goal for the measurement's precision is set by the EW fit prediction's uncertainty (7 MeV)

W mass at LHC : more data, larger challenges M mosco at LHC : more data larger chall WUITCOO CULTUS COMPARED V moso ot LLC : more dota lerger challenge H_{H} and H_{H} and H_{H} and H_{H}

- In proton-proton, W+/W- boson production is asymmetric p produce the p collisions they are equally p
- Different contributions from sea/valence quarks e intervals in the same helicity states.
• Different contributions from sea/valence quark
- Charge dependence of p_T spectrum and thus on the $p_T\ell$ and m_T die eerste bestervables in die verskap van die
Heavy-flavour-initiated processes in die verskap van die verskap van die verskap van die verskap van die versk Further Charge dependence \bullet Charge dependence of p_T sp Heavy-flavour-initiated processes
	- More heavy flavour initiated production (25% of the W production is a political M-political M-politi induced by at least one second generation quark s or c) wore neavy navour miniated productivity to the produced by at laser one second nane \ddot{a} uced by at least one second generation q
	- W+, W- and Z are produced by different light flavour fractions
	- Larger gluon-induced W production Larger gluon-induced W production ger gluon-induced W production
	- Large PDF-induced W-polarisation uncertainty (valence vs sea quarks) **0.2**
	- Strange quark pdf uncertainty —> uncertainty on the relative fraction of charm-initiated W boson \longrightarrow alter the balance between valence quark $\begin{array}{ccc} \hline \end{array}$ and sea quark k α α α β most of the most optical is the measurement is the transfer from α to α β Stefano Camarda 3 (1991) 1995 - Stefano Camarda 3 (1995) 1996 - Stefano Camarda 3 (1996) 1997 - Stefano Camard
Stefano Camarda 3 (1996) 1997 - Stefano Camarda 3 (1997) 1997 - Stefano Camarda 3 (1997) 1997 - Stefano Camard ange quark pdf uncertainty \longrightarrow uncertainty on the relative traction of $\frac{1}{10^{4}}$ $\frac{1}{10^{3}}$ $\frac{10^{2}}{10^{1}}$ $\frac{1}{10^{1}}$

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Spectra differences between 'purely sea' and 'standard' quark induced W production

Eur. Phys. J. C (2010) 69: 379–397

• Uncertainty on sea and valence PDFs —>on the measured spectra

$$
\sigma_{W^+}(y) \propto u(x_1) \cdot \bar{d}(x_2) + \bar{d}(x_1) \cdot u(x_2)
$$

$$
\sigma_{W^-}(y) \propto d(x_1) \cdot \bar{u}(x_2) + \bar{u}(x_1) \cdot d(x_2)
$$

MODELING ASPECTS

and introduction to the modeling the data. The e↵ect of virtual photon production and *Z*/⇤ interference is included in both the predictions

• Factorisation of cross-section under 4 terms and the Powheg+Pythia 8 simulated *Z*-boson samples. The reweighting procedure used to include the

spherical harmonics

 \mathcal{L}

• Approximation checked and valid at 2 MeV level for mw

$$
\frac{d\sigma}{dp_1 dp_2} = \left[\frac{d\sigma(m)}{dm}\right] \left[\frac{d\sigma(y)}{dy}\right] \left[\frac{d\sigma(p_T, y)}{dp_T dy} \left(\frac{d\sigma(y)}{dy}\right)^{-1}\right] \left[(1 + \cos^2\theta) + \sum_{i=0}^{7} A_i(p_T, y) P_i(\cos\theta, \phi)\right]
$$

- dσ(*m*)/d*m* modeled with Breit Wigner and and azimuth of the polar angle and azimuth of the po
- lepton¹ in any given rest frame of the dilepton system; *Ai* are numerical coecients, and *Pi* are spherical harmonics of order zero, one and two. • Other terms : reweight MC according to various predictions
- The div(y//dy . invadiated invariant prediction (D invariant), and in a Breit–Chief-1. dσ(y)/dy : fixed-order NNLO prediction (DYNNLO)
- **2.** p_T at a given y : Pythia8 with 'AZ' tune **propagator propagator propagator** propagator propag
- Ω is clear of our Λ : further running energy Λ cussed in Section 6.1. The divided in the dividity of boson rapidity, and the boson rapidity, depending on the 3. polarisation Ai : fixed-order NNLO prediction (DYNNLO)
- (NB : baseline MC is Powheg+Pythia) (NB : baseline MC is Powheg+Pythia)

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Validity check of the reweighting

cea

Use NNPDF3 prediction as pseudo-data, perform the various reweightings (y, p_{T} , polarisation) to CT10 sample : strongly validates the modeling procedure

 $\Delta m_W = 1.5 \pm 2.0$ MeV

Rapidity

- Use of DYNNLO (Fixed-order pQCD, NNLO)
- Validate against 7 TeV ATLAS W, Z cross-section measurements
	- Distributions sensitive to PDF effects, critical for validation

Eur. Phys. J. C 77 (2017) 367

• PDF set : CT10nnlo (best agreement), MMHT14nnlo and CT14nnlo used for uncertainties (other global sets disfavoured by the data)

W/Z polarisation

- Kinematic of the decay leptons depend on polarisation of the (W or $\overline{Z)}$ boson
	- NLO QCD brings p_T to boson, in turn affecting polarisation
- Full 5-dimensional cross-section can be written as :

- θ and ϕ : angles of the charged lepton (W \cdot , Z) or neutrino (W \cdot) in the rest frame of the boson
- $A_i(m, y, p)$: dimensionless angular coefficients (m dependence is small)
	- A \rightarrow 0 when p_T~0 except for A₄ (responsible of forward-backward lepton asymmetry, sensitive to sin² θ w)
	- A₅-A₇ small, only appear at NNLO in α s

Polarisation

- Crucial to get right in *pp* collisions, otherwise miss some effects
- ATLAS measurement of Z angular coefficients validates fixedorder pQCD NNLO prediction
	- except for A_2 : additional uncertainty
		- data/prediction difference is added to the uncertainty ; pseudo-experiments show no correlation with other coefficients
	- Uncertainties on the Z measurement are propagated to the W

W boson transverse momentum an NLO plus parton shower generator shower generator setup such as Pythia 8, and of resummed predictions at Py
Pythia 8, and of resummed predictions at Pythia 8, and of resummed predictions at Pythia 8, and of resummed pr next-to-leading logarithmic order $\mathsf{V}\mathsf{V}$

• Pythia8 tuned on Z pT ATLAS data (AZ tune) verse modern distribution measured with the A_{TLAS} detector at a centre-of-mass energy of products energy of p
ATLAS detector at a centre-of-mass energy of psychology of psychology of psychology of psychology of psycholog $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Data uncertainty

• Good agreement is obtained for the ratio of **For all and the experiments** differential cross-sections using this tune:

$$
R_{W/Z}(p_{\rm T}) = \left(\frac{1}{\sigma_W} \cdot \frac{\mathrm{d}\sigma_W(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right) \left(\frac{1}{\sigma_Z} \cdot \frac{\mathrm{d}\sigma_Z(p_{\rm T})}{\mathrm{d}p_{\rm T}}\right)^{-1}
$$

- $p_T(W)$ is obtained via the product of the predicted $I_{\text{F}} = \frac{1}{\sqrt{2\pi}}$ $\frac{1}{2}$ and the experimental Z p_T spectrum in $\frac{0.95}{0.85}$ and the experimental Z p_T spectrum
- The total uncertainty being the sum in **participal was measured using the** *p* $\frac{0.65}{0.65}$ quadrature of these two components, \sim 1-2% $\frac{1}{10}$ $\frac{1}{20}$ $\frac{1}{30}$ $\frac{1}{30}$

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Uncertainties to pT(W)

- Only modelling uncertainties which are uncorrelated between Z and W give sizeable uncertainties on the measurement
	- Induced by heavy flavour initiated production : 6/3% of cc/bb for Z, 20% of cs for W production
- Missing higher orders in QCD ISR : factorisation scale (μ_F) variations taken as correlated between W and Z for light quark, independently for heavy quarks
- other sources : uncertainty on mc, choice of parton shower LO PDF
- Central prediction and uncertainty well validated with the recoil distribution in the data

Uncertainty from the PDFs

- Each PDF uncertainty eigenvector from CT10nnlo propagated simultaneously to Ai, rapidity and pT reweighing distributions
	- Overall uncertainty evaluated with the Hessian method
	- Consider MMHT14nnlo and CT14nnlo as alternative
- For $p_T(W)$, only relative variations of $p_T(W)$ and $p_T(Z)$ are considered, reducing the impact of this uncertainty

QCD modelling uncertainties

- Biggest uncertainties arise from the PDFs, modelling of $p_T(W)$ and polarisation
	- Strong anti-correlated effect of PDF on W+ vs W- !
- May be further reduced in the future thanks to:
	- More ancillary measurements : polarisation @13 TeV (higher statistics, uncorrelated systematics), direct W p_T measurement (requires a low pile-up run at LHC)
	- Simultaneous profiling of the PDFs in the fit

Electroweak uncertainties

- QED FSR photons implemented with Photos, negligible uncertainty on it
- FSR pair production impact checked with Photos and Sanc, taken as uncertainty
	- can be implemented in the baseline MC for future measurements (Photospp 3.61)
- Combined NLO EW⊗QCD corrections are assessed with Winhac and taken as an uncertainty - they include IFI + pure weak corrections but need to be checked using a realistic p_T (NLO in QCD)
	- same remark (available recently in Powheg-EW)

EXPERIMENTAL ASPECTS

Event selection

- Lepton selection
	- muon : $p_T > 30$ GeV, $|\eta| < 2.4$, track-based isolation
	- electron : $p_T > 30$ GeV, $|\eta| < 1.2$ or $1.8 < |\eta| < 2.4$, track and calorimeter-based isolation
- Kinematic requirements :
	- Recoil: $u_T < 30$ GeV
	- $m_T > 60$ GeV, p_T ^{miss} > 30 GeV

7.8M events

5.9M events

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Background fractions

Electron calibration

• φ modulation due to mechanical deformation under gravity of the calorimeter ('pear-shape') corrected with W and Z events

Muon calibration

As expected, uncertainties are smaller than for electron

F.Balli – W physics at ATLAS – Grodno, 12–24 August , 2018

Hadronic recoil calibration

85

- Several steps of the correction :
	- Correct pile-up activity
	- Correct ΣE_T distribution in p_T bins
	- residual response and resolution corrections in Z events, extrapolated to W
		- Includes a correction of recoil phi

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Hadronic recoil calibration

86

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Hadronic recoil calibration

• Validation check using Powheg+Herwig6 as pseudo-data

Multijet background

- Use of a data-driven technique :
	- 2 different fitting regions to extract multijet fraction (FR1, FR2) mainly for uncertainty purposes
		- Templates obtained in an MJ enriched region by reverting isolation
			- EW and top contamination subtracted with MC estimation
		- Scan in lepton isolation variable for MJ shape template building
	- 3 different observables : m_T , p_T ℓ/m_T , p_Tmiss
	- Fitted fraction corrected for signal region selection efficiency
	- linear extrapolation to signal region

Multijet background

- Differences in the extrapolation to signal region are taken as (main) fraction uncertainty
- Shapes of observables obtained by an linear extrapolation from CR to SR using the ratio of different anti-isolated regions
	- Uncertainty dominated by statistics, evaluated by fluctuating the bin contents within stat. uncertainty before extrapolation

- Background fraction (η-dependent)
	- 0.6 1.7 % (e channel)
	- 0.5 0.7 % (mu channel)

Extraction of mW

Preliminary cross-check with Z

• Several cross-checks :

- χ ² template fit to the reconstructed m_{II} distribution : $\Delta m_Z = 1(3) \pm 3(5)$ MeV for the electron (muon) channel
- Treat alternatively the negative or positive lepton as 'invisible' to mimic a neutrino,
	- fit to $p_T\ell$ and m_T distributions as in W analysis
- Results consistent with combined LEP value of mz within experimental uncertainties

Difference between measured Z boson mass in ATLAS and the combined LEP result

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Z ee plots after all corrections

92

Z mumu plots after all corrections

93

Fitting range stability

- Fitting range of the distributions optimised in the simulation
- Check the stability of the full combination when varying either m_T or p_T *l* fitting range
	- Check that the result on the difference with respect to the central value is within \sim 1-2 standard deviations (fully uncorrelated uncertainty)

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Distributions - hadronic recoil

95

F.Balli — W physics at ATLAS — Grodno, 12–24 August , 2018

Distributions - lepton eta

96

mW extraction

- χ 2 template fit to the data in each category (distribution, charge, lepton channel, η*l* bin)
- All categories give consistent result —> strength of detector calibration and physics modelling
- Also cross-check in more categories (bins of recoil, mu…)
- Several combinations performed, using BLUE method

CONCLUSION AND SUMMARY

ΔmW result

- Measurement of mw⁺ mw⁻
	- Not blinded
	- Many uncertainties cancel as they are not charge-dependent
	- Dominant uncertainty from the PDFs
	- Result compatible with 0 within \sim 1 sigma

urement of the mass di↵erence between the *^W*⁺ and *^W* bosons yields *mW*⁺ *mW* ⁼ 29 ± 29 MeV.
29 **29 PM** • Dominant uncertainty comes from the physics modelling

• Largest contribution from QCD

Comparison to other measurements

- Same precision as single best measurement from CDF
- Pulling the mw towards a value close to Standard Model prediction from EW fit

What's next?

- What can be done to improve the precision in the coming $($ <10 $)$ years ?
- **• More progress on theory side : resummation, incorporation of NLO EW**⊗**QCD effects in simulation**
- Experimental innovations : e.g. pile-up mitigation techniques, more and more **ancillary measurements like W p**_T, polarisation...
	- Run at low pile-up (mu~1) very interesting in this respect
- Combinations with existing/future measurements (*e.g* Tevatron)

Low mu runs : W pt

- Strong motivation to measure W p_T with an uncertainty below 1% in the Sudakov region ($p_T \sim$ 20 GeV), with a resolution of ~5 GeV to catch the variation of the Sudakov peak
	- crucial input to m_W : with comparable precision, does not need to rely on Z anymore (—>no extrapolation uncertainty)
	- stringent test of resummed predictions and parton showers
- Pile-up degrades the reconstructed $p_T(W)$ resolution (== hadronic recoil) as $\sqrt{(} < \mu >)$
	- \rightarrow need very low pile-up data taking
		- ~300 pb⁻¹ at 13 TeV needed for enough statistical precision
			- \cdot ~150 pb $^{-1}$ taken in 2017, ~200 taken last month (mu~2) : stay tune!
			- 250 pb⁻¹ at 5 TeV (2017) : allows to check energy dependence of the models for $p_T(W)$

And now for something completely different…

Eur. Phys. J. C (2017) 77:474

Electroweak *W j j* production and constraints on anomalous gauge couplings (aGC) with 7 and 8 TeV data

- Opportunity to probe anomalous (triple) gauge couplings through VBF topology
	- probe for new fundamental interactions
	- First VBF W observation
- Largest background from strong Wij production (~O(10) times larger than EW)
- Signal :
	- Large interval in jet rapidities (rapidity gap) —>large invariant dijet mass M_{ii}
	- *W* boson in rapidity gap
	- Little hadronic activity in the rapidity gap due to the absence of colour flow between the interacting partons 105

Leading order diagrams for Wjj strong production

Eur. Phys. J. C (2017) 77:474

Modeling

- Wij MC : Powheg+Pythia8, using MiNLO for strong production (sets the QCD emission scales), PDF set is CT10
	- strong production
- Sherpa 1.4 at leading order is used to estimate interference between strong and EW (using QCD+EW vs separate QCD and EW Wjj samples)
	- Also used in cross-section comparisons
- Other backgrounds are modelled with MC except for multi jet (data-driven)

Cross-section measurement

106

- Binned likelihood fit to the M_{ii} distribution with Gaussian constraints to every background
- Determination of μ_i
	- \bullet i = QCD or EW
	- N_i: measured number of (background subtracted) events
	- C_i : N(reco)/N(truth) passing the selection
	- A_i: acceptance of fiducial volume

$$
(\sigma_i^{\ell \nu j j} \times A_i)^{\text{meas}} = \mu_i (\sigma_i^{\ell \nu j j} \times A_i)^{\text{theo}} = \frac{N_i}{C_i \mathcal{L}},
$$

fiducial cross-section

normalisation factor $(=1$ in SM)

Event selection

- Using single lepton trigger
- Leptons and jets reconstruction/calibration/preselection similar as the W+jets analysis presented before
- Use of lepton and jet centrality defined as

 $C_{\ell(jet)} = |$ $y_{\ell(jet)} - \frac{y_1 + y_2}{2}$ *y*¹ − *y*² \vert

• Such that $C < C$ max = 0.4 implies y to be in the range :

$$
\left[\frac{y_1 + y_2}{2} - C_{max} \times |y_1 - y_2|, \frac{y_1 + y_2}{2} + C_{max} \times |y_1 - y_2|\right]
$$

- Forward lepton CR used to constrain strong Wjj production
- Validation region (for multi jet and QCD Wjj) has >=1 central jet

107

Event yields

- EW signal represents \sim 15 % of the total number of events
- Dominant background is strong Wjj production (~50% of total number of events)

SM Cross-section result

Unfolded differential cross-sections : Wjj EW vs QCD

- Many unfolded differential cross-sections obtained in the fiducial region
	- Direct probes of new physics
	- Here, just one exemple : for M_{ii}> 500GeV (left), dominated by QCD; EW Wjj appears for $M_{ii} > 2TeV$ (right) !

Constraints on aGC

- Effective Lagrangian for WWV coupling with operators up to dimension 6 (V=Z, gamma)
- Deviation from SM : $g_1^V \neq 1$, $\kappa_V \neq 1$, $\lambda_V \neq 0$, $\tilde{\kappa}_V \neq 0$

$$
i\mathcal{L}_{\text{eff}}^{WWV} = g_{WWV} \left\{ \left[g_1^V V^\mu (W^-_{\mu\nu} W^{+\nu} - W^+_{\mu\nu} W^{-\nu}) \right. \right. \\ + \kappa_V W^+_{\mu} W^-_{\nu} V^{\mu\nu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W^+_{\nu} \rho W^-_{\rho\mu} \right\} \left. \left. \left(-\left[\frac{\tilde{\kappa}_V}{2} W^-_{\mu} W^+_{\nu} \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} \right. \right. \right. \\ \left. \left. \left(-\frac{\tilde{\kappa}_V}{2} W^-_{\mu} W^+_{\nu} \epsilon^{\mu\nu\rho\sigma} V_{\rho\sigma} \right) \right\} \right\} \right\}
$$

\n
$$
W^{\pm}_{\mu\nu} = \partial_{\mu} W^{\pm}_{\nu} - \partial_{\nu} W^{\pm}_{\mu}.
$$

Gauge invariance requires :

$$
\Delta g_1^Z = \Delta \kappa_Z + \Delta \kappa_\gamma \tan^2 \theta_W, \quad \lambda_\gamma = \lambda_Z \equiv \lambda_V, \quad g_1^\gamma = 1,
$$

$$
\tilde{\kappa}_\gamma = -\tilde{\kappa}_Z \cot^2 \theta_W, \quad \text{and} \quad \tilde{\lambda}_\gamma = \tilde{\lambda}_Z \equiv \tilde{\lambda}_V.
$$

To preserve unitarity one can introduce : $\alpha(q^2) = \frac{\alpha}{(1 + q^2/\Lambda^2)^2}$

- With $\Lambda = 4$ TeV (preserves unitarity) for all parameters in sensitivity range
- Or in EFT : assume perturbative coupling coefficients ci and scale of new interaction Λ , O_i are dimension 6 field operators :
- One can relate the c_i to the aTGC parameters

$$
\mathcal{L}_{\text{EFT}} = \sum_{i} \frac{c_i}{\Lambda^2} O_i
$$

Constraints on aGC

- Effect of anomalous couplings modelled within Sherpa
- Fit using the yield in signal region with $M_{ii} > 1$ TeV, p_T of leading jet > 600 GeV
	- last requirement maximises sensitivity to aTGC
	- Fit each aTGC parameter, fixing the other parameters to SM value

 $\stackrel{>}{\sim}$

 0.2

ATLAS

EW Wjj : summary

- First observation (>5 sigma) of EW Wij
	- systematic uncertainty dominates the 8 TeV measurement
- Many unfolded differential cross-sections provided
	- Allowing to check theoretical models (high order calculations)
- aTGC constraint
	- \bullet λ _V intervals competitive with those from WW
	- No deviation from SM is observed

Concluding remarks

- Wide range of physics 'touched' using Ws at LHC
	- I just talked about a few selected items (linked with the most recent publications, mainly) …
		- Precise tests of SM
		- Key input to PDFs
		- validation of predictions that are essential for signal/background modelling in other analyses
		- W mass measurement and global EW fit
		- Wij electroweak direct probe of new physics
	- Many other topics
		- W+charm
		- new physics searches at high m_T
		- \bullet . . .

Thank you for your attention!!

BACKUP

PDF profiling : methodology

- PDF profiling and full PDF fits heavily rely on methods used in DIS experiments (esp. HERA)
- Software used is xFitter, that makes use of APPLGRID for theory predictions, together with k-factors from the accurate theory tools described before (NNLO QCD from DYNNLO 1.5, NLO EW from PHOTOS and MCSANC)
- Profiling : use of xFitter software
	- start from existing PDF set
	- Use a $\chi^2(b_{\text{exp}}, b_{\text{th}})$ that minimises difference between observed and predicted crosssection allowing nuisance parameters (b_{exp} , b_{th}) to shift
	- New PDF f_0 ' is :

$$
f_0' = f_0 + \sum_{k} \left[b_{k,th}^{\min} \left(\frac{f_k^+ - f_k^-}{2} \right) + (b_{k,th}^{\min})^2 \left(\frac{f_k^+ + f_k^- - 2f_0}{2} \right)^2 \right],
$$

- f_0 is the central PDF set and f_k + and f_k the corresponding up/down eigenvectors
- Allows for quantitative estimate of the agreement between the data and the PDF sets from global fits, and study further constraining power from the new measurement
	- Best χ^2 is obtained with CT14nnlo, CT10nnlo, and reasonable with MMHT14nnlo 117

PDF profiling : results

- 'correlated chi2' is the contribution from the penalty term
- left of '|' is including PDF set uncertainties, right is excluding PDF set uncertainties

Full PDF fit

- More complex than PDF profiling
	- Requires parametrisation of the PDFs at a starting scale $Q_0^2 = 1.9$ GeV²

$$
x u_{v}(x) = A_{u_{v}} x^{B_{u_{v}}}(1 - x)^{C_{u_{v}}}(1 + E_{u_{v}} x^{2}),
$$

\n
$$
x d_{v}(x) = A_{d_{v}} x^{B_{d_{v}}}(1 - x)^{C_{d_{v}}},
$$

\n
$$
x \bar{u}(x) = A_{\bar{u}} x^{B_{\bar{u}}}(1 - x)^{C_{\bar{u}}},
$$

\n
$$
x \bar{d}(x) = A_{\bar{d}} x^{B_{\bar{d}}}(1 - x)^{C_{\bar{d}}},
$$

\n
$$
x g(x) = A_{g} x^{B_{g}}(1 - x)^{C_{g}} - A'_{g} x^{B'_{g}}(1 - x)^{C'_{g}},
$$

\n
$$
x \bar{s}(x) = A_{\bar{s}} x^{B_{\bar{s}}}(1 - x)^{C_{\bar{s}}},
$$

- Parameter scans requiring χ^2 saturation (no χ^2 decrease when adding free parameters)
- Some constraints by sum rules
	- \rightarrow 15 parameters
- $A_{\bar{s}}$ and $B_{\bar{s}}$ appear as free parameters
- assume $\bar{s} = s$
- PDFs are evolved to the scale of the measurements and convolved with hard-scattering coefficients to obtain the theoretical cross- section predictions
	- Done with a variable flavour number scheme that switches on c- and b-quark PDFs at m_c and m_b
- Then, fit using similar (but different) χ^2 as in profiling, with parameters left free
- Fit done with HERA and new ATLAS data
	- New set termed ATLAS-epWZ16
	- Includes experimental and theory uncertainties

Comparison CDF vs ATLAS

Similar PDF uncertainties

p_{τ} W uncertainties are larger for p_{τ} lepton

than m_z at CDF, but similar in ATLAS

Includes also Ai uncertainties

Comparison D0 vs ATLAS

Includes also Ai uncertainties

MSSM fit

MSSM band:

scan over **SUSY masses**

overlap:

SM is MSSM-like MSSM is SM-like

SM band:

variation of M_H^{SM}

Comparison CDF vs ATLAS

Similar PDF uncertainties

courtesy of M. Boonekamp

p_{τ} W uncertainties are larger for p_{τ} lepton

than m₋ at CDF, but similar in ATLAS

Comparison D0 vs ATLAS

Includes also Ai uncertainties

Difference Tevatron vs LHC

cea

Difference Tevatron vs LHC

cea

Spectra differences between 'purely sea' and 'standard' quark induced W production

Eur. Phys. J. C (2010) 69: 379–397

• Uncertainty on sea and valence PDFs —>uncertainty on W helicity —> on the measured spectra

$$
\sigma_{W^+}(y) \propto u(x_1) \cdot \bar{d}(x_2) + \bar{d}(x_1) \cdot u(x_2)
$$

$$
\sigma_{W^-}(y) \propto d(x_1) \cdot \bar{u}(x_2) + \bar{u}(x_1) \cdot d(x_2)
$$

Full uncertainty table

129

Weights of all categories

p_T modeling strategy

130

observables

various predictions of the 2
Recoil distributions without modelling corrections

p_T modeling strategy

- Very different prediction of $p_T(W)/p_T(Z)$ ratio from resummed technique or Powheg MiNLO with respect to Pythia 8 AZ
	- This is a high topic of interest and subject to many discussions in the LHC EW working group
- Pythia8 AZ is validated by the data $(u_{//})$ contrary to other predictions
- Negligible impact of the parton shower model (Herwig 7)

Low mu runs

132

• Dependence of uncertainty (statistical + recoil calibration systematic) in first pT(W) bin (0-5 GeV) vs mu for 300 pb-1 integrated luminaosity

Dependence of SET with sqrts

