B-physics in ATLAS: decays

Vladimir LYUBUSHKIN

February 26, 2018

LHC Days in Belarus 2018

Outline

- Time dependent flavour-tagged ϕ_s and $\Delta \Gamma_s$ from $B_s^0 \rightarrow J/\psi \phi$ in Run1; JHEP **1608**, 147 (2016)
- Measurement of the relative width difference of the $B^0 \bar{B}^0$ system; JHEP **1606**, 081 (2016)
- Measurement of the parity-violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$; Phys. Rev. D **89**, no. 9, 092009 (2014)
- Branching ratio $\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)$; Phys. Lett. B **751**, 63 (2015)
- Search for tetraquark states $X(4140,...) \rightarrow J/\psi \phi$.

Time dependent flavour-tagged ϕ_s and $\Delta\Gamma_s$ from $B_s^0 \rightarrow J/\psi\phi$

Mixing in $B_s^0 - \bar{B}_s^0$ system

- Meson mixing is a phenomenon that only occurs for the weakly-decaying, open flavor neutral *K*, *D*, and B_{ds}^0 mesons.
- The oscillation frequency of B_s^0 meson mixing is characterized by the mass difference Δm_s of the heavy B_H and light B_L mass eigenstates; it is known with relative precisions of 0.12%.
- The heavy state B_H is expected to have a smaller decay width than that of the light state B_L . Hence, $\Delta \Gamma_s^{SM} = \Gamma_L - \Gamma_H = (0.087 \pm 0.021) \, \mathrm{ps^{-1}}$ is expected to be positive in the Standard Model.
- The non-zero decay width difference in the $B_s^0 \bar{B}_s^0$ is well established, with a relative difference of $\Delta \Gamma_s / \Gamma_s = (13.5 \pm 0.8)\%$, meaning that the heavy state B_H lives ~ 14% longer than the light state B_L .

CP violation in $B_s^0 \rightarrow J/\psi \phi$ decay

- CP violation in the $B_s^0 \rightarrow J/\psi \phi$ decay occurs due to interference between direct decays and decays with $B_s^0 \bar{B}_s^0$ mixing.
- The CP violating phase ϕ_s is defined as the weak phase difference between the $B_s^0 \bar{B}_s^0$ mixing amplitude and the $b \rightarrow c\bar{c}s$ decay amplitude.
- In the absence of CP violation, the B_H state would correspond to the CP-odd state and the B_L to the CP-even state.
- In Standard Model the phase φ_s^{b→cčs} is small and can be related to Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix elements φ_s^{b→cčs} = −2β_s = −2arg[−(V_{ts}V_t^{*})/(V_{cs}V_t^{*})] = −0.0370 ± 0.0006
- The phase $\phi_s^{b \to c\bar{c}s}$ is expected to be very sensitive to New Physics.

Analysis details

B-flavor tagging

- Knowledge of B_s/\bar{B}_s flavor at production significantly increases signal PDF sensitivity to ϕ_s
- Opposite-side tagging: the initial flavour of a neutral *B_s* meson can be inferred using information from the opposite-side *B* meson that contains the other pair-produced b-quark in the event.
- Three taggers: muon, electron, b-tagged jet.
- Key variable Q: charge of p_T-weighted tracks in a cone around the opposite side primary object (µ, e, b-jet), used to build per-candidates tag probability p(B|Q):
- * $B^+ \rightarrow J/\psi K^+$ decays are used to study and calibrate OST methods.

Measured variables:

- B_s mass
- B_s proper decay time t and its uncertainty σ_t
- 3 angles $\Omega = \{\theta_T, \phi_T, \psi_T\}$ to separate CP states
- $\cdot B_s$ momentum p_T
- B_s tag probability p(B|Q)

Signal decay main parameters:

- + Δm_s is fixed to 17.77 ps⁻¹
- B_s mean mass
- · decay width $\Gamma_{\!s} = (\Gamma_{\!L} + \Gamma_{\!H})/2$
- decay width difference $\Delta \Gamma_{\!s} = \Gamma_{\!L} \Gamma_{\!H}$ is constrained to be positive
- CP state amplitudes $|A_0(0)|^2$ and $|A_{||}(0)|^2$
- \cdot strong phases δ_{\parallel} and δ_{\perp}
- S-wave amplitude $|A_{S}(0)|^{2}$ and phase δ_{S}

Results of the CP violation $B_s^0 \rightarrow J/\psi \phi$

Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	
$\phi_s[rad]$	-0.110	0.082	0.042	
$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	0.101	0.013	0.007	
$\Gamma_s [\mathrm{ps}^{-1}]$	0.676	0.004	0.004	
$ A_{\parallel}(0) ^2$	0.230	0.005	0.006	
$ A_0(0) ^2$	0.520	0.004	0.007	
$ A_{S}(0) ^{2}$	0.097	0.008	0.022	
δ_{\perp} [rad]	4.50	0.45	0.30	
δ_{\parallel} [rad]	3.15	0.10	0.05	
$\delta_{\perp} - \delta_S \text{ [rad]}$	-0.08	0.03	0.01	

φ [rad]

Measurement of the relative width difference $\Delta\Gamma_d/\Gamma_d$ of the $B^0 - \bar{B}^0$ system

Relative width difference $\Delta \Gamma_d / \Gamma_d$ in $B^0 - \overline{B}^0$ system

- Standard Model prediction $\Delta \Gamma_d^{SM} / \Gamma_d = (0.42 \pm 0.08) \times 10^{-2}$
- Experimental sensitivity still below SM predictions
- Measured through relative ratio of B_d^0 to $J/\psi K_S^0$ vs $J/\psi K^*(892)^0$

Method

The untagged timedependent decay rate $\Gamma(B_q(t) \rightarrow f)$ to a final state f:

$$\Gamma(B_q(t) \to f) \propto \mathrm{e}^{-\Gamma_q t} \left[\cosh \frac{\Delta \Gamma_q t}{2} + A_{\mathsf{P}} A_{\mathsf{CP}}^{\mathsf{dir}} \cos(\Delta m_q t) + A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} + A_{\mathsf{P}} A_{\mathsf{CP}}^{\mathsf{mix}} \sin(\Delta m_q t) \right]$$

- A_{P} is the particle/antiparticle production assymmetry (excess of $B^{0}(\bar{b}d)$ mesons over $\bar{B}^{0}(b\bar{d})$ mesons due to the presence of valence d quark)
- A_{CP}^{dir} , A_{CP}^{dir} and $A_{\Delta\Gamma}$ are theoretically well defined for flavour-specific final states and CP eigenstates
- CP eigenstates $J/\psi K_S^0$: $A_{CP}^{dir} = 0$, $A_{CP}^{mix} = -\sin(2\beta)$, $A_{\Delta\Gamma} = \cos(2\beta)$, where $\beta = \arg(-V_{cd}V_{cb}^*/V_{td}V_{tb}^*)$
- flavour-specific eigenstates $J/\psi K^*(892)^0$: $A_{CP}^{dir} = 1, A_{CP}^{mix} = 0, A_{\Delta\Gamma} = 0$

Fit the ratio of CP/flavour eigenstates to determine $\Delta\Gamma_d$:

$$\frac{\Gamma[\psi K_S^0, t]}{\Gamma[\psi K^*, t]} = \frac{\cosh\frac{\Delta\Gamma_q t}{2} + \cos 2\beta \sinh\frac{\Delta\Gamma_q t}{2} - A_{\mathsf{P}}\sin(\Delta m_q t)}{\cosh\frac{\Delta\Gamma_q t}{2} + A_{\mathsf{P}}\cos(\Delta m_q t)}$$

- using the ratio eliminates the dominant factor $e^{-\Gamma_q t}$ and leads to improved precision for $\Delta\Gamma_d$
- production assymmetry Ap can be determined from data

Determination of production assymmetry A_P

Production asymmetry derived from observed time-dependent asymmetry of $B_d \rightarrow J/\psi K^*(892)$ candidates (omitting CP violating mixing terms):

$$\Gamma[\underline{B}/\underline{B} \to J/\psi K^*, t] \propto e^{-\Gamma_q t} \left[\cosh \frac{\Delta \Gamma_q t}{2} \pm A_{\mathsf{P}} \cos(\Delta m_q t) \right]$$

Observed charge asymmetry $A_{i,obs} = (K^* - \bar{K}^*)/(K^* + \bar{K}^*)$ is fitted with $A_{i,exp} = (A_{det} + A_{i,osc})(1 - 2W)$

- A_{det} is detector-related asymmetry due to differences in the reconstruction of positive and negative particles;
- $W = 0.12 \pm 0.02$ mistag fraction than the decay $K^* \rightarrow K^+ \pi^-$ is identified as $\bar{K}^* \rightarrow K^- \pi^+$, is determined from MC;
- $A_{i,\text{osc}} = A_{\text{P}} \cos(\Delta m_q t) / \cosh \frac{\Delta \Gamma_q t}{2}$
- $A_{det} = (1.33 \pm 0.24 \pm 0.30) \times 10^{-2}$ is consistent with MC
- $A_{\rm P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$ is consistent with LHCb
- First LHC measurement of production asymmetry in central region

Determination of $\Delta \Gamma_d$

- Extract ct-dependent yields for K^* and K_S decays
- Fit ct-dependency leaving $\Delta\Gamma_d/\Gamma_d$ as the only free parameter

• Consistent result for the two datasets:

$$\Delta \Gamma_d / \Gamma_d = (0.1 \pm 1.1(\text{stat.}) \pm 0.9(\text{syst.})) \times 10^{-2}$$

• Currently, this is the most precise single measurement. It agrees with the Standard Model prediction and the measurements by other experiments.

Λ_b^0 decays

Λ_b^0 polarization: exact properties

V. V. Abramov, Spin physics in high-energy hadron interactions, Phys. Atom. Nucl. 68, 385 (2005) [Yad. Fiz. 68, 414 (2005)]:

- In strong interactions, secondary particles C originating from reactions of the type $A + B \rightarrow C^{\dagger} + X$ cannot have a longitudinal polarization P_L . The presence of a longitudinal polarization would violate the parity-conservation law.
- For collisions of identical unpolarized particles, $P_T(-x_F) = -P_T(x_F)$, by virtue of invariance under the rotation of the coordinate system through an angle of 180° about the normal n to the reaction plane. As a consequence, we have $P_T(x_F = 0) = 0$ ($x_F = 2p_L(\Lambda_0^0)/\sqrt{s}$).

- θ is the polar decay angle of Λ^0 with respect to the normal direction \hat{n} in Λ^0_b rest frame;
- θ_1 and ϕ_1 are the polar and azimuthal angles of proton in Λ^0 rest frame with respect to the Λ^0 direction in Λ^0_h rest frame;
- θ_2 and ϕ_2 are the polar and azimuthal angles of μ^+ in J/ψ rest frame with respect to the J/ψ direction in Λ_b^0 rest frame.

Helicity amplitudes of $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$

 $H_{\lambda_{a^*},\lambda_{\psi}}^{\Lambda_b^0 \to \Lambda^* \psi}$ helicity amplitudes measured by ATLAS and LHCb for $\Lambda_b^0 \to \Lambda^0 J/\psi$ with theory prediction by **T. Gutsche** *et al.*, Phys. Rev. D 88, 114018 (2013):

	$\Lambda_b^0 \to \Lambda^0 J/\psi$			$\Lambda_b^0 \to \Lambda^0 \psi(2S)$	
	theory	LHCb	ATLAS	theory	experiment
$ \widehat{H}_{+1/2,+1} ^2$	$0.31 \cdot 10^{-2}$	$-0.06 \pm 0.04 \pm 0.03$	$(0.08^{+0.13}_{-0.08} \pm 0.06)^2$	$0.12 \cdot 10^{-1}$?
$ \widehat{H}_{+1/2,0} ^2$	$0.46 \cdot 10^{-3}$	$-0.01 \pm 0.04 \pm 0.03$	$(0.17^{+0.12}_{-0.17} \pm 0.09)^2$	$0.32 \cdot 10^{-2}$?
$ \widehat{H}_{-1/2,0} ^2$	0.53	$0.58 \pm 0.06 \pm 0.03$	$(0.59^{+0.06}_{-0.07} \pm 0.03)^2$	0.45	?
$ \widehat{H}_{-1/2,-1} ^2$	0.47	$0.49 \pm 0.05 \pm 0.02$	$(0.79^{+0.04}_{-0.05} \pm 0.02)^2$	0.54	?
α_b	-0.07	$0.04 \pm 0.17 \pm 0.07$	$0.30 \pm 0.16 \pm 0.06$	0.09	?

$$\cdot \ \ \, \alpha_b = |\widehat{H}_{+1/2,0}|^2 - |\widehat{H}_{-1/2,0}|^2 + \widehat{H}_{-1/2,-1}|^2 - |\widehat{H}_{+1/2,+1}|^2$$

 $\cdot \ \widehat{W}(\cos\theta) = \frac{1}{2}(1 + P\alpha_b\cos\theta)$

Observation of $\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0$

• $\Gamma(\Lambda_h^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_h^0 \to J/\psi\Lambda^0) = 0.501 \pm 0.033(\text{stat}) \pm 0.019(\text{syst})$

• The only available theoretical expectation for the branching ratio is 0.8 ± 0.1 exceeds the measured value

Search for tetraquark states $X(4140,...) \rightarrow J/\psi \phi$

Search for tetraquark states $X(4140,...) \rightarrow J/\psi \phi$

- **CDF 2008:** first evidence for a narrow near-threshold $X(4140) \rightarrow J/\psi \phi$ mass peak in $B^+ \rightarrow J/\psi \phi K^+$ decay;
- X(4140) does not fit conventional expectations for a charmonium state; it is well above the threshold for open charm decays, so a $c\bar{c}$ charmonium meson with this mass would be expected to decay into an open charm pair dominantly and to have a tiny branching fraction into $J/\psi\phi$;
- X(4140) structure could be a molecular state, a tetraquark state, a hybrid state or a rescattering effect;

 $\cdot \ B^+ \to J/\psi K^+ \phi$

- large signal yield
- · lack of particle identification, large backround from pions
- peaking background from $B^0_s
 ightarrow \psi(2S)\phi
 ightarrow J/\psi \pi^+\pi^-\phi$

 $\cdot B^0 \rightarrow J/\psi K^0_S \phi$

- moderate signal yield
- K_S^0 identified like V^0 decay, contamination from Λ^0 is negligible
- 41 ± 7 candidates from BaBar: Phys. Rev. D 91, no. 1, 012003 (2015)

$$\cdot \ \Lambda^0_b \to J/\psi \Lambda^0 \phi$$

- small signal yield
- possible contamination from K_s^0 can be suppressed
- · this decay channel has not yet been observed
- hidden charm pentaquark state with strangeness S = -1 in $(J/\psi, \Lambda^0)$ system

ATLAS: $B^+ \rightarrow J/\psi K^+ \phi$

- selection criteria are very preliminary
- BG contamination from $B_s^0 \rightarrow \psi(2S)\phi \rightarrow J/\psi \pi^+ \pi^- \phi$ is moderate

ATLAS: $(J/\psi, \phi)$ mass spectrum from $B^+ \rightarrow J/\psi K^+ \phi$

- peaks from X(4274) and X(4500) are clearly seen
- X(4140) is near threshold, accurate amplitude analysis is needed to determine its natural width
- the contamination from B_s^0 is large at high mass; the measurement of X(4700) state is not starightforward

ATLAS: $B^0 \rightarrow J/\psi K_S^0 \phi$

no peaking background

• small statistics at RunI

ATLAS: $(J/\psi, \phi)$ mass spectrum from $B^0 \rightarrow J/\psi K_S^0 \phi$

- · same structure in $(J/\psi,\phi)$ mass spectrum as in $B^+ \to J/\psi K^+ \phi$ decay chain
- toy fit model, no interference between X states

ATLAS: $\Lambda^0_b \rightarrow J/\psi \Lambda^0 \phi$

variables:

- $\cdot \ \chi^2(\Lambda^0_b), \, \chi^2(J/\psi + \Lambda^0)$
- · $p_T(\Lambda^0), p_T(K^+), p_T(K^-)$
- $\cdot \ p_T(\Lambda_b^0)/p_T^{\rm vtx}$
- proper decay time ct

- strong evidence for signal
- $\cdot \,$ this decay chain has not yet been observed by any experiment

Summary

- ATLAS has produced impressive and competitive results in beauty and charm physics:
- CP violation induced by $B_s^0 \bar{B}_s^0$ mixing in $b \to c\bar{c}s$ transitions has not yet been observed either, with an uncertainty on the $\phi_s^{b \to c\bar{c}s}$ phase of 31 mrad;
- Most precise single-experiment measurement for $\Delta\Gamma_d/\Gamma_d$
- All results discussed are statistics-limited: very encouraging perspectives with Run 2
- More public results can be found on ATLAS B-physics TWiki page