A Dark Vector Resonance at CLiC

Constanza Calender and $\underline{\mathrm{ALFONSO}\ R.\ ZERWEKH}$ UTFSM, Chile

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Chinese Physics C Vol. 43, No. 6 (2019) 063102

- Motivation
- The Model
- Methodology
- Results
- Conclusions

- Motivation
- The Model
- Methodology
- Results
- Conclusions

- Motivation
- The Model
- Methodology
- Results
- Conclusions

- Motivation
- The Model
- Methodology
- Results
- Conclusions

- Motivation
- The Model
- Methodology
- Results
- Conclusions

- Why a Dark Vector Resonance ?
 - $\circ~$ We want to study dark sectors with their own set of non-Abelian interactions
- Why CLiC ?
 - Clean environment
 - Large c.m. energy ($\sqrt{s} = 3$ TeV)
 - Huge luminosity ($\mathcal{L} = 2000 \text{ fb}^{-1}$)
 - It allows exploration through radiative return to resonance

- Why a Dark Vector Resonance ?
 - $\circ~$ We want to study dark sectors with their own set of non-Abelian interactions
- Why CLiC ?
 - \circ Clean environment
 - Large c.m. energy ($\sqrt{s} = 3$ TeV)
 - Huge luminosity ($\mathcal{L} = 2000 \text{ fb}^{-1}$)
 - It allows exploration through radiative return to resonance

- Why a Dark Vector Resonance ?
 - $\circ~$ We want to study dark sectors with their own set of non-Abelian interactions
- Why CLiC ?
 - \circ Clean environment
 - Large c.m. energy ($\sqrt{s} = 3$ TeV)
 - Huge luminosity ($\mathcal{L} = 2000 \text{ fb}^{-1}$)
 - It allows exploration through radiative return to resonance

- Why a Dark Vector Resonance ?
 - $\circ~$ We want to study dark sectors with their own set of non-Abelian interactions
- Why CLiC ?
 - Clean environment
 - Large c.m. energy ($\sqrt{s} = 3$ TeV)
 - Huge luminosity ($\mathcal{L} = 2000 \text{ fb}^{-1}$)
 - It allows exploration through radiative return to resonance

- Why a Dark Vector Resonance ?
 - $\circ~$ We want to study dark sectors with their own set of non-Abelian interactions
- Why CLiC ?
 - Clean environment
 - Large c.m. energy ($\sqrt{s} = 3$ TeV)
 - Huge luminosity ($\mathcal{L} = 2000 \text{ fb}^{-1}$)
 - It allows exploration through radiative return to resonance

The Model

$$\begin{array}{c} \varphi_{1} = \begin{pmatrix} 0 \\ \frac{v + H(x)}{\sqrt{2}} \end{pmatrix} & \varphi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \ h^{+} \\ h_{1} + ih_{2} \end{pmatrix} & h_{1} \text{ is DM candidate} \\ & & & & \\ \end{array}$$

$$\begin{array}{c} \mathsf{SM LH fermions} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Spectrum

Particle	Symbol
Higgs	H
Vector Resonances	$ ho_{\mu}^{0,\pm}$
Dark Matter	h_1
Neutral Pseudo-Scalar	h_2
Charged Scalars	h^{\pm}

We will assume $m_{h_1} \approx m_{h_2} \approx m_{h^\pm}$

$$e^+ e^-
ightarrow \mu^+ \mu^-$$

Accelerator and Detector Effects

Initial State Radation + Bremsstrahlung

CLiC Parameters	
max. beam energy	1.5 TeV
bunch length	$4.4 imes 10^{-3}~{ m cm}$
beam radius	H: $4.5 \times 10^{-2} \mu m$ V: $9 \times 10^{-4} \mu m$
particles per bunch	$0.37 imes 10^{10}$
luminosty	$6 \times 10^{34} \mathrm{cm}^{-2} s^{-1}$

Smearing of momenta (5%)

Two Regimes

Procedure

- Generate events (CalcHEP)
- fit gaussian + quadratic background
- Extract resonant part

Results (heavy scalars)

Results (heavy scalars)

Other Results

 $e^+ \, \overline{e^-} \, {
ightarrow} \, \overline{Z h_1 h_i} \, \, \overline{i \, {=} \, 1, 2}$

 $M_{\rho} = 2.5 \,\mathrm{TeV}$

- CLiC is a good tool for exploring New Physics thanks to
 - High c.m. energy
 - High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions

- CLiC is a good tool for exploring New Physics thanks to
 - $\circ~$ High c.m. energy
 - High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions

- CLiC is a good tool for exploring New Physics thanks to
 - $\circ~$ High c.m. energy
 - \circ High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions

- CLiC is a good tool for exploring New Physics thanks to
 - $\circ~$ High c.m. energy
 - \circ High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions

- CLiC is a good tool for exploring New Physics thanks to
 - $\circ \ High \ c.m. \ energy$
 - \circ High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions

- CLiC is a good tool for exploring New Physics thanks to
 - $\circ~$ High c.m. energy
 - \circ High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions

- CLiC is a good tool for exploring New Physics thanks to
 - $\circ~$ High c.m. energy
 - \circ High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions

- CLiC is a good tool for exploring New Physics thanks to
 - $\circ \ High \ c.m. \ energy$
 - \circ High luminosty
 - Radatiave return to resonances
- It is possible to explore a complex dark sector (at least in some regimes)
- In our example, two promising processes are:
 - Production of a dark vector resonance in the heavy scalar regime
 - Direct production of DM companions