Femtoscopy of Heavy Ion Collisions R. Lednický, JINR Dubna & IP ASCR Prague

- History
- QS correlations
- FSI correlations \rightarrow femtoscopy with nonidentical particles
- Correlation asymmetries
- Correlation study of strong interaction
- Summary

13.08.2018

History of Correlation femtoscopy measurement of space-time characteristics R, $c\tau \sim fm$ of particle production using particle correlations

Fermi'34, GGLP'60, Dubna (GKPLL..'71-) ...

β-decay: Coulomb FSI between e[±] and Nucleus in β-decay modifies the relative momentum (k) distribution \rightarrow Fermi (correlation) function $F(k,Z,R) = \langle |\psi_{-k}(\mathbf{r})|^2 \rangle$ is sensitive to Nucleus radius R if charge Z » 1

 $\psi_{-\mathbf{k}}(\mathbf{r}) = \text{electron} - \text{residual Nucleus WF} (\Delta t=0)$

Fermi function in β -decay

Goldhaber, Goldhaber, Lee & Pais

GGLP'60: enhanced $\pi^+\pi^+$, $\pi^-\pi^-$ vs $\pi^+\pi^-$ at small opening angles – interpreted within SM as **BE** enhancement depending on fireball Gaussian radius r_0

$$\bar{\mathbf{p}} \mathbf{p} \rightarrow 2\pi^+ 2\pi \ \mathbf{n}\pi^0$$

- SM multiplicity requires radius r₀ by a factor 3 larger !

- Later femtoscopy correlation analysis lead to $r_0 > 1$ fm

GGLP effect is likely dominated by dynamics (resonances)

Modern correlation femtoscopy formulated by Kopylov & Podgoretsky KP'71-75: settled basics of correlation femtoscopy in > 20 papers (for non-interacting identical particles)

 proposed CF= N^{corr}/N^{uncorr} & mixing techniques to construct N^{uncorr} & two-body approximation to calculate theor. CF

• showed that sufficiently smooth momentum spectrum allows one to neglect space-time coherence at small q* smoothness approximation: $|\int d^4x_1 d^4x_2 \psi_{p1p2}(x_1,x_2)...|^2 \rightarrow \int d^4x_1 d^4x_2 |\psi_{p1p2}(x_1,x_2)|^2...$

 clarified role of space-time production characteristics: shape & time source picture from various q-projections

QS symmetrization of production amplitude \rightarrow momentum correlations of identical particles are sensitive to space-time structure of the source KP'71-75 total pair spin $CF=1+(-1)^{S}\langle \cos q\Delta x \rangle$ $exp(-ip_1x_1)$ $\pi\pi$, nn_s, $\Lambda\Lambda_s$ $1/R_0$ $2R_0$ ν_2 $q = p_1 - p_2 \xrightarrow{\mathbf{PRF}} \{0, 2\mathbf{k^*}\}$ nn, , ΛΛ, $\Delta \mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2 \longrightarrow \{\mathbf{t}^*, \mathbf{r}^*\}$ q $\overline{CF} \rightarrow \langle |\psi^{S(sym)}_{-k^*}(r^*)|^2 \rangle = \langle | [e^{-ik^*r^*} + (-1)^S e^{ik^*r^*}]/\sqrt{2} |^2 \rangle$! CF of noninteracting identical particles is independent of t* in PRF

KP model of single-particle emitters

Probability amplitude to observe a particle with 4-coordinate *x* from emitter A at x_A can depend on $x - x_A$ only and so can be written as:

$$\langle x|\psi_{\rm A}\rangle = (2\pi)^{-4} \int d^4\kappa \, u_{\rm A}(\kappa) \exp[i\kappa(x-x_{\rm A})]$$

Transferring to 4-momentum representation: $\langle p|x \rangle = \exp(-ipx) \Rightarrow$

$$\langle p|\psi_{\rm A}\rangle = \int d^4x \, \langle p|x\rangle \langle x|\psi_{\rm A}\rangle = u_{\rm A}(p) \exp(-ipx_{\rm A})$$

and probability amplitude to observe two spin-0 bosons:

$$T_{AB}^{\text{sym}}(p_1, p_2) = [\langle p_1 | \psi_A \rangle \langle p_2 | \psi_B \rangle + \langle p_2 | \psi_A \rangle \langle p_1 | \psi_B \rangle]/\sqrt{2}$$

Corresponding **momentum correlation function**:

jî).

$$R(p_1, p_2) = 1$$

$$+ \frac{\Re \sum_{AB} u_A(p_1) u_B(p_2) u_A^*(p_2) u_B^*(p_1) \exp(-iq\Delta x)}{\sum_{AB} |u_A(p_1) u_B(p_2)|^2} \doteq 1 + \left\langle \cos(q\Delta x) \right\rangle$$

if $u_A(p_1) \approx u_A(p_2)$: "smoothness assumption"

Assumptions to derive KP formula

CF -
$$1 = \langle \cos q \Delta x \rangle$$

- two-particle approximation (small freeze-out PS density f)
 ~ OK, <f> << 1 ? low p_t fig.
- smoothness approximation: $R_{emitter} << R_{source} \Leftrightarrow \langle |\Delta p| \rangle >> \langle |q| \rangle_{peak}$ ~ OK in HIC, $R_{source}^2 >> 0.1 \text{ fm}^2 \approx p_t^2$ -slope of direct particles
- neglect of FSI
 OK for photons, ~ OK for pions up to Coulomb repulsion
- incoherent or independent emission 2π and 3π CF data consistent with KP formulae: $CF_3(123) = 1 + |F(12)|^2 + |F(23)|^2 + |F(31)|^2 + 2Re[F(12)F(23)F(31)]$ $CF_2(12) = 1 + |F(12)|^2$, $F(q) = \langle e^{iqx} \rangle$

Phase space density from CFs and spectra

"General" parameterization at $|\mathbf{q}| \rightarrow 0$

Particles on mass shell & azimuthal symmetry \Rightarrow 5 variables: $\mathbf{q} = \{q_x, q_y, q_z\} \equiv \{q_{out}, q_{side}, q_{long}\}, \text{ pair velocity } \mathbf{v} = \{v_x, 0, v_z\}$

 $q_0 = \mathbf{q}\mathbf{p}/p_0 \equiv \mathbf{q}\mathbf{v} = q_x v_x + q_z v_z$ $y \equiv side \qquad \text{Grassberger'77} \\ \text{RL'78} \\ x \equiv \text{out } \| \text{ transverse} \\ \text{pair velocity } \mathbf{v}_t \\ z \equiv \text{long } \| \text{ beam}$

 $\langle \cos q \Delta x \rangle = 1 - \frac{1}{2} \langle (q \Delta x)^2 \rangle + .. \approx \exp(-R_x^2 q_x^2 - R_y^2 q_y^2 - R_z^2 q_z^2 - 2R_{xz}^2 q_x q_z)$

Femtoscopy or Interferometry radii:

$$\mathbf{R}_{x}^{2} = \frac{1}{2} \left\langle (\Delta x - v_{x} \Delta t)^{2} \right\rangle, \ \mathbf{R}_{y}^{2} = \frac{1}{2} \left\langle (\Delta y)^{2} \right\rangle, \ \mathbf{R}_{z}^{2} = \frac{1}{2} \left\langle (\Delta z - v_{z} \Delta t)^{2} \right\rangle$$

Podgoretsky'83, Bertsch, Pratt'95; so called out-side-long parameterization

Csorgo, Pratt'91: LCMS $v_z = 0$

Probing source shape and emission duration KP (71-75) ...

Static Gaussian model with $R_x^2 = R_{\perp}^2 + v_{\perp}^2 \Delta \tau^2$ space and time dispersions $\rightarrow R_y^2 = R_{\perp}^2$ \rightarrow Emission duration $R_{\perp}^2, R_{\parallel}^2, \Delta \tau^2$ $R_z^2 = R_{\parallel}^2 + v_{\parallel}^2 \Delta \tau^2$ $\Delta \tau^2 = (R_x^2 - R_y^2)/v_{\perp}^2$

If elliptic shape also in transverse plane $\Rightarrow \mathbf{R}_{y} \equiv \mathbf{R}_{side}$ oscillates with pair **azimuth** ϕ

B

Ζ

R_{side} (φ=90°) small Out-of reaction plane

R_{side} (**\$=0°**) large

In reaction plane

Grassberger'77: fire sausage

Probing source dynamics - expansion

Dispersion of emitter velocities & limited emission momenta $(T) \Rightarrow$ **x-p correlation**: interference dominated by pions from nearby emitters

→ Interference probes only a part of the source

Strings Bowler'85..

Resonances GKP'71

→ Interferometry radii decrease with pair velocity Hydro Pratt'84,86

Kolehmainen, Gyulassy'86 Makhlin-Sinyukov'87 Bertch, Gong, Tohyama'88 Hama, Padula'88 Pratt, Csörgö, Zimanyi'90 Mayer, Schnedermann, Heinz'92

Collective transverse flow $\beta^{F} \rightarrow R_{side} \approx R/(1+m_t \beta^{F2}/T)^{\frac{1}{2}}$

Longitudinal boost invariant expansion during proper freeze-out (evolution) time **7**

in LCMS: 1 $\rightarrow R_{long} \approx (T/m_t)^{\frac{1}{2}\tau/coshy}$

AGS \rightarrow SPS \rightarrow RHIC: $\pi\pi$ radii

Clear centrality dependence STAR Au+Au at 200 AGeV

Weak energy dependence 0-5% central Pb+Pb or Au+Au

AGS \rightarrow SPS \rightarrow RHIC: $\pi\pi$ radii vs s_{NN} & p_t

R_{long}: increases smoothly & points to short evolution time t ~ 8-10 fm/c

 R_{side} , R_{out} : change little & point to strong transverse flow $\beta_0^{\rm F} \sim 0.4$ -0.6 & short emission duration $\Delta \tau \sim 2 \text{ fm/c}$

Central Au+Au or Pb+Pb

Interferometry wrt reaction plane

STAR'04 Au+Au 200 GeV 20-30% $\pi^+\pi^+$ & $\pi^-\pi^-$

Typical hydro evolution

Hadro motivated **BW** fit of Au-Au 200 GeV Retiere@LBL'05 $T=106 \pm 1 \text{ MeV}$ $<\beta_{InPlane}> = 0.571 \pm 0.004 c$ $<\beta_{OutOfPlane}> = 0.540 \pm 0.004$ c $\mathbf{R}_{\mathrm{InPlane}} = 11.1 \pm 0.2 \; \mathrm{fm}$ $R_{OutOfPlane} = 12.1 \pm 0.2 \text{ fm}$ Life time (τ) = 8.4 ± 0.2 fm/c Emission duration = 1.9 ± 0.2 fm/c $\chi^2/dof = 120 / 86$

 $\beta_{\rm x} \approx \beta_0 \, ({\rm r/R}) \qquad \beta_{\rm z} \approx {\rm z}/{\rm \tau}$

Expected evolution of HI collision vs RHIC data

Femtoscopy puzzle: simple Hydro overestimates τ and $\Delta \tau$

2+1D Hydro no initial flow Kolb, Heinz'03

3+1D Hydro w & w/o initial flow Sinyukov, Karpenko'05

 $\mathbf{R}_{\mathbf{x}}^{2} = \frac{1}{2} \left\langle (\Delta \mathbf{x} - \mathbf{v}_{\mathbf{x}} \Delta \mathbf{t})^{2} \right\rangle$

 $\begin{array}{l} \mbox{Initial flow} \rightarrow \mbox{positive x-t correlation} \rightarrow \mbox{smaller } R_{out} \\ \mbox{AMPT} \rightarrow \mbox{positive x-t correlation} \rightarrow \mbox{describes } R_i \quad \mbox{Lin, Ko, Pal'02} \end{array}$

Femtoscopy of Pb+Pb at LHC

arXiv:1012.4035

 \rightarrow Study "exotic" scattering $\pi\pi$, πK , KK, $\pi\Lambda$, $p\Lambda$, $\Lambda\Lambda$, ...

"Fermi-like" CF formula

$$CF = \langle |\psi_{-k^*}(r^*)|^2 \rangle$$

Koonin'77: nonrelativistic & unpolarized protons RL, Lyuboshitz'82: generalization to relativistic & polarized & nonidentical particles Assumptions: & calculated the effect of nonequal times

&

 $|t^*| << m_{1,2}r^{*2}$ $|k^*t^*| << m_{1,2}r^*$

- same as for KP formula in case of pure QS
- equal time approximation in PRF RL, Lyuboshitz'82 \rightarrow eq. time conditions:

OK (usually, to several % even for pions) fig.

- $t_{FSI} = d\delta/dE \gg t_{prod}$ $t_{FSI} (s-wave) = \mu f_0/k^* \rightarrow |k^*| = \frac{1}{2}|q^*| <<$ hundreds MeV/c RL, Lyuboshitz ...'98 & account for coupled channels within the same isomultiplet only: $\pi^+\pi^- \leftrightarrow \pi^0\pi^0$, $\pi^-p \leftrightarrow \pi^0$ n, $K^+K^- \leftrightarrow K^0\overline{K}^0$, ...

Effect of nonequal times in pair cms

RL, Lyuboshitz SJNP 35 (82) 770; RL nucl-th/0501065 $\Psi_{p_1,p_2}^{S(+)}(x_1,x_2) \rightarrow e^{iPX} \psi_{-\mathbf{k}^*}^S(\mathbf{r}^*)$

Applicability condition of equal-time approximation: $|t^*| \ll m_{1,2}r^{*2}$

↓ OK for heavy particles & small k*

 $|\mathbf{k}^* \mathbf{t}^*| << \mathbf{m}_{1,2} \mathbf{r}^*$

 $\rightarrow \text{OK within 5\%}$ even for pions if $\Delta \tau = \tau_0 \sim r_0 \text{ or lower}$

Correlation asymmetries

CF of identical particles sensitive to terms even in $\mathbf{k}^* \mathbf{r}^*$ (e.g. through $\langle \cos 2\mathbf{k}^* \mathbf{r}^* \rangle \rightarrow$ measures only dispersion of the components of relative separation $\mathbf{r}^* = \mathbf{r}_1^* \cdot \mathbf{r}_2^*$ in pair cms CF of nonidentical particles sensitive also to terms odd in $\mathbf{k}^* \mathbf{r}^*$ \rightarrow measures also relative space-time asymmetries - shifts $\langle \mathbf{r}^* \rangle$

RL, Lyuboshitz, Erazmus, Nouais PLB 373 (1996) 30 \rightarrow Construct CF_{+x} and CF_{-x} with positive and negative k*-projection k_{x}^{*} on a given direction x and study CF-ratio CF_{+x}/CF_{-x}

CF-asymmetry for charged particles

Asymmetry arises mainly from Coulomb FSI

 $CF \approx A_{c}(\eta) \langle |F(-i\eta, 1, i\zeta)|^{2} \rangle \qquad \eta = (k^{*}a)^{-1}, \zeta = \mathbf{k^{*}r^{*}} + k^{*}r^{*}$

$$F \xrightarrow{r^* <<|a|}_{k^* < 1/r^*} 1 + \eta \zeta = 1 + r^*/a + k^*r^*/(k^*a)$$

Bohr radius ±226 fm for $\pi^{\pm}p$

$$\pm 388$$
 fm for $\pi^+\pi^\pm$

$$\Rightarrow CF_{+x}/CF_{-x} \xrightarrow{k^*} \xrightarrow{\rightarrow} 0 1+2 \langle \Delta x^* \rangle / 3$$

 $\Delta x^* = x_1^* - x_2^* \equiv r_x^* \rightarrow \text{Projection of the relative separation}$ **r*** in pair cms on the direction **x**

In LCMS ($v_z=0$) or $\mathbf{x} \parallel \mathbf{v}$: $\Delta x^* = \gamma_t (\Delta x - v_t \Delta t)$

 \Rightarrow CF asymmetry is determined by space and time asymmetries

BW Retiere@LBL'05

Distribution of emission points at a given equal velocity: - Left, $\beta_x = 0.73c$, $\beta_y = 0$ - Right, $\beta_x = 0.91c$, $\beta_y = 0$

Dash lines: average emission $R_x \Rightarrow \langle R_x(\pi) \rangle < \langle R_x(\mathbf{K}) \rangle < \langle R_x(\mathbf{p}) \rangle$

For a Gaussian density profile with a radius $\mathbf{R}_{\mathbf{G}}$ and flow velocity profile $\boldsymbol{\beta}^{\mathbf{F}}(\mathbf{r}) = \boldsymbol{\beta}_{\mathbf{0}} \mathbf{r} / \mathbf{R}_{\mathbf{G}}$ **RL'04, Akkelin-Sinyukov'96** :

 $\langle x \rangle = \mathbf{R}_{G} \, \beta_{x} \, \beta_{0} / [\beta_{0}^{2} + T/m_{t}]$

NA49 & STAR out-asymmetries

Pb+Pb central 158 AGeV

Au+Au central $\sqrt{s_{NN}}$ =130 GeV corrected for impurity

not corrected for ~ 25% impurity r* RQMD scaled by 0.8

→ Mirror symmetry (~ same mechanism for + and - mesons)
 → RQMD, BW ~ OK ⇒ points to strong transverse flow
 (⟨Δt⟩ gives only ~ ¼ of CF asymmetry)

Analytical dependence of CF on s-wave scatt. amplitudes f(k) and source radius r_0 LL'81

using spherical wave in the outer region ($r > \epsilon$) & inner region ($r < \epsilon$) correction:

⇒ FSI contribution to the CF of nonidentical particles, assuming Gaussian separation distribution $W(r)=exp(-r^2/4r_0^2)/(2\sqrt{\pi} r_0)^3$ single channel & no Coulomb

at kr₀ << 1:
$$\Delta CF^{FSI} = \frac{1}{2} |f_0/r_0|^2 [1 - d_0/(2r_0\sqrt{\pi})] + 2Ref_0/(r_0\sqrt{\pi})$$

 $f_0 \& d_0$ are the s-wave scatt. length and eff. radius determining the scattering amplitude in the effective range approximation:

$$f(k) = \sin \delta_0 \exp(i\delta_0)/k \approx (1/f_0 + \frac{1}{2}d_0k^2 - ik)^{-1}$$

f_0 and d_0 : characterizing the nuclear force

f_0 and d_0 : How to measure them in scattering experiments (not always possible with reasonable statistics)

Figure 2.11 Phase shift variation as a function of the incident proton energy for proton-proton collision. The experimental points are from reference [JB50].

"Nuclear physics in a nutshell", Carlos A. Bertulani. Princeton U Press (2007). $k \cot(d'_0) \gg \frac{1}{f_0} + \frac{1}{2}d_0k^2$

 f_0 and d_0 can be extracted by studying the phase shift vs. energy.

FSI effect on CF of neutral kaons

Lyuboshitz-Podgoretsky'79: K_sK_s from KK also show BE enhancement

STAR data on CF(K_sK_s)

C(Qinv)

Goal: no Coulomb. But R may go up by ~1 fm if neglecting FSI in $K\overline{K}$ (~50% K_sK_s) \leftrightarrow f₀(980) & a₀(980) RL-Lyuboshitz'82

ALICE data on CF(K_sK_s)

Even stronger effect of KK-bar FSI on K_sK_s correlations in pp-collisions at LHC ALICE: PLB 717 (2012) 151

e.g. for $k_t < 0.85$ GeV/c, N_{ch} =1-11 the neglect of FSI increases λ by ~100% and R_{inv} by ~40%

 $\lambda = 0.64 \pm 0.07 \rightarrow 1.36 \pm 0.15 > 1$!

 $R_{inv} = 0.96 \pm 0.04 \rightarrow 1.35 \pm 0.07 \text{ fm}$

ArXiv.org:1506.07884

33

Correlation femtoscopy with nonidentical particles Correlations for K⁰_s-K^{ch}

 Correlation function from strong interaction well described by theoretical formula, dominated by a₀(980) resonance, sensitive to the exact values of resonance parameters

Correlation femtoscopy with nonidentical particles Radii for K⁰_S-K^{ch} correlations

- Radii for K⁰_S-K^{ch} expected same as in K⁰_S-K⁰_S and K^{ch}-K^{ch}
- ALICE data favors Achasov a₀ resonance parameters

NA49 central Pb+Pb 158 AGeV vs RQMD: FSI theory OK Long tails in RQMD: $\langle r^* \rangle = 21$ fm for $r^* < 50$ fm 29 fm for $r^* < 500$ fm

Fit CF=Norm [Purity RQMD($r^* \rightarrow Scale_r^*$)+1-Purity]

\Rightarrow **RQMD overestimates r* by 10-20% at SPS** cf ~ **OK at AGS**

worse at RHIC

Pair purity problem for $p\Lambda$ CF @ STAR

Particle	Identification	Fraction Primary
p	$76\pm7\%$	$52\pm4\%$
\overline{p}	$74\pm7\%$	$48\pm4\%$
Λ	$86\pm6\%$	$45\pm4\%$
$\overline{\Lambda}$	$86\pm6\%$	$45\pm4\%$

$$\begin{aligned} \mathcal{L}(k^*) &= 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f^S(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi}r_0} \right) \right. \\ &+ \frac{2\Re f^S(k^*)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\Im f^S(k^*)}{r_0} F_2(Qr_0) \right], \end{aligned}$$

where $F_1(z) = \int_0^z dx e^{x^2 - z^2} / z$ and $F_2(z) = (1 - e^{-z^2}) / z$.

Pairs	Fractions (%
$p_{\rm prim}$ - $\Lambda_{\rm prim}$	15
$p_{\Lambda} - \Lambda_{\text{prim}}$	10
$p_{\Sigma^+} - \hat{\Lambda}_{\text{prim}}$	3
$p_{\rm prim}$ - Λ_{Σ^0}	11
$p_{\Lambda} - \Lambda_{\Sigma^0}$	7
$p_{\Sigma^+} - \Lambda_{\Sigma^0}$	2
$p_{\rm prim}$ - Λ_{Ξ}	9
$p_{\Lambda} - \Lambda_{\Xi}$	5
$p_{\Sigma^+} - \Lambda_{\Xi}$	2

\Rightarrow **PairPurity** ~ 15%

Assuming no correlation for misidentified particles and particles from weak decays

$$C_{measured}^{corr}(k^*) = \frac{C_{measured}(k^*) - 1}{\text{PairPurity}} + 1$$

 \leftarrow Fit using RL-Lyuboshitz'82 (for np)

$$(k^*) = \left(\frac{1}{f_0^S} + \frac{1}{2}d_0^S k^{*2} - ik^*\right)^{-1}$$

← but, there can be residual correlations for particles from weak decays requiring knowledge of ΛΛ, pΣ, ΛΣ, ΣΣ, pΞ, ΛΞ, ΣΞ correlations

Correlation study of strong interaction π⁺π⁻& ΛΛ & p̄Λ & p̄p s-wave scattering parameters from NA49 and STAR

Fits using RL-Lyuboshitz'82

pA: **STAR data accounting for residual correlations**

- Kisiel et al, PRC 89 (2014) : assuming a universal Imf₀
- Shapoval et al PRC 92 (2015): Gauss. parametr. of res. CF $\text{Ref}_0 \approx 0.5 \text{ fm}, \text{Imf}_0 \approx 1 \text{ fm}, r_0 \approx 3 \text{ fm}$
- AA: NA49: $|\mathbf{f}_0(AA)| \ll \mathbf{f}_0(NN) \sim 20$ fm STAR, PRL 114 (2015): $\mathbf{f}_0(AA) \approx -1$ fm, $\mathbf{d}_0(AA) \approx 8$ fm

 $π^+π^-$: NA49 vs RQMD with SI scale: $f_0 → sisca f_0$ (=0.232fm) sisca = 0.6±0.1 compare with ~0.8 from SχPT & BNL data E765 K → evππ Here a suppression can be due to eq. time approx.

pp: STAR, Nature (2015): f_0 and d_0 coincide with table pp-values

Correlation study of strong interaction CF=Norm [Purity RQMD($r^* \rightarrow Scale \cdot r^*$)+1-Purity]

 $\pi^+\pi^-$ scattering length f₀ from NA49 CF

Fit $CF(\pi^+\pi^-)$ by RQMD with SI scale: $f_0 \rightarrow sisca f_0^{input}$ $f_0^{input} = 0.232 \text{ fm}$

> sisca = 0.6 ± 0.1 Compare with ~0.8 from S χ PT & BNL E765 K $\rightarrow ev\pi\pi$

Correlation study of strong interaction $\Lambda\Lambda$ scattering lengths f_0 from STAR correlation data

Fit using RL-Lyuboshitz (82): $\lambda \approx 0.18$, $r_0 \approx 3$ fm, $a_{res} \approx -0.04$, $r_{res} \approx 0.4$ fm $f_0 \approx -1$ fm, $d_0 \approx 8$ fm \Rightarrow - no s-wave resonance

- bound state possible

 $CF = 1 + \lambda [\Delta CF^{FSI} + \sum_{S} \rho_{S}(-1)^{S} exp(-r_{0}^{2}Q^{2})]$ $+a_{res} exp(-r_{res}^2Q^2)$ $\rho_0 = \frac{1}{4}(1-P^2)$ $\rho_1 = \frac{1}{4}(3+P^2)$ P=Polar.=0 $\Delta CF^{FSI} = 2\rho_0 [\frac{1}{2} |f^0(k)/r_0|^2 (1 - d_0^0 / (2r_0 \sqrt{\pi})))$ $+2\text{Re}(f^{0}(k)/(r_{0}\sqrt{\pi}))F_{1}(r_{0}Q)$ - Im $(f^0(k)/r_0)F_2(r_0Q)$] $f^{S}(k) = (1/f_0^{S} + \frac{1}{2}d_0^{S}k^2 - ik)^{-1} k = Q/2$ $F_1(z) = \int_0^z dx \exp(x^2 - z^2)/z$ $F_2(z) = [1 - exp(-z^2)]/z$

Correlation study of strong pp & pp interaction at STAR

Nature 527, 345 (2015)

Residual pp correlation

The observed (anti)protons can come from weak decays of already correlated primary particles, hence introducing residual correlations which contaminate the CF (generally cannot be treated as a constant impurity).

Taking dominant contributions due to residual correlation, the measured correlation function can be expressed as :

$$C_{measured}(k^*) = 1 + x_{pp} \left[C_{pp}(k^*; R_{pp}) - 1 \right] + x_{p\Lambda} \left[\tilde{C}_{p\Lambda}(k^*; R_{p\Lambda}) - 1 \right] + x_{\Lambda\Lambda} \left[\tilde{C}_{\Lambda\Lambda}(k^*; R_{\Lambda\Lambda}) - 1 \right]$$

where		DCA	x_{pp}	$x_{p\Lambda}$	$x_{\Lambda\Lambda}$
$\tilde{C}(k^*) = \int C(k^*) T(k^* k^*) dk^*$	proton-proton -	2cm	0.45	0.375	0.077
$C_{p\Lambda}(\kappa_{pp}) = \int C_{p\Lambda}(\kappa_{p\Lambda}) \Gamma(\kappa_{p\Lambda},\kappa_{pp}) d\kappa_{p\Lambda}$	proton-proton	1cm	0.51	0.335	0.055
	pbar-pbar	2cm	0.42	0.385	0.092
$\tilde{C}_{\dots}(k^*) = \int C_{\dots}(k^*) T(k^* k^*) dk^*$	pbar-pbar	1cm	0.485	0.35	0.063
$\int \Delta A (n_{pp}) \int \Delta A (n_{AA}) f (n_{AA}, n_{pp}) dn_{AA}$					

- $C_{pp}(k^*)$ and $C_{p\wedge}(k^*_{p\wedge})$ are calculated by the Lednicky and Lyuboshitz model.
- $C_{\Lambda\Lambda}(k^*_{\Lambda\Lambda})$ is from STAR publication (PRL 114 22301 (2015)).
- Regard $R_{p\Lambda}$ and $R_{\Lambda\Lambda}$ are equal to R_{pp} .
- T is the corresponding tranform matirces, generated by THERMINATOR2, to transform $k^*_{p\Lambda}$ to k^*_{pp} , as well as $k^*_{\Lambda\Lambda}$ to k^*_{pp} .

Transformation Matrix

$$\tilde{C}_{p\Lambda}(k_{pp}^{*}) = \int C_{p\Lambda}(k_{p\Lambda}^{*})T(k_{p\Lambda}^{*},k_{pp}^{*})dk_{p\Lambda}^{*}$$
$$\tilde{C}_{\Lambda\Lambda}(k_{pp}^{*}) = \int C_{\Lambda\Lambda}(k_{\Lambda\Lambda}^{*})T(k_{\Lambda\Lambda}^{*},k_{pp}^{*})dk_{\Lambda\Lambda}^{*}$$

Correlation study of strong interaction pp s-wave scattering parameters from STAR correlation data

$$C_{\text{inclusive}}(k^*) = 1 + x_{pp}[C_{pp}(k^*; R_{pp}) - 1] + x_{p\Lambda}[\tilde{C}_{p\Lambda}(k^*; R_{p\Lambda}) - 1] + x_{\Lambda\Lambda}[\tilde{C}_{\Lambda\Lambda}(k^*) - 1]$$

	DCA	x_{pp}	$x_{p\Lambda}$	$x_{\Lambda\Lambda}$
proton-pronton	2cm	0.45	0.375	0.077
proton-proton	1cm	0.51	0.335	0.055
pbar-pbar	2cm	0.42	0.385	0.092
pbar-pbar	1cm	0.485	0.35	0.063

"This paper announces an important discovery! ... offers important original contribution to the forces in antimatter!" – *Nature* Referee A

"... significance of the results can be considered high since this is really the first and only result available on the interaction between the antiprotons ever." – *Nature* Referee B

"... are of fundamental interest for the whole nuclear physics community and possible even beyond for atomic physics applications or condensed matter physicists. ... I think that this paper is most likely one of the five most significant papers published in the discipline this year" – *Nature* Referee C

- Assumptions behind femtoscopy theory in HIC OK at $k \rightarrow 0$.
- Wealth of data on correlations of various particle species (π[±],K^{±0},p[±],Λ,Ξ) is available & gives unique space-time info on production characteristics including collective flows.
- Rather direct evidence for strong transverse flow in HIC at SPS & RHIC comes from nonidentical particle correlations.
- Original hydro calculations strongly overestimated out & long radii at RHIC. Solved by 3D hydro with crossover EoS + initial flow + hadronic transport.
- Info on two-particle strong interaction: $\pi\pi$ & $\Lambda\Lambda$ & $p\Lambda$ & pp scattering lengths & effective radii from correlation HIC data (on a way to solving the problem of residual correlations). A good perspective: high statistics RHIC & LHC data.

Apologize for skipping

- Multiboson effects Podgoretsky, Zajc, Pratt, RL ...
- Coalescence (d, d data from NA49)
- Beyond Gaussian form RL, Podgoretsky, ..Csörgö .. Chung ..
- Imaging technique Brown, Danielewicz, ..
- Multiple FSI effects Wong, Zhang, ..; Kapusta, Li; Cramer, ..
- Spin correlations Alexander, Lipkin; RL, Lyuboshitz

Multiboson effects • Coherent emission: pion laser, DCC ... \rightarrow Correlation strength $\lambda < 1$ due to coherence Fowler-Weiner'77 But: impurity, Long-Lived Sources (LLS), .. Deutschman'78 **RL-Podgoretsky'79** $\rightarrow 3\pi \text{ CF}$ normalized to $2\pi \text{ CFs:}$ get rid of LLS effect Heinz-Zhang'97 But: problem with 3π Coulomb & extrapolation to $Q_3=0$ \rightarrow Coherence modification of FSI effect on 2π CFs Akkelin ... '00 **But: requires precise measurement at low Q** • Chaotic emission: Podgoretsky'85, Zajc'87, Pratt'93 .. See RL et al. PRC 61 (00) 034901 & refs therein & Heinz .. AP 288 (01) 325 **BE condensate Increasing PSD:** rare gas \rightarrow Widening of n_{π} distribution: Poisson BE Narrowing of spectrum width: $\Delta/(2r_0\Delta) < \Delta$ Δ Widening of **CF** width: $1/r_{0}$ $\rightarrow \infty$ **Decreasing CF strength at fixed n:** $\rightarrow 0$ $\lambda = 1$

 3π data on chaotic fraction **E** Construct ratio r_3 in which LLS contributions to $C_3 = CF_3$ -1 and $C_2 = CF_2$ -1 cancel out Heinz-Zhang'97

 $\mathbf{r}_{3} = [\mathbf{C}_{3}(123) - \mathbf{C}_{2}(12) - \mathbf{C}_{2}(23) - \mathbf{C}_{2}(31)] / [\mathbf{C}_{2}(12) \mathbf{C}_{2}(23) \mathbf{C}_{2}(31)]^{\frac{1}{2}}$

Interpolate to $r_3(Q_3=0)$, $Q_3 = (Q_{12}^2 + Q_{23}^2 + Q_{31}^2)^{1/2}$

51

Multiboson effects on CFs

CF_n(0) fixed n R,(0) 1.8 \triangle p=0.4 GeV/c $r_0=5 \text{ fm}, \Delta=0.2 \text{ GeV/c}$ 1.6 ▲ p=0.2 GeV/c 1.4 □ p=0.1 GeV/c 1.2 ∎ p=0 200 300 400 500 R,(0) **Intercept drops** with **n** faster 1.8 for softer pions 1.6 1.4 1.2 2.5 3.5 ξ⁴ ξπ,ρ 1.5

Multiboson effects on n_{π} & spectra Measure of PSD: $\xi = \eta/(r_0 \Delta + \frac{1}{2})^3 \leq 1$

Longitudinal boost-invariant expansion

el. sources of lifetime τ produced at t=z=0 uniformly distr. in rapidity η and decaying according to thermal law exp(-E*/T)

- $t = \tau \cosh(\eta)$ $z = \tau \sinh(\eta)$
- $E = m_t \cosh(y) p_z = m_t \sinh(y) E^* = m_t \cosh(y \eta)$

In LCMS: pair rapidity y=0 so $G \sim \exp(-E^*/T) = \exp(-m_t \cosh \eta / T) \approx \exp(-m_t/T) \exp[-\eta^2 / 2(T/m_t)]$ $\Rightarrow \langle \eta^2 \rangle \approx (T/m_t)$

 $\mathbf{R}_{z}^{2} = \langle (\mathbf{z} \cdot \langle \mathbf{z} \rangle)^{2} \rangle \equiv \langle \mathbf{z}^{2} \rangle \quad \mathbf{R}_{y}^{2} = \langle \mathbf{y}^{2} \rangle \quad \mathbf{R}_{x}^{2} = \langle (\mathbf{x}^{2} \cdot \mathbf{v}_{x} \mathbf{t}^{2})^{2} \rangle$

 $\mathbf{R}_{z}^{2} = \langle (\tau \sinh(\eta))^{2} \rangle = \langle \tau^{2} \rangle \langle (\sinh(\eta))^{2} \rangle \approx \langle \tau^{2} \rangle \langle (\mathbf{T}/\mathbf{m}_{t}) \rangle$

 $\mathbf{R}_{\mathbf{x}}^{2} = \langle \mathbf{x}^{2} \rangle - 2\mathbf{v}_{\mathbf{x}} \langle \mathbf{x}^{2} \mathbf{t}^{2} \rangle + \mathbf{v}_{\mathbf{x}}^{2} \langle \mathbf{t}^{2} \rangle \qquad \langle \mathbf{t}^{2} \rangle \approx \langle (\mathbf{\tau} - \langle \mathbf{\tau} \rangle)^{2} \rangle \equiv (\Delta \tau)^{2}$

 $\mathbf{R}_{\mathbf{z}} \rightarrow \langle \mathbf{\tau} \rangle = \text{evolution time}$

 $R_x \rightarrow \Delta \tau = \text{emission duration} \\ \text{if } \langle x't' \rangle = 0 \& \langle x'^2 \rangle = \langle y'^2 \rangle$

Transverse expansion

Thermal law & gaussian tr. density profile $\exp(-r^2/2r_0^2)$ & linear tr. flow velocity profile $\beta^F(r) = \beta_0^F r / r_0$

Nonrelativistic case: $\beta_t^{T2} = \beta^{F2} + \beta_t^2 - 2 \beta^F \beta_t \cos \varphi$ $\overrightarrow{\beta_t} = \overrightarrow{\beta^F} + \overrightarrow{\beta_t}^T$ $x = r \cos \varphi$ (out) $y = r \sin \varphi$ (side) $\beta_t = tr.$ velocity $\beta_t^T = tr.$ thermal velocity

$$\begin{aligned} \mathbf{G} &\sim \exp(-\beta_t^{T^2} \mathbf{m}_t / 2\mathbf{T}) \, \exp(-\mathbf{r}^2 / 2\mathbf{r}_0^2) \\ &= \exp[-(\beta_0^{F^2} \mathbf{r}^2 / \mathbf{r}_0^2 + \beta_t^2 - 2\beta_0^F \beta_t \mathbf{x} / \mathbf{r}_0) \, \mathbf{m}_t / 2\mathbf{T} - \mathbf{r}^2 / 2\mathbf{r}_0^2] \\ &\Rightarrow \quad \left\langle \mathbf{y} \right\rangle = 0 \quad \left\langle \mathbf{x} \right\rangle = \mathbf{r}_0 \beta_t \beta_0^F / \left[\beta_0^{F^2} + \mathbf{T} / \mathbf{m}_t\right] \\ &\qquad \mathbf{R}_y^{\ 2} = \left\langle \mathbf{y}^{\ 2} \right\rangle = \left\langle \mathbf{x}^{\ 2} \right\rangle = \mathbf{r}_0^2 / \left[\mathbf{1} + \beta_0^{F^2} \mathbf{m}_t / \mathbf{T}\right] \quad \mathbf{x}^2 = \mathbf{x} \cdot \left\langle \mathbf{x}^2 \right\rangle \end{aligned}$$

Note: for a box-like profile $(r < R) \rightarrow \langle x^{2} \rangle < \langle y^{2} \rangle$

Femtoscopy Puzzle ? Hydro assuming ideal fluid explains strong collective (π) flows at RHIC but not the femtoscopy results

But comparing 1+1D H+UrQMD with 2+1D Hydro

 $\rightarrow \text{kinetic evolution} \\ \sim \text{conserves } R_{out}, R_{long} \\ \& \text{ increases } R_{side} \\ at \text{ small } p_t \\ (\text{resonances } ?) \\ \end{cases}$

⇒ Good prospect
 for 3D Hydro
 + hadron transport
 + ? initial β^F

BS-amplitude Ψ

Inserting KP amplitude $T_0(p_1, p_2; \alpha) = u_A(p_1)u_B(p_2)exp(-ip_1x_A-ip_2x_B)$ in ΔT and taking the amplitudes $u_A(\kappa)$ and $u_B(P-\kappa)$ out of the integral $at \kappa \approx p_1$ and $P-\kappa \approx p_2$ (again "smoothness assumption") \Rightarrow Plane waves $exp(-ip_1x_A-ip_2x_B) \rightarrow$ BS-amplitude $\Psi p_1p_2(x_A, x_B)$: $T(p_1, p_2; \alpha) = u_A(p_1)u_B(p_2) \Psi p_1p_2(x_A, x_B)$

Note

- Formally (FSI) correlations in beta decay and multiparticle production are determined by the same (Fermi) function $\langle |\psi_{-\mathbf{k}}(\mathbf{x})|^2 \rangle$
- But it appears for different reasons in beta decay: a weak **r**-dependence of $\psi_{-k}(\mathbf{r})$ within the nucleus volume + point like emission + equal times and in

multiparticle production in usual events of HIC: a small space-time extent of the emitters compared to their separation + sufficiently small phase space density + usually a small effect of nonequal times

Coalescence: deuterons ..

WF in **continuous pn** spectrum $\psi_{\mathbf{k}^*}(\mathbf{r^*}) o \mathrm{WF}$ in **discrete pn** spectrum $\psi_{\mathbf{b}}(\mathbf{r^*})$

 $E_d d^3 N/d^3 p_d = B_2 E_p d^3 N/d^3 p_p E_n d^3 N/d^3 p_n p_p \approx p_n \approx 1/2 p_d$

Coalescence factor: $\mathbf{B}_2 = (2\pi)^3 (\mathbf{m}_p \mathbf{m}_n / \mathbf{m}_d)^{-1} \rho_t \langle |\psi_b(\mathbf{r}^*)|^2 \rangle \sim \langle \mathbf{R}^{-3} \rangle$ Lyuboshitz (88) .. Triplet fraction = $\frac{3}{4} \downarrow$ unpolarized Ns

Usually: $\mathbf{n} \rightarrow \mathbf{p}$

Much stronger energy dependence of $B_2 \sim R^{-3}$ than expected from pion and proton interferometry radii

R(pp) ~ 4 fm from AGS to SPS

Large lifetimes evaporation or phase transition $x \parallel v \mid \Delta x \mid << \mid \Delta t \mid \rightarrow$ CF-asymmetry yields time delay

Ghisalberti (95) GANIL

Deuterons earlier than protons in agreement with coalescence $e^{-tp/\tau} e^{-tn/\tau} \approx e^{-td/(\tau/2)}$ since $t_p \approx t_n \approx t_d$ Strangeness distillation: K⁺ earlier than K⁻ in baryon rich QGP

Usually: $\langle \Delta x \rangle$ and $\langle \Delta t \rangle$ comparable **RQMD** Pb+Pb $\rightarrow \pi p$ +X central 158 AGeV : $\langle \Delta x \rangle = -5.2$ fm $\langle \Delta t \rangle = 2.9 \text{ fm/c}$ π^+ p-asymmetry effect $2\langle \Delta x^* \rangle / a \approx -8\% \leftarrow \langle \Delta x^* \rangle = -8.5$ fm Shift $\langle \Delta x \rangle$ in out direction is due to collective transverse flow & higher thermal velocity of lighter particles $\langle \mathbf{x}_{\mathbf{p}} \rangle > \langle \mathbf{x}_{\mathbf{K}} \rangle > \langle \mathbf{x}_{\pi} \rangle > 0$ (RL'99-01 βT/out β^{F} = flow velocity β_{I}^{T} = transverse thermal velocity side β_t $\beta_{t} = \beta^{F} + \beta_{t}^{T} = \text{observed transverse velocity}$ BF $\langle \mathbf{x} \rangle \equiv \langle \mathbf{r}_{\mathbf{x}} \rangle = \langle \mathbf{r}_{\mathbf{t}} \cos \phi \rangle = \langle \mathbf{r}_{\mathbf{t}} (\beta_{\mathbf{t}}^2 + \beta^{F2} - \beta_{\mathbf{t}}^{T2})/(2\beta_{\mathbf{t}}\beta^F) \rangle$ mass dependence $\langle \mathbf{y} \rangle \equiv \langle \mathbf{r}_{\mathbf{v}} \rangle = \langle \mathbf{r}_{\mathbf{t}} \sin \phi \rangle = 0$ $\langle z \rangle \equiv \langle r_z \rangle \rightarrow \langle \tau \sinh \eta \rangle = 0$ in LCMS & Bjorken long. exp. measures edge effect at $y_{CMS} \neq 0$

ad hoc time shift $\Delta t = -10$ fm/c Sensitivity test for ALICE Erazmus et al. (95)

 $\begin{array}{c} \mathbf{CF}_{+}/\mathbf{CF}_{-} \xrightarrow{k^{*} \rightarrow 0} 1+2 \left\langle \Delta x^{*} \right\rangle /a \\ \text{Here } \left\langle \Delta x^{*} \right\rangle = - \left\langle \gamma v \Delta t \right\rangle \\ \downarrow \\ \text{CF-asymmetry scales as} \\ - \left\langle \Delta t \right\rangle /a \end{array}$

Delays of several fm/c can be easily detected

collective flow chaotic source motion

x ² -p correlation	yes	yes
T _{eff} ↑ with m	yes	yes
$\mathbf{R} \downarrow \mathbf{with} \mathbf{m}_{\mathbf{t}}$	yes	yes
x-p correlation	ves	no
$\langle \Delta x \rangle \neq 0$	yes	no
CF asymmetry	yes	yes if $\langle \Delta t \rangle \neq 0$

Intensity interferometry of classical electromagnetic fields in Astronomy HBT'56 \rightarrow product of single-detector currents *cf* conceptual quanta measurement \rightarrow two-photon counts

Correlation ~ $\langle \cos \Delta p \Delta x_{34} \rangle$

Space-time correlation measurement in Astronomy \rightarrow source momentum picture $\langle \Delta p \rangle = \langle \omega \Delta \theta \rangle \rightarrow$ star angular radius $\langle \Delta \theta \rangle$ \rightarrow no info on star R, τ KP'75orthogonal to

momentum correlation measurement in particle physics \rightarrow source **space-time picture** $\langle \Delta x \rangle$

 ΔX_{34}

HBT paraboloid mirrors focusing the light from a star on photomultipliers

→ momentum correlation (GGLP, KP) measurements are impossible in Astronomy due to extremely large stellar space-time dimensions while

→ **space-time correlation** (HBT) measurements can be realized also in Laboratory:

Intensity-correlation spectroscopyGoldberger, Lewis, Watson'63-66Measuring phase of x-ray scattering amplitudeFetter'65& spectral line shape and widthGlauber'65

Phillips, Kleiman, Davis'67: linewidth measurement from a mercurury discharge lamp

Formalism of independent one-particle sources

- $\langle \mathbf{x} | \psi_A \rangle = (2\pi)^{-4} \int d^4 \kappa \, \mathbf{u}_A(\kappa) \, \exp[-i \, \kappa (\mathbf{x} \mathbf{x}_A)]$ $\langle \kappa | \mathbf{x} \rangle = \exp(i \, \kappa \mathbf{x})$
- $\langle \kappa | \psi_A \rangle = \int d^4 x \langle \kappa | x \rangle \langle x | \psi_A \rangle = u_A(\kappa) \exp(i \kappa x_A)$

Momentum (femtoscopic) correlations:

Ampl(p) = $\langle p | \psi_A \rangle$ = u_A(p) exp(i px_A)

 $\begin{aligned} \operatorname{Ampl}(p_{1},p_{2}) &= 2^{-1/2} \left[u_{A}(p_{1})u_{A}(p_{2}) \exp(i p_{1}x_{A}+i p_{2}x_{B}) + 1 \leftrightarrow 2 \right] \\ \operatorname{Corr}(p_{1},p_{2}) &= 2\operatorname{Re}\{ \exp(i q\Delta x) u_{A}(p_{1})u_{B}(p_{2})u_{A}^{*}(p_{2})u_{B}^{*}(p_{1}) x_{X} \\ & \times \left[|u_{A}(p_{1})u_{B}(p_{2})|^{2} + |u_{A}(p_{2})u_{B}(p_{1})|^{2} \right]^{-1} \right\} \rightarrow \\ \operatorname{cos}[(p_{1}-p_{2})(x_{A}-x_{B})] \end{aligned}$

Space-time (spectroscopic) correlations:

Ampl(x) = $\langle x | \psi_A \rangle \sim \exp[i p_A(x_A - x)]$ for ~ monochrom. source

 $\operatorname{Ampl}(x_3, x_4) \sim \exp\{i p_A(x_A - x_3) + i p_B(x_B - x_4)] + 3 \leftarrow \rightarrow 4\}$

 $Corr(x_3,x_4) \sim cos[(p_A-p_B)(x_3-x_4)]$! No explicit dependence on x_A, x_B

Femtoscopy through Emission function G(p,x)

One particle: E $d^3N/d^3p = \sum_{\alpha} |T_{\alpha}(p)|^2 = \int d^4x \, d^4x' \exp[-i p(x-x')] \sum_{\alpha} T_{\alpha}(x) T_{\alpha}^*(x')$ $= \int d^4x \ G(\mathbf{p},\mathbf{x}) \qquad \mathbf{x}, \mathbf{x}' \rightarrow \mathbf{x} = \frac{1}{2}(\mathbf{x} + \mathbf{x}'), \ \varepsilon = \mathbf{x} - \mathbf{x}'$ **G**(**p**,**x**) = partial Fourier transform of space-time density matrix $\sum_{\alpha} T_{\alpha}(x) T_{\alpha}^{*}(x')$ **Two id. pions:** $E_1E_2d^6N/d^3p_1d^3p_2 = \int d^4x_1d^4x_2 \left[G(p_1,x_1;p_2,x_2) + G(p,x_1;p,x_2)\cos(q\Delta x)\right]$ $\mathbf{p} = \frac{1}{2}(\mathbf{p}_1 + \mathbf{p}_2)$ $\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_2$ $\Delta \mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2$ $Corr(p_1, p_2) = \int d^4x_1 d^4x_2 G(p, x_1; p, x_2) \cos(q\Delta x) / \int d^4x_1 d^4x_2 G(p_1, x_1; p_2, x_2)$ $\approx \langle \cos(q\Delta x) \rangle \rightarrow \exp(-\sum_i R_i^2 q_i^2 - \tau^2 q_0^2)$

if $G(p_1,x_1;p_2,x_2) = G(p_1,x_1)G(p_2,x_2)$ $G(p,x) \sim exp(-\sum_i x_i^2/2R_i^2 - x_0^2/2\tau^2)$

Reviews, books

- M.I. Podgoretsky, Sov. J. Part. Nucl. 20 (1989) 266; ЭЧАЯ 20 (1989) 628
- D.H. Boal et al., Rev. Mod. Phys. 62 (1990) 553
- U.A. Wiedemann, U. Heinz, Phys. Rep. 319 (1999) 145
- T. Csorgo, Heavy Ion Phys. 15 (2002) 1
- **R. Lednicky, Phys. Atom. Nucl. 67 (2004) 72**
- M. Lisa et al., Ann. Rev. Nucl. Part. Sci. 55 (2005) 357
- R.M. Weiner, B-E correlations and subatomic interference, John Wiley & sons, LTD