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Classical numerical quantum field theory/many-body physics:
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∫ Dϕ eiS[ϕ]𝒪[ϕ]
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manipulation of 
real (classical) fields



Classical numerical quantum field theory/many-body physics:

Large amount of theory and practice:

✤ What can and cannot be computed
✤ How many gates (time) is required, sometimes cost ~eV

✤ Large collection of algorithms
✤ Memory/speed/energy trade-offs
✤ Most chips run videos games/cels



Classical numerical quantum field theory/many-body physics:

⟨𝒪⟩ =
∫ Dϕ eiS[ϕ]𝒪[ϕ]

∫ Dϕ eiS[ϕ]

iS is purely imaginary:
    the mother of all sign problems



Classical numerical quantum field theory/many-body physics:

⟨𝒪⟩ =
∫ Dϕ e−SE[ϕ]𝒪[ϕ]

∫ Dϕ e−SE[ϕ]

SE may be complex (chemical potential) probably has cost O(eV): 
sign problem

Direct diagonalization:
exponential cost ~ (2V)3



Classical numerical quantum field theory/many-body physics:

SE may be complex (chemical potential) probably has cost O(eV): 
QCD equation of state, Hubbard model away from 1/2-filling, …

iS is purely imaginary:
    transport coefficients (viscosities, heat conductivities), ν-propagation in 

dense/hot matter, thermalization of QGP, …

⟨𝒪⟩ =
∫ Dϕ e−SE[ϕ]𝒪[ϕ]

∫ Dϕ e−SE[ϕ]



Quantum numerical quantum field theory/many-body physics:

|ψ⟩ = α |0⟩ + β |1⟩qubit:



Quantum numerical quantum field theory/many-body physics:

Few (very clever) algorithms doing “weird” stuff

unitary
 gates: e− iπ

2 σzΔt



Quantum numerical quantum field theory/many-body physics:

but Quantum Physics is easy !

|ψ(0)⟩ e−iHΔt ⋯e−iHΔt |⟨ψ(t) |𝒪 |ψ(t)⟩ |2

Troter formula

}



Quantum numerical quantum field theory/many-body physics:

1. Encode the Hilbert space into qubits
2. Prepare the initial state
3. Encode the hamiltonian into quantum gates
4. Find something suitable to measure
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1. Encode the Hilbert space into qubits
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Field theories have infinite dimensional Hilbert spaces 
but

Quantum computers have finite registers ~eN

Discretize space (lattice)
bosonic theories: discretize field space



Field theories have infinite dimensional Hilbert spaces 
but

Quantum computers have finite registers ~eN

Example: nuclear physics (protons and neutrons, spin up and down)
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Example: nuclear physics (protons and neutrons, spin up and down)
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.

.

site 1

site N

{
{

# of qubits ~ V
Hilbert space dimension 4V



Example: nuclear physics (protons and neutrons, spin up and down)

|q1⟩
|q2⟩
|q3⟩
|q4⟩

|q1⟩
|q2⟩
|q3⟩
|q4⟩

.

.

.

site 1

site V

{
{

e−iΔtH0

e−iΔtV

e−iΔtH0

Local hamiltonian,
polynomial # of gates,

# gates ~ V,
exponential gain !



This kind of encoding does not work for bosons: 
occupation number n=0,1,2,3, …

Condensates ?
Technical complication
Naive truncations break symmetries of the theory: no (space) 
continuum limit



g0(a), g1(a), . . . g̃0(a), g̃1(a), . . .

continuum limit:

} }

g0(a → 0) ∼
1

log(Λa)

g4(a → 0) ∼
1
a4



SU(3) gauge theory

U

U

U

U Ψ(U) = Ψ(eiλaAa)

8-dimensional
space

infinite-dimensional
space

finest discretization: SU(3)            S(1080) (“Valentiner group”)

at each link:



S(1080) gauge theory

U

U

U

U Ψ(U) =
1080

∑
i=1

ψiUi

1080-dimensional
space (11 qubits)



S(1080) gauge theory

U

U

U

U
S = −

2
g2

0
∑

p

□p −
1
g2

1
∑

p

□2
p

No continuum limit.
There are no g0, g1 for fine enough lattices



S(1080) gauge theory
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S(1080) 
Monte Carlo

SU(3) 
Monte Carlo

SU(3) improved 
Monte Carlo

extrapolate to the same 
continuum limit



S(1080) gauge theory

SU(3)--athenodorou

SU(3)--us

S1080

Chen
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O(3) σ-model

in 1+1D it is asymptotically free, like QCD

S =
1

2g2 ∫ d2x ∂μn . ∂μn
unit vector

at each point:

n Ψ(n)
2-dimensional 

space: S2
infinite-dimensional 

space



O(3) σ-model

in 2+1D it is asymptotically free, like QCD

S =
1

2g2 ∫ d2x ∂μn . ∂μn
unit vector

at each point:

n Ψ(n)
discrete: 20 points20-dimensional 

space

rotation invariant: O(3)

{



O(3) σ-model

in 2+1D it is asymptotically free, like QCD

S =
1

2g2 ∫ d2x ∂μn . ∂μn
unit vector

at each point:

n = (x1, x2, x3) Ψ = ψ0 + ψixi + ψijxixj + ⋯

S2

rotation invariant: O(3)

{
x2

1 + x2
2 + x2

3 = 1
infinite-dimensional 

space
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Fuzzy O(3) σ-model

Hilbert space: (C4)V

HΨ = ∑
x

[ηg2[σi(x), [σi(x)], Ψ] ± η
g2

σi(x)σi(x + 1)Ψ]
∂n . ∂n ≈ (nx+1 − nx)2 = 2 − 2nx+1 . nx∇2

exact O(3) invariance
σ-model is exactly solvable
fuzzy model can be “solved” by tensor network technology



Fuzzy O(3) σ-model

e−iΔtK e−iΔtV1 e−iΔtV2 e−iΔtV3

site 1 {
site 2 {

3-site
simulation:



Fuzzy O(3) σ-model

|Ψ⟩ = tr[Aa1⋯ . . . AaN] |a1⋯aL⟩

variational parameters Aaij

ai = 1,2,3,4

1. find energy gap ∆ and correlation length 1/m
2. adjust η so ∆=m (Lorentz symmetry)
3. ∆(L) is determined by phase shifts

i = 1,...b

a1 a2 aL…



O(3) σ-model (asymptotically free)

~1/a~M ~ΛQCD }
continuum O(3) sigma model

} }IR UV



Antiferromagnetic fuzzy O(3) σ-model
L << 1/m: pert. theory

L >> 1/m: 
Luscher formula



Ferromagnetic fuzzy O(3) σ-model
L << 1/m: pert. theory

L >> 1/m: 
pert. theory



O(5), O(7), … are running now
different “commutative” truncation of O(3) is running now
O(4)=SU(2) x SU(2): chiral model
SU(2) gauge theory is reminiscent of chiral models
SU(3)? Quarks?

Generalizations



Summary

(Trotterized) time evolution mimics real time evolution
local hamiltonian can lead to exponential improvement on finite 
density/real time calculations
encoding bosonic theories is tricky: preserve some symmetries to 
recover the continuum limit
fuzzy sphere construction works for the σ-model; what about other 
models?


