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1. Motivation



Accuracy vs Simplicity

Single-electron wave function (SEWF) is the key point of the
initial approximation for both density functional theory and the

7N solution of the Schrédinger equation.
\o/ _ :
High accuracy algorithms: HF, MCHF, post-HF and other.

Disadvantage: complexity of numerical simulations

accuracy, but a simple algorithm of repeated calculations of atomic
characteristics is required:

There are many applications where there is no need for extremely high '

e computational plasma » semiconductor physics
« X-ray physics * strong laser-matter interactions
« crystallography

‘ Models used: Thomas-Fermi, multi-parametric screening hydrogen, etc.

Can one introduce something new ?
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Main features of our approach

Effective Charge Model (ECM) utilizes basis set of fully analytical SEWF — hydrogen-
like wave functions with a single free parameter (identical for all SEWF).

‘ complete and orthonormal basis is automatically provided !

« transition into secondary-quantized representation becomes possible

* various closed-form expressions can be implemented

Main goals of ECM:

1. sufficiently accurate analytical zeroth-order approximation '

2. possibility to construct regular perturbation theory for higher
order corrections
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2. Description of the effective charge model



Hamiltonian of the atomic system

Non-relativistic Hamiltonian of the atomic system (in atomic units)

Xz | NN !
-3 (5-7) X Es

i=1 j#i

can be re-written in the form as follows:

N , o . N y N N
— D; Z —(Z —Z%) 1 1
i = 1(;—;)@ Yy

l‘z: | 1=1 1=1 j5#1 |
| |
/ HO %%
7 AN
escribes a set of non-interacting C

_ _ an be considered as a
elgctrons in a hydrogen-like atom “perturbation” operator
with nucleus charge Z* and total

number of electrons N
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Hamiltonian of the atomic system

Transition to the secondary-quantized representation {a,,,?a:r,,} =
2 *
p Z
Ho = Y (5 = ——I)ala,

(Z— 7% 1 1
W=> (v v1)ala,, + 5 > (i p1)|p)alal aua,,

vy " vy | |
1 1HHE1
nimme
/’ (discrete states)

Greek letters represent the collective quantum number: 1/

klmmg
Simple hydrogen-like wave-functions are used: (continuous spectrum)
Note: only one free parameter is
(’D(EEE) (Z T)Xm% ( ) ' used for all SEWF of the current '
[ atom (ion) ! [
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How to calculate Z* ?

The knowledge of the effective charge Z* fully defines the Hamiltonian of the zeroth-
order approximation H, .

For this puprose we perform the variational calculation

E(Z") = (\1...A\y|H|\1 ... \y) with trial state vector A1 AN)

e
depends on the set
All calculations can be done analytically, and finally of occupation numbers
we obtain:
=72
E(Z*)=-2"(2Z - Z)A+Z*B mmp 2A

7\ / E(O) _ _AZ*Q

both values are analytically calculated
and DO NOT depend on Z*

zeroth-order energies and SEWF

Here we utilized the variable change are well.defined |

rT=/r
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Zeroth-order results

relative error, %
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Relative error of the total atomic energy as a function of nucleus’ charge Z
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3. Second-order corrections



Perturbation theory over W-operator

Now it is possible to construct perturbation theory due to the operator W (eigenstates
of the zeroth-order Hamiltonian H, are utilized):

2 7%
Ho =Y (% — Z-|wala,

- 2 r
—(Z — 7% 1 1
W= == mjalan, + 5 32 (0l —ladlmaial, aua,
vy vvyippg

1-st order correction: AEWM = (A .. . An|W|A1 ... \y) = —Z*(Z — Z*)2A+ Z*B

B/\
7" =7 — —
2A

1st order correction vanishes !

AEW =0
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Calculating 2"9 order corrections

2"d order perturbation theory due to the W operator:

Wix 2
AE(®2) — _ = | kAL,OKO]
T T E —|—Egl — E)\k E)\

k:<l OKLO|

where Wi, zon0y = (A1 Ak AL ANIWIAL Lok oo AN)

AE® = AED)  + AEY)

/ single multi

only one electron goes into an

intermediate state two electrons undergo the

transition into
intermediates states
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Calculating 2"9 order corrections

4 )

correlation
No correlation |\, ...ox ... Ay) Ar.o o AN
Intermediate states Intermediate states Intermediate states
.. ................. EO ................. . @0 ...................... “‘)
(2) _ (2) (2)
AE - AE1Single + AE1Inul1;1

only one electron goes into an

intermediate state two electrons undergo the

transition into
intermediates states
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Calculating 2"d order corrections

The largest advantage of ECM — using a hydrogen-like basis the required summations
can be done in a closed form through the single-particle Coulomb Green functions.

Taking into account the Pauli exclusion principle and that not all states are present,
the reduced Coulomb Green function is utilized:

= ML) (Al
G)\k — G _is — * |
E}\k—lcs E)‘k: ) ; E)\l . (E)\k o 16)

for mutli-electron excitations we need to obtain a two-particle Coulomb
Green function that can be represented as a convolution of two single
particle ones:

> dt
GE_15(1,2) = —/ —°Gt+ B—ié &) G_t+E—15

oo 271 2
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2"d order PT: single electron excitations

7
+
6 - i
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. single
g 8 SUEELT X100, % X
=
EE
20 4 |
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Relative error of the total atomic energy as a function of nucleus’ charge Z
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2" order PT: single + multi electron excitations

E® | Evar | Evcnr| Eur
H- [-0.532[-0.528] -0.528 [-0.488
He |-2.907(-2.904| -2.903 |-2.861
Li |-7.467|-7.478| -7.477 |-7.433

He 2°S(-2.172(-2.175| -2.175 |-2.174

He 2'S(-2.154(-2.146| -2.146 |-2.143

E® = O L AED) 4+ AEY)

single multi
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4. Some of the possible applications



472 p(r)

12

10

Radial densities: Ne

Ne, HF calculation

Ne, zeroth-order approximation - - - -

Ne, single-electron excitation correction - .-.

Ne, Thomas-Fermi model ...

y
ey,

........
--------
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Radial densities: Ar

]
25 + T |
! \ Ar, HF calculation
20 Ar, zeroth-order approximation - --- -
,' Ar, single-electron excitation correction - .- .-
r
—~ 15 .
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Atomic scattering factors

Ne, Gaussian fit, relativistic HF [24] ——

14 '
| Si, Gaussian fit, relativistic HF [24] —
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Ne, zeroth-order calculation - - - | Si, zeroth-order calculation - - -
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5. Conclusions



Conclusions

* A fully analytical approximation for the observable characteristics of many-
electron atoms and ions is developed

» Both qualitative and quantitative estimations can be done

« Straightforward calculation of subsequent corrections and direct
generalization for the relativistic calculations is possible

10P Publishing Journal of Physics B: Atomic, Molecular and Optical Physics
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Analytic model of a multi-electron atom

O D Skoromnik' @, | D Feranchuk™**°, A U Leonau® and C H Keitel'

' SOFTWARE AVAILABLE: https://github.com/tupos/effz
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https://github.com/tupos/effz
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