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Spinor matter in extremal conditions:
I hot and dense

I in strong magnetic field

Physical systems in:

I relativistic heavy-ion collisions

I compact astrophysical objects (neutron stars and
magnetars)

I the early universe

I novel materials (the Dirac and Weyl semimetals)
Cd3As2, Na3Bi , K3Bi , Rb3Bi , TaAs, BaAuBi , BaCuBi ,
BaAgBi , Bi2Se3, TlBiSe2, ...



Ultrarelativistic (chiral) effects

|eB| >> m2, T >> m, µ >> m.

Partition function

Z (T , µ) = Sp exp
[
−(P̂0 − µN̂)/T

]
. (1)

Average of operator Û over the grand canonical ensemble
〈

Û
〉

T ,µ
= Z−1(T , µ) Sp Û exp

[
−(P̂0 − µN̂)/T

]
. (2)



Û =
1
2

(
Ψ̂†ΥΨ̂− Ψ̂T ΥT Ψ̂†T

)
, (3)

where Υ is an element of the Dirac-Clifford algebra. We obtain
〈

Û
〉

T ,µ
= −1

2
tr

〈
x|Υ tanh[(H − µI)(2T )−1]|x

〉
. (4)

Vector current density

J =
〈

Û
〉

T ,µ

∣∣∣∣
Υ=γ0γ

. (5)

Axial current density

J5 =
〈

Û
〉

T ,µ

∣∣∣∣
Υ=γ0γγ5

. (6)

Axial charge density

J05 =
〈

Û
〉

T ,µ

∣∣∣∣
Υ=γ5

, (7)

where γ5 = −iγ0γ1γ2γ3.



Owing to the presence of chiral symmetry,

[H, γ5]− = 0, (8)

one can define axial charge operator

N̂5 =
1
2

∫

Ω

d3r(Ψ̂†γ5Ψ̂− Ψ̂T γ5T Ψ̂†T ) (9)

and modified partition function

Z̃ (T , µ5) = Sp exp
[
−(P̂0 − µ5N̂5)/T

]
, (10)

where µ5 is the chiral chemical potential.

Average of operator Û over the modified grand canonical
ensemble

〈
Û

〉
T ,µ5

= Z̃−1(T , µ5) Sp Û exp
[
−(P̂0 − µ5N̂5)/T

]
. (11)



〈
Û

〉
T ,µ5

= −1
2

tr
〈

x|Υ tanh[(H − µ5γ
5)(2T )−1]|x

〉
. (12)

Vector current density

J =
〈

Û
〉

T ,µ5

∣∣∣∣
Υ=γ0γ

. (13)

Axial current density

J5 =
〈

Û
〉

T ,µ5

∣∣∣∣
Υ=γ0γγ5

. (14)

Axial charge density

J05 =
〈

Û
〉

T ,µ5

∣∣∣∣
Υ=γ5

. (15)



chiral magnetic effect
(A. Vilenkin, 1980; K. Fukushima, D. E. Kharzeev, and H. J.
Warringa, 2008):

J = − eB
2π2 µ5

chiral separation effect
(M. A. Metlitski and A. R. Zhitnitsky, 2005):

J5 = − eB
2π2 µ

in unbounded (infinite) medium



chiral magnetic effect
(A. Vilenkin, 1980; K. Fukushima, D. E. Kharzeev, and H. J.
Warringa, 2008):

J = − eB
2π2 µ5

chiral separation effect
(M. A. Metlitski and A. R. Zhitnitsky, 2005):

J5 = − eB
2π2 µ

in unbounded (infinite) medium

Role of boundaries?



Outline

I Confining boundary condition for quantized spinor
matter.

I Impact of magnetized matter on the Casimir effect.

I Hot dense magnetized matter in particle and
astroparticle physics.



Confining boundary condition
A quest for boundary conditions ensuring the confinement of
the quantized spinor matter was initiated in the context of a
model description of hadrons as composite systems with their
internal structure being associated with quark-gluon
constituents (A.Chodos, R.L.Jaffe, K.Johnson, C.B.Thorn and
V.Weisskopf, 1974). If an hadron is an extended object
occupying spatial region Ω bounded by surface ∂Ω, then the
condition that the quark matter field be confined inside the
hadron is formulated as

n · J(r)|r∈∂Ω = 0,

where n is the unit normal to the boundary surface, and
J(r) = ψ†(r)αψ(r) with ψ(r) (r ∈ Ω) being the quark matter field
(α1, α2, α3 and β are the generating elements of the
Dirac-Clifford algebra); an appropriate condition is also
formulated for the gluon matter field.



The concept of confined matter fields is quite familiar in the
context of condensed matter physics: collective excitations
(e.g., spin waves and phonons) exist only inside material
objects and do not spread outside. Moreover, in the context of
quantum electrodynamics, if one is interested in the effect of a
classical background magnetic field on the vacuum of the
quantized electron-positron matter, then the latter should be
considered as confined to the spatial region between the
sources of the magnetic field, as long as collective
quasielectronic excitations inside a magnetized material differ
from electronic excitations in the vacuum. It should be noted in
this respect that the study of the effect of the background
electromagnetic field on the vacuum of quantized charged
matter has begun already eight decades ago (W.Heisenberg
and H.Euler, 1936; V.S.Weisskopf, 1936).



However, the case of a background field filling the whole
(infinite) space is hard to be regarded as realistic. The case of
both the background and quantized fields confined to a
bounded spatial region with boundaries serving as sources of
the background field looks much more physically plausible, it
can even be regarded as realizable in laboratory. Moreover,
there is no way to detect the energy density that is induced in
the vacuum in the first case, whereas the pressure from the
vacuum onto the boundaries, resulting in the second case, is in
principle detectable.

In view of the above, an issue of a choice of boundary
conditions for the quantized matter fields gains a crucial
significance, and condition for the current should be resolved to
take the form of a boundary condition that is linear in ψ(r). An
immediate way of such a resolution is known as the MIT bag
boundary condition (K.Johnson, 1975),

(I + iβn ·α)ψ(r)|r∈∂Ω = 0,

but it is needless to say that this way is not a unique one.



The most general boundary condition is provided by the
condition of the self-adjointness of the differential operator of
one-particle energy in first-quantized theory (Dirac hamiltonian
operator in the case of relativistic spinor matter). The
self-adjointness of operators of physical observables is required
by general principles of comprehensibility and mathematical
consistency, see, e.g.,

J.von Neumann, Mathematische Grundlagen der
Quantummechanik (Springer, Berlin, 1932).

To put it simply, a multiple action is well defined for a self-adjoint
operator only, allowing for the construction of functions of the
operator, such as resolvent, evolution, heat kernel and
zeta-function operators, with further implications upon second
quantization.



QUANTUM THEORY

I physical observables =⇒ operators
I physical states =⇒ functions

Stability of quantum systems: real values of observables





Boundary conditions for functions of states?

Real values of observales?




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Self-adjointness
Let us consider differential (unbounded in general) operator H
and scalar products

(χ̃, Hχ) =

∫

Ω

dv χ̃†Hχ, (H†χ̃, χ) =

∫

Ω

dv (H†χ̃)†χ,

and get, using integration by parts,

(χ̃, Hχ) = (H†χ̃, χ)− i
∫

∂Ω

ds · J[χ̃, χ],

where Ω is a spatial region with boundary ∂Ω.
Operator H is Hermitian (symmetric),

(χ̃, Hχ) = (H†χ̃, χ),

if ∫

∂Ω

dσ · J[χ̃, χ] = 0 or n · J[χ̃, χ]|r∈∂Ω = 0.



The latter condition can be satisfied in various ways by
imposing different boundary conditions for χ and χ̃. However,
among the whole variety, there may exist a possibility that a
boundary condition for χ̃ is the same as that for χ; then the
domain of definition of H† (set of functions χ̃) coincides with
that of H (set of functions χ),

χ ∈ D(H), χ̃ ∈ D(H†), D(H†) ≡ D(H),

and operator H is called self-adjoint. The action of a self-adjoint
operator results in functions belonging to its domain of
definition only, and, therefore, a multiple action and functions of
such an operator (for instance, the evolution and resolvent
operators) can be consistently defined.



Weyl – von Neumann theory of deficiency indices
(n, n′)

I 1. n = n′ : self-adjoint extension

D(H†) ≡ D(H), n2 parameters

I 2. n = 0, n′ = 0 : essential self-adjointness

D(H†) ≡ D(H),

I 3. n 6= n′ : non-self-adjointness

D(H†) ⊃ D(H)

Applicable to effectively one-dimensional systems with
point-like boundaries



Dirac fermions in 2 + 1-dimensional space-time
Dirac Hamiltonian operator is

H(1/2) = H†
(1/2) = −iαx∇x +−iαy∇y + βm, ∇ = ∂ − ieA +

i
2
ω.

Defining a scalar product as (χ̃, χ) =
∫
Ω

d2r χ̃†χ,

(χ̃, H(1/2)χ) = (H†
(1/2)χ̃, χ)− i

∫

∂Ω

dσ · J[χ̃, χ],

where
J[χ̃, χ] = χ̃†αχ.

Disconnected boundary

∂Ω = ∂Ω(+)
⋃

∂Ω(−) : x = a, x = b,

then
χ̃†αxχ |x=a = χ̃†αxχ |x=b .

Impenetrability:

χ̃†αxχ |x=a = 0, χ̃†αxχ |x=b = 0.



The problem of self-adjointness of operator H(1/2) is resolved by
imposing the same boundary condition for χ and χ̃ in the form

χ|r∈∂Ω = Kχ|r∈∂Ω, χ̃|r∈∂Ω = K χ̃|r∈∂Ω,

where K is a Hermitian matrix (element of the Clifford algebra)
which is determined by two conditions:

K 2 = I

and
either [K , αx ]− = 0, or [K , αx ]+ = 0.
Linearly independent elements of the Clifford algenbra are

I, αx , β, iαxβ.

Either K = c1I + c2α
x , then K 2 6= 1.

Or K = c1β + c2iαxβ, then K 2 = 1, if c2
1 + c2

2 = 1.



Two-parametric boundary condition:
(

I − iβαxe−iθαx
)

χ |x=a = 0,
(

I − iβαxe−iθαx
)

χ̃ |x=a = 0

(c1 = sin θ, c2 = cos θ),
(

I − iβαxeiθ̃αx
)

χ |x=b = 0,
(

I − iβαxeiθ̃αx
)

χ̃ |x=b = 0

(c1 = sin θ̃, c2 = cos θ̃).

It should be emphasized that parameters θ and θ̃ are in general
dependent on y . Thus, the “number” of self-adjoint extension
parameters is infinite, moreover, it is not countable but is of
power of a continuum. This distinguishes the case of an
extended boundary from the case of an excluded point (contact
interaction) when the number of self-adjoint extension
parameters is finite, being equal to n2 for the deficiency index
equal to {n, n}.
If b →∞, the restriction at x = b disappears
(limx→∞ χ = 0, limx→∞ χ̃ = 0).



Operator of quantized spinor field in a static
background field

Ψ̂(t , x) =
∑∫

Ek >0

e−iEk t 〈x|k〉 âk +
∑∫

Ek <0

e−iEk t 〈x|k〉 b̂†k

[
âk , â†k ′

]
+

=
[
b̂k , b̂†k ′

]
+

=
〈
k |k ′〉 , âk |vac〉 = b̂k |vac〉 = 0,

H(1/2) 〈x|k〉 = Ek 〈x|k〉 .
Temporal component of the energy-momentum tensor

T̂ 00 =
i
4
[Ψ̂†(∂0Ψ̂)− (∂0Ψ̂

T )Ψ̂†T − (∂0Ψ̂
†)Ψ̂ + Ψ̂T (∂0Ψ̂

†T )]

Vacuum energy density

ε = 〈vac|T̂ 00|vac〉 = −1
2

∑∫

k

|Ek | 〈k |x〉 〈x|k〉 .



Self-adjointness of the Dirac operator

H(1/2) = H†
(1/2) = −iα ·∇ + βm

(χ̃, H(1/2)χ) = (H†
(1/2)χ̃, χ)− i

∫

∂Ω

dσ · J[χ̃, χ],

where
J[χ̃, χ] = χ̃†αχ.

n · J[χ̃, χ]|r∈∂Ω = 0.

⇓⇓
χ|r∈∂Ω = Kχ|r∈∂Ω, χ̃|r∈∂Ω = K χ̃|r∈∂Ω,

where K is a Hermitian matrix (element of the Clifford algebra)
which is determined by two conditions:

K 2 = I

and
[n ·α, K ]+ = 0.



It should be noted that, in addition, the following combination of
χ and χ̃ is also vanishing at the boundary:

χ̃†(n ·α)Kχ|r∈∂Ω = χ̃†K (n ·α)χ|r∈∂Ω = 0.

16 linear independent elements of the Clifford algebra in
3 + 1-dimensional space-time, and the explicit form is

K =
[
βeiϕγ5

cos θ + (α1 cos ς + α2 sin ς) sin θ
]

eiϕ̃n·α,

where γ5 = iα1α2α3, matrices α1 and α2 are chosen to obey
condition

[α1, n ·α]+ = [α2, n ·α]+ = [α1, α2]+ = 0,

and the boundary parameters are chosen to vary as

−π

2
< ϕ ≤ π

2
, −π

2
≤ ϕ̃ <

π

2
, 0 ≤ θ < π, 0 ≤ ς < 2π.

The MIT bag boundary condition (K.Johnson, 1975),

(I + iβn ·α)χ(r) |r∈∂Ω = 0,

is obtained at ϕ = θ = 0, ϕ̃ = −π/2.



In the case of a disconnected boundary consisting of two
simply-connected components, ∂Ω = ∂Ω(+)

⋃
∂Ω(−), there are

in general 8 boundary parameters: ϕ+, ϕ̃+, θ+ and ς+
corresponding to ∂Ω(+) and ϕ−, ϕ̃−, θ− and ς− corresponding
to ∂Ω(−). If spatial region Ω has the form of a slab bounded by
surfaces, ∂Ω(+) and ∂Ω(−), separated by distance a, then the
boundary condition takes form

(
I − K (±)

)
χ(r) |z=±a/2 = 0, (16)

where

K (±) =
[
βeiϕ±γ5

cos θ± + (α1 cos ς± + α2 sin ς±) sin θ±
]

e±iϕ̃±αz
,

(17)
coordinates r = (x , y , z) are chosen in such a way that x and y
are tangential to the boundary, while z is normal to it, and the
position of ∂Ω(±) is identified with z = ±a/2.



The confinement of matter inside the slab means that the
vector bilinear, χ†(r)αzχ(r), vanishes at the slab boundaries,

χ†(r)αzχ(r) |z=±a/2 = 0, (18)

and this is ensured by condition (16). As to the axial bilinear,
χ†(r)αzγ5χ(r), it vanishes at the slab boundaries,

χ†(r)αzγ5χ(r) |z=±a/2 = 0, (19)

in the case of θ+ = θ− = π/2 only, that is due to relation

[K (±) |θ±=π/2 , γ5]− = 0. (20)



However, there is a symmetry with respect to rotations around
a normal to the slab, and the cases differing by values of ς+ and
ς− are physically indistinguishable, since they are related by
such a rotation. The only way to avoid the unphysical
degeneracy of boundary conditions with different values of ς+
and ς− is to fix θ+ = θ− = 0. Then χ†(r)αzγ5χ(r) is
nonvanishing at the slab boundaries, and the boundary
condition takes form

{
I − β exp

[
i
(
ϕ±γ5 ± ϕ̃±αz)]} χ(r) |z=±a/2 = 0. (21)

Condition (21) determines the spectrum of the wave number
vector in the z-direction, kl . The requirement that this spectrum
be real and unambiquous yields constraint

ϕ+ = ϕ− = ϕ, ϕ̃+ = ϕ̃− = ϕ̃; (22)

then the kl -spectrum is determined implicitly from relation

kl sin ϕ̃ cos(kla) + (E...l cos ϕ̃−m cos ϕ) sin(kla) = 0, (23)

where E...l is the energy of the one-particle state.



Background: uniform magnetic field orthogonal to the
boundary

B = (0, 0, B), A = (−yB, 0, 0)

∂Ω : ∂Ω(+) ⊕ ∂Ω(−)

r = (x , y , z) ∂Ω(+) : z = a/2; ∂Ω(−) : z = −a/2

.

∇Ψ̂ = (∂ − ieA)Ψ̂, ∇Ψ̂† = (∂ + ieA)Ψ̂†, B = ∂ × A

One-particle energy spectrum (Landau levels):

ωsnl =
√
|eB|(2n + 1− 2s) + k2

l + m2,

s = 0, 1/2, n = 0, 1, 2, ...,



Vacuum energy per unit area of the boundary surface

E(s)

S
=
|eB|
2π

(1− 4s)
∑

l

∞∑

n=0

(1 + 2s − 2sδn0)ωsnl

Use of generalizations of the Abel-Plana summation formula
ields

E(s)

S
= a ε∞(s) + Ω(s)(a) + Ω̃(s),

where

ε∞(s) =
|eB|
(2π)2 (1− 4s)

∞∫

−∞
dk

∞∑

n=0

(1 + 2s − 2sδn0)ωsnk .



Figure: Contours C , Cu and Ct on the complex u-plane; the
positions of poles of function G+(u)+ G−(u) are indicated by crosses.



Regularization & renormalization: ε∞(s) → ε∞(s)ren

ε∞(s)ren =
e2B2

(4π)2

∞∫

0

dη

η
exp

(
−m2η

|eB|
)[

4s cosh η − 1 + 2s
η sinh η

+(1− 6s)
1
η2 −

1
6
(1 + 6s)

]

V.S.Weisskopf, Kong. Dans. Vid. Selsk. Mat-Fys. Medd. 14, 6
(1936).
W.Heisenberg and H.Euler, Z. Phys. 98, 714 (1936).

Regularization & renormalization: E(s)

S → E(s)ren
S

E(s)ren

S
= a ε∞(s)ren + Ω(s)(a) + Ω̃(s)



Casimir force (or pressure)

F(s) ≡ − ∂

∂a
E(s)ren

S
= −ε∞(s)ren + ∆(s)(a),

where
∆(s)(a) ≡ − ∂

∂a
Ω(s)(a)

= −|eB|
π2

∞∑

n=0

(1+2s−2sδn0)

∞∫

Msn

dκΥ(s)(κ)κ2−4s(κ2−M2
sn)

2s−1/2,

Msn =
√
|eB|(2n + 1− 2s) + m2,

Υ(0)(κ) =
1
2

cos ρ− e−κa

cosh(κa)− cos ρ
,

Υ(1/2)(κ) =

[
(2κa− 1)

(
κ2 −m2 cos2 ϕ

)− 2κm cos ϕ
]

e2κa

[(κ + m cos ϕ) e2κa + κ−m cos ϕ]
2

− (κ−m cos ϕ)2

[(κ + m cos ϕ) e2κa + κ−m cos ϕ]
2 (ϕ̃ = −π/2).



F(s) = −ε∞(s)ren + ∆(s)(a),

−ε∞(s)ren is positive

In the case of a weak magnetic field, |B| ¿ m2|e|−1, one has

−ε∞(s)ren =
1

360π2

[
1− 9

8

(
1
2
− s

)](
eB
m

)4

.

Note that the critical value is the lowest one,
Bcrit = m2|e|−1 = 4.41× 1013 Gauss, for the case of quantized
electron-positron matter.

In the case of a strong magnetic field, |B| À m2|e|−1, one has

−ε∞(s)ren =
1

24π2

[
1− 3

2

(
1
2
− s

)]
e2B2 ln

2|eB|
m2 .



∆(1/2)(a) at |B| ¿ m2|e|−1 takes the forms in the limits of large
and small distances between the plates

∆(1/2)(a) =





− 3
16π3/2

m3/2

a5/2 e−2ma[1 + O( 1
ma)], ϕ = 0

− tan2(ϕ/2)

2π3/2
m5/2

a3/2 e−2ma[1 + O( 1
ma)], ϕ 6= 0





,

|eB| ¿ m2, ma À 1

and

∆(1/2)(a) = −7
8

π2

120
1
a4 , |eB| ¿ m2, ma ¿ 1.



∆(1/2)(a) at |B| À m2|e|−1 takes the forms in the limits of large
and small distances between the plates

∆(1/2)(a) =





− |eB|
16π3/2

m1/2

a3/2 e−2ma[1 + O( 1
ma)], ϕ = 0

− |eB| tanh2(ϕ/2)

2π3/2
m3/2

a1/2 e−2ma[1 + O( 1
ma)], ϕ 6= 0





,

√
|eB|a À ma À 1

and
∆(1/2)(a) = − |eB|

48a2 , ma ¿ 1,
√
|eB|a À 1.

m−1 = 3.86× 10−13 m, a > 10−8 m



Yu.A.S., J. Phys. Conf. Series 670, 012048 (2016)

Yu.A.S. and S.A.Yushchenko, Intern. J. Mod. Phys. A 30,
1550184 (2015)

Yu.A.S., Mod. Phys. Lett. A 30, 1550099 (2015)

Yu.A.S., Phys. Rev. D 91, 085012 (2015)

Yu.A.S. and S.A.Yushchenko, Intern. J. Mod. Phys. A 29,
1450052 (2014)



Conclusion 1

I The pressure from the vacuum of confined charged
massive matter in the background of magnetic field is
repulsive and independent of the choice of a
boundary condition, as well as of the distance
between the plates.



Slab of spinor matter in extremal conditions

|eB| >> m2, T >> m, µ >> m. (24)

The Dirac Hamiltonian takes form (m = 0)

H = −iγ0γ · (∂ − ieA) (25)

and the one-particle energy spectrum is

Enl = ±ωnl , ωnl =
√

2n|eB|+ k2
l , n = 0, 1, 2, . . . , (26)

where B is the value of the magnetic field strength, B = ∂ × A,
n labels the Landau levels, and kl is the value of the wave
number vector along the magnetic field; the set of the kl values
is determined by condition

kl sin ϕ̃ cos(kla) + Enl cos ϕ̃ sin(kla) = 0, (27)

depending on one parameter only, although the boundary
condition depends on two parameters:{

I − γ0 exp
[
i
(
ϕγ5 ± ϕ̃γ0γz

)]}
χ(r)|z=±a/2 = 0. (28)



Chiral effects

J = J05 = 0. Jx5 = Jy5 = 0. (29)

As to the component of the axial current density, which is along
the magnetic field, only the lowest Landau level (n = 0)
contributes to it. The spectrum of the wave number vector
along the magnetic field is determined from (30) at n = 0, i.e.

k (±)
l = (lπ ∓ ϕ̃)/a, l ∈ Z, k (±)

l > 0, (30)

where the upper (lower) sign corresponds to E0l > 0 (E0l < 0)
and Z is the set of integer numbers. Hence, the z-component of
the axial current density is

Jz5 =
eB
4πa





∑

k (+)
l >0

tanh[(k (+)
l − µ)(2T )−1]

−
∑

k (−)
l >0

tanh[(k (−)
l + µ)(2T )−1]





, (31)
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Figure: Contour C⊂ enclosing the positive real semiaxis can be
continuously deformed into a contour consisting of vertical lines on
the complex ω-plane; positions of simple poles of the integrand are
indicated by crosses.



k

ϰ

Figure: Poles on the complex plane are on the imaginary axis.
Contour enclosing infinite number of poles on the positive real
semiaxis is deformed into a contour which is infinitesimally close from
the right to the imaginary axis.
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Figure: Finite number of poles on the real axis at −s < w < s is
enclosed by two separate contours. Poles on the complex plane are
on a vertical axis at w = −s. The right closed contour is deformed
into a contour consisting of two vertical lines at w = −s + π and
w = s.



w

v

Figure: Contour enclosing infinite number of poles on the real axis at
s < w < ∞ is deformed into a contour consisting of a vertical line at
w = s.



w

v

Figure: Infinite number of poles on the real axis at s < w < ∞ is
enclosed by two separate contours, the right one is deformed into a
contour consisting of a vertical line at w = s + π. Poles on the
complex plane are on a vertical line at w = s.



Relation ∑

n∈Z

y sin x
cos x + cosh[(2n + 1)πy ]

=
1
π

∞∫

0

dη
sin x sinh(2π/y)

(cos x + cosh η)[cosh(2π/y) + cos(η/y)]

− 2 sinh{2[arctan
(
tan x

2

)
]/y}

cosh(π/y) + cosh{2[arctan
(
tan x

2

)
]/y}

may have diverse applications in fermion field theory at finite
temperature and chemical potential.

Limiting case:

lim
y→0

∑

n∈Z

y sin x
cos x + cosh[(2n + 1)πy ]

=
x
π

, −π < x < π.



Jz5 = − eB
2πa

{
sgn(µ)F

(
|µ|a + sgn(µ) [ϕ̃− sgn(ϕ̃)π/2] ; Ta

)

−1
π

[ϕ̃− sgn(ϕ̃)π/2]

}
, (32)

where

F (s; t) =
s
π
− 1

π

∞∫

0

dv
sin(2s)sinh(π/t)

[cos(2s) + cosh(2v)][cosh(π/t) + cos(v/t)]

+
sinh {[arctan(tans)]/t}

cosh[π/(2t)] + cosh {[arctan(tans)]/t} .(33)

In the case of a magnetic field filling the whole (infinite) space
we obtain the known resut:

lim
a→∞ Jz5 = − eB

2π2 µ. (34)



Asymptotics at small and large temperatures:

lim
T→0

Jz5 = − eB
2πa

[
sgn(µ)

[[ |µ|a + sgn(µ)ϕ̃

π
+ Θ(−µϕ̃)

]]
− ϕ̃

π
+

1
2

sgn(ϕ̃)

]

(35)
and

lim
T→∞

Jz5 = − eB
2π2 µ; (36)

here [[u]] denotes the integer part of quantity u, and
Θ(u) = 1

2 [1 + sgn(u)] is the step function.

The chiral separation effect can be nonvanishing even at zero
chemical potential:

Jz5|µ=0 = − eB
2πa

{
F (ϕ̃− sgn(ϕ̃)π/2; Ta)− 1

π
[ϕ̃− sgn(ϕ̃)π/2]

}
;

(37)
the latter vanishes in the limit of infinite temperature,

lim
T→∞

Jz5|µ=0 = 0. (38)



Figure:



The trivial boundary condition, ϕ̃ = −π/2, gives spectrum
kl = (l + 1

2)π
a (l = 0, 1, 2, . . .), and the axial current density

at zero temperature for this case was obtained earlier
(E. V. Gorbar et al, 2015)

Jz5 |T=0, ϕ̃=−π/2 = − eB
2πa

sgn(µ)[[|µ|a/π + 1/2]]. (39)

The ”bosonic-type” spectrum, kl = l π
a (l = 0, 1, 2, . . .), is given

by ϕ̃ = 0; note that the axial current density is continuous at
this point:

lim
ϕ̃→0+

Jz5 − lim
ϕ̃→0−

Jz5 = 0. (40)
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Conclusion 2

The significant role of boundaries for chiral effects in hot
dense magnetized spinor matter:

I dependence on both temperature and chemical
potential,

I dependence on the boundary parameter,

I the boundary condition can serve as a source that is
additional to the spinor matter density.



Thank you for your attention!


