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W ep scattering: At large Q? inelastic scattering is much more probable

B The deep-inelastic scattering (DIS) of leptons off nucleons is the
instrumental tool for high precision measurements of the quark and
gluon content of the nucleons

Inelastic electron-proton scattering
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Two basic kinematical variables in the deep inelastic scattering (DIS)
electron (k) + proton (p)— electron(k’) + X (px):

Q? = —g°? >0 (virtuality of photon)

Q? Q?
20-q Q2+ W2_ M2

X = (Bjorken variable)

where W2 = (p+q)> > M? = 0 < x < 1
B High energy limit: W2 > Q? > M? — x ~ Q?/W? < 1
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B The nucleon structure function F»(x, Q%) at low Q? has been
measured in the previously unexplored small-x regime at the HERA
collider

= a long-standing question is the extent to which the non-perturbative
properties of QCD affect the behavior of F»

= the low Q? and small-x regions bring us into a kinematical region
where non-perturbative QCD effects becomes essential

These regions are very interesting kinematical domains for testing new
QCD theoretical ideas
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B The necessity of non-perturbative corrections arises as follows:

— at sufficiently small x the power series in asIn(1/x) may be
resummed via BFKL equation
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Resummations in QCD

B Every physical observable can be written, in pQCD, as a power
series in ag

— in these series the coupling constant is accompanied by large
logarithms, which need to be resummed

= according to the type and to the powers of logarithms that are
effectively resummed one gets different evolution equations

M The solution of the DGLAP equation sums over all orders in o the
contributions from leading, single, collinear logarithms of the form
asln (Qz/Qg)

— it does not include leading, single, soft singularities of the form
asIn(1/x), which are treated instead by the BFKL equation

B The BFKL equation describes the x-evolution of PDFs at fixed Q?
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Resummations in QCD

B The phase space regions which contribute these logarithms
enhancements are associated with configurations in which successive
partons have strongly ordered transverse, kr, or longitudinal, k; = x,

momenta:
= aslg~1, asky < 1T > ke > > k2 > Qf
=Sasly ~1,aslg<< 1 X< Xp <€ - € X <€ X

B At small-x and slow Q? (where gluons are dominant) we do not have
strongly ordered k1
= we have to integrate over the full range of kr

= this leads us to work with the unintegrated gluon PDF
9(x, k3):
@ k2
xg(. )= [ T o0x. )

T
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B The result of resumming these leading terms is sensitive to the
infrared kt region and it is found that

3(x, k2) ~ C(K2) x>

where A ~ 0.5 and g(x, k2) is the unintegrated gluon distribution

— the relation between §(x, k2) and g(x, Q?), the standard gluon
distribution (to be determined by the analysis of the F»(x, Q?) data)
reads

o(xg(x, @)

~ k2 _
g(X7 T) dln Q2 QZZK%
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B At this point it is clear that non-perturbative contributions are
needed:

— first, the resummation program requires knowledge of the gluon for
all k2 including the deep infrared region

— second, the data in the small-x region show that F» tend to a flat
shape with decreasing Q?, particularly for low Q?

— this indicates that the singular behavior x—* predicted
by BFKL must be suppressed by non-perturbative effects

B Hence approaching the low Q? region from the QCD theory makes
evident the problem of how to incorporate in an effective way
non-perturbative corrections into the description of the structure
function F»
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Question: How to address this question?
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Leading-twist expansion of f,

B Our task of calculating infrared contributions to the QCD description
of data on F, can succeed in a consistent way by analyzing exclusively
the small-x region

= in this limit some of the existing analytical solutions of the DGLAP
equation can be directly used

= in this approach the HERA data at small-x is interpreted in terms of
the double-asymptotic-scaling (DAS) phenomenon

= The analytical solutions can be extended in order to include the
subasymptotic part of the Q? evolution

—> generalized DAS approximation

= parton distributions evolved from flat x distributions at
some starting point Q, for the DGLAP evolution
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W The twist-two term of F»(x, Q) at NLO is given by [1,2]

4Trny Oés(QZ)
3 47

TR0 @) = P @) + 7 x. @)

= it may be worth emphasizing that this expression is valid only for
x <1

= the distributions 72 are written using a representation which follows
from the solution of the DGLAP equation in the Mellin moment space
(see [2])

[1]A.Y.lllarionov, A.V.Kotikov, G.Parente, Phys.Part.Nucl.39(2008)307;
[2] EGSL, A.L.dos Santos, A.A.Natale, Phys. Lett. B 698 (2011) 52.
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Higher-twist corrections

B In pQCD we make approximations that use the leading power of an
expansion in small variables like masses relative to a hard scale Q

= It is natural to ask about the role of non-leading powers
= higher twist corrections to DIS processes have been studied

systematically in the framework of the OPE

B In this scenario the structure functions have higher-twist power
corrections:

T=4 2 = 2
Flx, Q%) = Fr=2(x, Q)+ ——Sort) 4 T @)
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Some technical difficulties

B There are theoretical difficulties of controlling power corrections in
effective theories...

— ... the calculation of power corrections requires the evaluation of
the matrix elements of higher-twist operators...

= ... but in order to cancel certain ambiguities it is also necessary to
compute the Wilson coefficient functions to sufficiently high orders of
the perturbation series

— these ‘renormalon’ ambiguities are of the same order as the power
corrections

B Fortunately, the twist-4 ambiguity cancels the corresponding
ambiguity in the definition of the twist-2 contribution.
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B Unfortunately, it is not clear if the ambiguity of higher twist
contributions can also be canceled

= in general only a few terms of the perturbative series are known
—> these series are plagued by similar renormalon ambiguities

B However, the subtle relation between the twist-two and the twist-four
contributions has inspired the hypothesis that the main contributions to
the matrix elements of the twist-four operators are proportional to their
divergent parts

= this means that in practice we can obtain information about power
corrections from the large-order behavior of the corresponding series

— this approach is called infrared renormalon model.
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W The twist-four (74) correction to F,(x, Q?) in the [R]enormalon
formalism is given by [3]

A0, @) = e Atint(x, @?) @ f33(x, @)
a=q.g

R]T4
= > AT @)
a=q,9

= the functions jiz*(x, Q?) are obtained by means of the infrared
renormalon model, and

F2[R](X, QZ) _ ng(X, 02) + é FZ[R]T4(X, QQ)

[3] D.Hadjimichef, EGSL, M.Peldez, Phys. Lett. B 804 (2020) 135350.
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W Similarly the twist-six (76) correction to F»(x, Q) reads [3]

FZ[R]TG(X,QZ) _ ez AZGM (x, QZ) f;Z(x,Q2)
a=q,9

= Y RTx)

a=q.9

= the functions /iZ(x, Q?) are also obtained by means of the infrared
renormalon model

= now, taking into account all higher twist corrections, we have

Fi(x, @%) = F32(x, @?) +
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W If FZ[R]hT(x, Q@?) denotes the higher-twist operators, we have
F(x, @) = F32(x, @) + FY" (x, @?),

where the “+” and the “-” representations of FZ[R]hT(X, @?) can each be
put into a compact form [3]:

1 _[Rlhr+ _ 32Tgns w2, Ag™ (2Ti(p) @
offT @) = T B @ 2 k"’{ =) (N(p)Hn(lAam’m

m=4,6

4CrTan; AT" q ( )\ (25 @
30, Q2 [( -l (1) ><plo(p)+|n<Ag’”|/m
00 40 (2100 (&) 1))

4\ % o) 4G ) pTo(o) ) 1)

1 _[Rlhr,— > 32Tgn¢ 72 - 2 Agm @
= FlRiT. = Sk
e 2 (. @) 1542 (. @) m 2" X2| A5 Im

m=4,6

A7 1 Q? ,
2CpA—=——> Qim=2) l:ln (Xq) In <Xq|A6m|Im> —-p (Vq)] } ,
with k4 =1, k6 = —8/7, /4 =1, and /6 = 1/2
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QCD effective charges

B The non-perturbative dynamics of QCD may generate an effective
momentum-dependent mass m(g?) for the gluons

= numerical simulations indicate that such a dynamical mass does
arise when the non-perturbative regime of QCD is probed

— large-volume lattice QCD simulations, both for SU(2)
and SU(3), reveal that the gluon propagator is finite in
the deep infrared region

= in the continuum, it turns out that the non-perturbative dynamics of
the gluon propagator is governed by the corresponding
Schwinger-Dyson equations (SDEs)

= according to the SDEs a finite gluon propagator
corresponds to a massive gluon
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B The QCD effective charge a(g?) is a non-perturbative generalization
of the canonical perturbative coupling as(g?)

= it is intimately related to the phenomenon of dynamical gluon mass
generation

B The charge a(g?) provides the bridge leading from the deep
ultraviolet regime to the deep infrared one

= the definition of &(g?) is not unique: may be obtained in two ways

— despite the distinct theoretical origins of a(g?), they
coincide exactly in the deep infrared.

= the ultimate reason for this is the existence of a
non-perturbative identity relating various of the Green
functions appearing in their respective definitions
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B For example, a(g?) can be obtained from the Schwinger-Dyson
solutions for the gluon self-energy A(g?)

= in this definition the solutions for A(qQ)Aare used to form a
renormalization-group invariant quantity: d(q?) = g°A(g?)

= the inverse of d(g?) quantity may be written

W N [q2+m2(q2)]
=T

where now

1 9° + m*(q?)
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B Note that here by is precisely the first coefficient of the QCD
function and A is the QCD mass scale

= thus a(g?) has exactly the same form of the leading order (LO)
perturbative QCD coupling:

1 p2>
1 b (
afo(p2) ~ 0T \A2

if g% + m?(g®) — p? in the argument of the logarithm

= this will effectively ensure that, in practice, the QCD effective charge
can be successfully obtained by saturating the perturbative strong
coupling a5°(g?)
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H That is to say,

a9 = %)

?—q*+m?(g?)
1

bg In (—qz+,/7\122(q2)) ’

where by = /80/471' = (11CA — 2nf)/127'{‘
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Bl A next-to-leading order (NLO) effective charge can be built through
the same procedure

_ 1 py In (In (ZEFE
GMO(gR) P <%> 1_b_:2, I<n (%9) ;

where by = 51/167r2 = [340% — nf(1OCA + GCF)]/487T2
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B We investigate three different types of QCD effective charge
&NLO(q2)

= they can be constructed from two independent dynamical gluon
masses having distinct asymptotic behaviors:

i
q2+Pm§2] M
In Az
2 2 2
mlog(q ) =m

g 2
pm
In (ng)

and
;
) In q2+pm§ 72
2( 2) mg a
po\d") = 5> o
g +mg | in(%2)
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Bl The first two QCD effective charges can be constructed simply by
combining the above equations

B The third effective charge vanishes logarithmically in the infrared, in
agreement with some recent lattice results using a renormalization
group invariant coupling resulting from a particular combination of the
gluon and ghost propagators

a,(q?) = 1 ) diog(G°)

4mz,, ()
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B It may be worth emphasizing that the QCD effective charges
dog(9?), api(g?) and & (g?) exhibit infrared fixed points as g — 0,
i.e. the dynamical gluon mass tames the Landau pole

M In the limit g% > A? these effective charges match with the canonical
perturbative two-loop coupling: @(g? > A?) — as(g?)

W The analyticity of d05(G%), ap(g?) and a . (g?) is automatically
preserved if the gluon mass scale is set larger than half of the QCD
scale parameter, namely mg/A > 1/2

B In a mathematical sense, the QCD effective charges belong to the
class of holomorphic couplings
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Results

B The nucleon structure function F»(x, Q%) has been measured in DIS
of leptons off nucleons at the HERA collider

= we carry out global fits to small-x F,(x, Q%) data at low and
moderate Q? values

= we use HERA data from the ZEUS and H1 Collaborations, with the
statistic and systematic errors added in quadrature

= specifically, we fit to the structure function at Q°> = 0.2, 0.25, 0.3,
0.5,0.65,0.85,1.2,1.3, 1.5, 1.9, 2.0, 2.5, 3.5, 5.0, 6.5 and 10 GeV?

B The global fits were performed using a 2 fitting procedure, adopting

an interval x2 — x2,. corresponding to the projection of the y2
hypersurface enclosing 90% of probability
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B We introduce a systematic expansion of the DIS cross sections in
terms of as(Q?), evaluated at the virtuality scale

= this means that all the couplings as(Q?) appearing in the
calculations are replaced by QCD effective charges

= in all the fits we fix ny = 3 and A = 284 MeV

— the choice is ny = 3 justified by the fact that most of the
data lie at Q values below the charm mass m,

= in the n; = 3 scheme the charm can only be
pair-produced by gluon splittings when kinematically
allowed

— at the low scales of the data considered in the fits,
production of charm is not kinematically allowed and
therefore in the n; = 3 scheme the charm quark decouples

() VIIONTQC
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Table: The values of the fitting parameters from the global fit to F, data.

Results obtained using the logarithmic effective charge.

T2 T2+ 14 T2+ 714+ 76

mg [MeV]  340+17 284+17 310453

Q3 [GeV?] 0.080+0.048  0.54:+0.17 0.99+0.16
Ag 0.091+0.070  0.42+0.24 1.1940.26
Aq 0.727+0.054  0.60+0.12  0.422+0.086

Az : 0.59+0.26 0.58+0.19

AT : 0.020+0.018  0.232-0.081

A8 : : 0.139+0.076

A8 : : 0.0203+0.0082
v 246 244 242

X 2.41 2.08 1.21
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Table: The values of the fitting parameters from the global fit to F, data.
Results obtained using the power-law effective charge.

T2 2+ 14 2+ 7144+ 76
mg [MeV] 360+9 282+24 415+67
Q5 [GeV?]  0.11+0.15  0.929+0.073  1.17+0.19

Ag -0.090+0.031 0.856+0.080  1.37+0.34
Aq 0.8574+0.017 0.48840.042 0.403-+0.081
A - 0.69+0.14  0.39+0.30
A - 0.132+0.013  0.38+0.16
AZ® - - 0.1354+0.073
A® - - 0.04040.014

v 246 244 242

% 2.88 1.38 1.19
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Table: The values of the fitting parameters from the global fit to F, data.

Results obtained using the Curci-Ferrari effective charge.

72 T2+ 74 T2+ 74+ 76
mg [MeV]  326+72 234+14 302453
Q3 [GeV?] 0.05+1.35  0.883+0.071 0.97+0.16

Ag 0.09+0.30  0.846+0.075 1.19+0.28
Aq 0.73+0.31  0.491+0.041 0.420+0.091

AT - 0.65+0.13 0.55-0.19

AT - 0.1179+0.0090  0.224+0.082

A78 - - 0.131+0.076

AT8 - - 0.0194--0.0078
v 246 244 242

X 2.39 1.34 1.20
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Fo(x,Q%)
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Conclusions and Perspectives

B We have obtained an analytical approach to calculating higher twist
corrections to the structure function Fo(x, Q?)

= the formalism is based on existing analytical solutions of the
DGLAP equation in the small x region

W Our analytical approach, when combined with some
non-perturbative information from QCD, results in an instrumental tool
to study structure functions at very small x region in the infrared regime

B Comparing the renormalon and standard GDFs, we see that our

distributions f,(x, Q%) are in good agreement with the CT14 and
MMHT ones at very small x
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Conclusions and Perspectives

B For inclusive e*p DIS process the real experimentally measured
data are the reduced cross sections &,

d?6®P 27102 Y, . 5
K d® ~ xah o),

where 5(x, Q?,y) = Fo(x, Q%) — {—iFL(X, @?), y is the inelasticity, « is
the fine structure constantand Y, =1 + (1 — y)?

= F, is usually treated as a small correction in the F, extraction from
the reduced cross section &

= in our analysis the bias introduced by neglecting F; is kept to a
minimum
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Conclusions and Perspectives
= however F; is an important quantity due to its rather direct relation
to fy(x, Q?)

= thus, it is clearly important to develop a consistent QCD method to
describe directly the reduced cross section &

= work in this direction, using the renormalon approach is in
progress
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