

# Tau lepton couplings to the Z and Higgs bosons

Wolfgang Lohmann, BTU, CERN, DESY and RWTH

16.08.2018



#### Tau Lepton



The  $\tau$  lepton was discovered in SLAC in 1975 (Nobel prize for Martin Perl in 1995)

appearance of events with an electron and a muon in the final state  $e^+e^- \rightarrow \tau^+ \tau^ \tau^- \rightarrow \mu^- \nu \nu$  $\tau^+ \rightarrow e^+ \nu \nu$ 

It is the heaviest lepton we know

Mass: 1777 MeV

Lifetime: 290.6 fs (87  $\mu$ m)

16.08.2018





## Couplings to the neutral current



The  $SU(2)_L \oplus U(1)$  gauge invariance determines the structure of the weak neutral current as:



and the vector- and axial-vector coupling vf and  $a_f$   $v_f = T_3 - 2Qsin^2\theta_W$  $a_f = T_3$ 

with  $T_3$  the third component of the weak isospin, Q the electric charge and  $sin^2\theta_W$  the weak mixing angle, a free parameter of the theory 16.08.2018 Grodna 2018

#### neutral current coupling measurements in e<sup>+</sup>e<sup>-</sup> annihilations

$$\frac{d\sigma_{\text{Born}}}{d\cos\theta}(s,\cos\theta;p) = (1+\cos^2\theta)F_0(s) + 2\cos\theta F_1(s) + p[(1+\cos^2\theta)F_2(s) + 2\cos\theta F_3(s)]$$





#### examples



16.08.2018







16.08.2018



#### Measurements at LHC

At LHC the luminosity is 10<sup>3</sup> times larger

- However: The Z is produced in q q annihilations
  - the Z is not at rest in the centre-of-mass system (or lab system)
  - Pile up of many interactions



16.08.2018

## $sin^2\theta_W$ from A <sub>FB</sub>

Process:  $q \overline{q} \longrightarrow Z \longrightarrow \mu^+ \mu^-$ 





The Z tends to be boosted in the direction of the valence quark q

For the Z production from sea quarks either a correction to  $A_{FB}$  is derived using MC simulations, or the measured value of  $A_{FB}$  is compared to Monte Carlo templates including the sea quark contribution

Axial and vector couplings of quarks and leptons in  $F_0(s)$  and  $F_1(s)$  ! 16.08.2018 Grodna 2018

## $sin^2\theta_W$ from A <sub>FB</sub>

 $A_{FB}$  as a function of m( $\mu^+\mu^-$ )



Currently best result at a hadron collider (LHCb):  $sin^2\theta_W = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056$ stat th

SVS

#### Flavour changing neutral current

*e* Lepton flavor is conserved in the standard model, however there is no underlying symmetry, and it does not hold for neutrinos

*u* Contribution to charged lepton flavor violation is  $B(Z \rightarrow e\mu) < 10^{-60}$ 





Ζ

Indirect searches from  $\mu \rightarrow 3e$ :  $B(Z \rightarrow e\mu) < 10^{-13}$ 

Direct search (CMS):  $B(Z \rightarrow e\mu) < 7.3 \cdot 10^{-7} \text{ (expected } < 6.7 \cdot 10^{-7} \text{)}$ 

Consistent with ATLAS:  $B(Z \rightarrow e\mu) < 7.5 \cdot 10^{-7}$ 

#### Tau Polarisation at LHC



$$F_{0}(s) = \frac{\pi \alpha}{4s} [q_{q}^{2}q_{\tau}^{2} + 2Re\chi(s)q_{q}q_{\tau}v_{q}v_{\tau} + |\chi(s)|^{2}(v_{q}^{2} + a_{q}^{2})(v_{\tau}^{2} + a_{\tau}^{2})]$$

$$F_{2}(s) = \frac{\pi \alpha}{4s} [2Re\chi(s)q_{q}q_{\tau}v_{q}a_{\tau} + |\chi(s)|^{2}(v_{q}^{2} + a_{q}^{2})2v_{\tau}a_{\tau}]$$
since
$$P_{\tau} = -\frac{F_{2}}{F_{0}}$$

 $\Rightarrow$  the quark couplings cancel out at the Z pole

Away from the Z pole u and d type quarks give slightly different contributions, and  $\gamma Z$  interference matters





#### Tau Leptons at LHC

#### Signatures of $\tau$ pairs in an event:

- Two electrons
- Two muons
- One electron and one muon
- One electron/muon and a low multiplicity hadronic jet
- Two low multiplicity hadronic jets

## In all cases missing transverse momentum







#### Tau Polarisation in $\tau \rightarrow a_1 \nu$

Analysis of the  $\tau \rightarrow a_1 \nu$  decay

Branching fraction 9.8 %





- Events with one  $\mu$  and a three prong jet
- Three pion vertex (SV) separated from the primary vertex (PV)→ τ direction
- Calculate  $\tau$  momentum  $p_{\nu}^{2} = (p_{\tau} - pa_{1})^{2} = 0$
- Solve the ambiguity (partially) by fit to fully reconstruct the event



Tau Polarisation in  $\tau \rightarrow a_1 \nu$ 

Comparison between data and simulated event samples



Visible mass  $m(a_1\mu)$ 

 $3\pi$  mass

16.08.2018

#### Tau Polarisation in $\tau \rightarrow a_1 \nu$

 $P_{\tau} = -12.6 \pm 0.066 \pm 0.032 \pm 0.017$ 

stat(data) stat(MC) sys

This is the polarisation averaged over the Z resonance shape!





Gauge obtained using ZFITTER and proton pdfs

 $sin^2\theta_W = 0.2326 \pm 0.0096$ 

Measured with only small impact of the quark couplings

#### Tau Polarisation in $\tau \rightarrow \rho \nu$

Branching fraction 26 % Ľ. arb. decay:  $\tau \xrightarrow{\pm} \rho \xrightarrow{\pm} \nu \rightarrow \pi \xrightarrow{\pm} \pi^0 \nu$ **Observable:**  $y = \frac{E(\pi^{\pm}) - E(\pi^{0})}{E(\pi^{\pm}) + E(\pi^{0})}$ 2.3 fb<sup>-1</sup> (2015, 13 TeV)  $imes 10^3 \ ^{\mu au}_{h}$ Events 1.4 CMS Preliminary 1.2 1.0 iets 0.8 ⊐Observed Exp. unc. 0.6 E 0.4 0.2 0.0 Obs./Exp. 1.4 1.2 1.0 0.8 0.6 -0.5 0.0 0.5 1.0 -1.0



**Results in progress** 

#### Couplings to the Higgs boson



#### Couplings to the Higgs boson



6.08.2018

#### Lepton flavor violation Z boson decays



- number of Z bosons larger than at LEP
- challenge: precise estimate of background processes

#### Best limits so far:

$$BR(Z \to e\mu)^2 = 7.3 \cdot 10^{-7} BR(Z \to e\tau)^3 = 9.8 \cdot 10^{-6} BR(Z \to \mu\tau)^4 = 1.2 \cdot 10^{-5}$$

#### Lepton flavor violation in Higgs boson decays



 $B(H \to e\tau) < 0.69\% (95\% C.L.)$ 

 $B(H \rightarrow e\mu) < 0.035\% (95\% C.L.)$ 

16.08.2018

Grodna 2018

23

#### Lepton flavor violation in Higgs boson decays



#### Higgs boson spin and parity

Spin 0 and parity + of the Higgs boson is preferred (derived from  $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ$  decays



What about the CP quantum number ?

#### Couplings to the Higgs boson

$$\mathcal{L}_Y = -g_\tau \left(\cos\phi_\tau \bar{\tau}\tau + \sin\phi_\tau \bar{\tau}i\gamma_5\tau\right)h$$

Extended Yukawa coupling

Н

τ

τ

 $\phi \tau$  is the mixing angle between a CP + and CP - state

It can be accessed from the distribution of the angle between the two  $\tau$  decay planes  $\Phi_{CP}$ , or, without loss of sensitivity, by the angle of the two impact parrameter planes of the  $\tau$  decays  $\Phi^*_{CP}$ 





## Sensitivity of the method



-

-

## Sensitivity of the method

Defining a likelihood function:

$$\mathcal{L}(n|\alpha_{\tau}) = \prod_{i} \frac{[s_i(\alpha_{\tau}) + b_i]^{n_i}}{n_i!} exp(-s_i(\alpha_{\tau}) - b_i)$$

it is estimated at which luminosity we expect sufficient data to obtain sensitivity for  $\phi \tau$ 

At the end of the current run of LHC some range of  $\phi_{\tau}$  we may expect to exclude

However: improvements are possible





#### **Other Methods**

Η



| Cross section<br>pb |
|---------------------|
| 43.92               |
| 3.98                |
| 3.75                |
|                     |

 $H \rightarrow \tau \tau$  decay !

#### **Extended Lagrangian**

$$\mathscr{L}_{eff,ggH} = \cos(\alpha_h) \frac{\alpha_s}{12\pi\nu} h G^a_{\mu\nu} G^{a,\mu\nu} + \sin(\alpha_h) \frac{\alpha_s}{8\pi\nu} h G^a_{\mu\nu} G^a_{\rho\sigma} \epsilon^{\mu\nu\rho\sigma}$$
CP+
CP-

CP sensitive quantites, obtained from MELA (Matrix Element Likelihood Algorithm)

$$D_{0^{-}} \propto \frac{|M_{CP_{even}}|^2}{|M_{CP_{even}}|^2 + |M_{CP_{odd}}|^2} \qquad \qquad D_{CP} \propto \frac{|M_{CP_{maxmix}}|^2 - |M_{CP_{even}}|^2 - |M_{CP_{odd}}|^2}{|M_{CP_{even}}|^2 + |M_{CP_{odd}}|^2}$$

#### **Other Methods**

Most sensitive quantity:  $\phi$  (J1, J2), azimuthal angle difference between jets

#### **MELA** variables









6.08.2018

#### Other methods

CP test in the production, using a CP odd (-) quantity and calculating its average value For the vector boson fusion Higgs production the matrix element is extended:

$$\mathcal{M} = \mathcal{M}_{\rm SM} + \tilde{d} \cdot \mathcal{M}_{\rm CP-odd}$$

Additional couplings HZZ, HWW, HWA

$$|\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + \tilde{d} \cdot 2\operatorname{Re}(\mathcal{M}_{\rm SM}^*\mathcal{M}_{\rm CP-odd}) + \tilde{d}^2 \cdot |\mathcal{M}_{\rm CP-odd}|^2$$

An optimal CP odd variable is defined:

$$OO = \frac{2 \operatorname{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd})}{|\mathcal{M}_{SM}|^2}$$

And distributed for the events with  $H \rightarrow \tau \tau$  decays

 $-0.11 < \tilde{d} < 0.05 (68\% C.L.)$ 



Optimal Observable

16.08.2018

### Summary

 $\tau$  leptons open unique, interesting ut challenging new fields of physics at the LHC

- Measurement of the polarization in Z decays promises high precision measurements of  $sin^2\theta_W$  solely from  $\tau$  couplings
- Test of lepton universality in the neutral current
- Yukawa couplings to the Higgs boson
- CP mixing in  $H \rightarrow \tau \tau$  final states
- Lepton flavor violation

Currently these studies are in most cases still limited by statistics. However, with growing luminosity very interesting and surprising results may appear.

I would like to thank the students of RWTH Aachen who worked with me the last year on many of the topics reported here: Claudia Pistone, Vladimir Cherepanov, Peter Fakeldey, Olena Hlushchenko, Bastian Kargoll, Thomas Müller, Alexander Nehrkorn, Hale Sert and Jann Aschersleben.