aluno IC Fev. 2023

Inhoduas:

Detetores

Física de Jons pesados mehanelationstim Conexão: Física das Partaulas Exernenta ves (Altas Enerjas) + Fisica Nudear Ions Pundos: núdeos atomios pendos Vetra Relativistion: energie cinétice des núcles >> energie de vpouss (??

Fisice das partinas en Altas eriegis; + enterações leptons parkaulas grands hadrons/ descritos pos principios bomis Tiva nuclear) interações núdeos (extenso)
objetos (complexos) por modelos efet us

Maxwell and electromagnetism: the concept of a field; charges generate fields which (can) permeate all of space... Other "charges" feel this field – and thus they feel a force.

The incredible discovery: the E/B fields can exist alone

 they propagate in waves in the vacuum! Thus are
 radio, TV and cell-phones made possible.

20th century: two more forces at work

- But nuclei are held together – against the electrostatic repulsion. So there is yet another type of force! And it must be very, very strong.
- And nuclei break up! Radioactivity! Neutrons become protons. So there is yet another type of force! And it is very, very weak.

There are, in total FOUR different forces in nature

Quantum Field Theory

Relativity Theory + Quantum mechanics: a new picture of what is a "force"

$$L_{\rm int} = -q \, \overline{\psi} \gamma^{\mu} A_{\mu} \psi$$

FORCE IS THE EXCHANGE OF PARTICLES!

Quantum Electrodynamics (III)

The interaction:

$$L_{\rm int} = -q \, \overline{\psi} \gamma^{\mu} A_{\mu} \psi$$

And the quantum excitation of the A field will be particles (photons!)

Weak interaction

Standard Model of Particle Physics

Quantum Field theory:

 Matter particles (spin-1/2) interact via the exchange of force particles (spin-1)

- Forces: interactions, so need (a) charge(s). Which should be conserved. Which implies some new symmetry...
- Standard Model: internal symmetry (SU(3)xSU(2)xU(1))

Invariance of the world under phase changes in SU(2)⊗U(1) results in four bosons, W[±], Z, γ

Thus the unification of Electromagnetism and the Weak interaction into the "Electroweak"

Except that it gets a basic issue wrong.

Because the range of the weak force is very small.

Which means the carrier must be massive.

Very massive!

Intrinsic Angular Momentum = Spin

- 1 x 1 matrix \Longrightarrow Electromagnetism
- 2 x 2 matrix \Longrightarrow Weak force
- 3 x 3 matrix \Longrightarrow Strong force

or $U(1) \times SU(2) \times SU(3)$

These fields are governed by the Yang-Mills equations

The Strong Force (or QCD)

Each quark comes in three *colours*, which we take to be red, green and blue.

(Note: a better counting is that each generation contains 1+3+3+1=8 particles.)

Why is the Strong Force Strong?

strong coupling constant

energy = 1/distance

At high energy, say E=100 GeV, we have $\alpha_s \approx 0.1$. But the strong force gets stronger as we go to larger distances. (Asymptotic freedom.)

Taken naively, $\alpha_s \to \infty$ at the energy scale:

 $\Lambda_{\rm QCD}\approx 200~{\rm MeV}$

This corresponds to a distance scale $R_{\rm QCD} = \frac{1}{\Lambda_{\rm QCD}} \approx 5 \times 10^{-15} \ {\rm m}$

Confinement

At short distances, $F(r) \sim \frac{\alpha_s}{r^2}$ but at long distances F(r) becomes constant.

In terms of the potential energy, $V(r) \sim -\frac{\alpha_s}{r}$ at short distances, but at long distances

$$V(r) \sim \Lambda_{
m QCD}^2 \, r$$

This is *confinement*. We don't see isolated quarks.

Also, the force carrying field is not massless. The gluons stick together to form glueballs, with mass around $m_{\rm gluon} \approx \Lambda_{\rm QCD}$. This is the "mass gap" problem.

Hadrons (Stuff Made of Quarks)

• Baryons: three quarks. For example

$$n \ (ddu) \quad m_n \approx 939.57 \ \mathrm{MeV}$$

 $p \ (uud) \quad m_p \approx 938.28 \ \mathrm{MeV}$

A puzzle: m_{down} = 5 MeV and m_{up} =2 MeV. Where does the mass come from?

• Mesons: quark-anti-quark pair. For example, pions

$$\begin{array}{ll} \pi^+ \; (\bar{d}u) & m \approx 139 \; \mathrm{MeV} \\ \pi^0 \; \frac{1}{\sqrt{2}} (\bar{u}u - \bar{d}d) & m \approx 135 \; \mathrm{MeV} \\ \pi^- \; (\bar{u}d) & m \approx 139 \; \mathrm{MeV} \end{array}$$

Note: Pions have spin 0 and so should be thought of as "force carrying" particles! So ...

analisa profinedados da materia hado-nace / nuclear "grunte" un termos dos interaçõos fundamentais => compounde e testes de novas forses de meterse hadrômice, i dentificações de hannies de fare, revontince de diapani de fare de meterne forte mente enterfente en terms de pariennetes de termodinimu como a temperature e o potenn'il suivinis banômis Importante papel de sonsomente de nows a celeradors em speraas

p/ usan (ors pesados 1970 des de anos

But a unujus » mude intecto ou re dusintege un fagments. mule aus mons Attas everpis of paris de liber de le aumentan => lintes franc product de particulas set alcancados pers provo e kaom (hadom) Muito alter energies: fam de liberdede francen des haden pl gnales e fluors »> plasme de quarks effers é formas.

Masma de Awarks e Hurors: · Matéria que humeou nono univers no primeiro 20 45 de sur excitência Com temperature T> 2×10/2 K · granks ná compneds un objetos (sin-fletos de con) chemeds hedom

Principal objetivo de pesquisa de ioni pesados é entender as probriedades de metéria que interese potemente (quarks, fluors e hadren)

History of the Universe

Big Bang Quark-Gluon Plasma 1013K, 10-6s

Protons& Neutrons 1012K, 10-4s

Low-mass Nuclei 109K, 3 min

Atoms 4000K, 105y

Formation 109y

Elements >109y

Source: Nuclear Science Wall Chart

What is Quark-Gluon Plasma?

At room temperature, quarks and gluons are always confined inside colorless objects (hadrons):

protons, neutrons, pions,

Very high temperature (asymptotic freedom):

- → Interactions become weak
- quarks and gluons deconfined
- → Quark-gluon plasma (QGP)

Infinitely high temperature: QGP may behave like an ideal gas.

Some o propana de vara do CERN D/ estudants: - 1155 genal sobre o gue fazuros no NRN - na restrito à Fisice de Particulas: tern aulas some aceleradores, detetores, aplicación em medicine, feixes, estatistica Fisia Nuclean, Jerra mentas (Madsneph, RooT) Eletraniz (DAR, Triffer etc.), Ashapartrali, Os no logic, etc.

Briblioficher:

- Remone (2007)

- Florkowski (2010)

- Hannch Elfner (2022)