# QCD effective charges and the proton structure function at small- $x^{\dagger}$

Emerson Luna
Universidade Federal do Rio Grande do Sul

VII ONTQC

Oficina Nacional de Teoria Quântica de Campos

Salvador - BA, 2021

† in collaboration with M. Peláez

#### **Outline**

- Arr  $F_2(x, Q^2)$  at low  $Q^2$  and small-x: The necessity of non-perturbative corrections
- $\blacksquare$  Problem of how to incorporate nonperturbative corrections to  $F_2$
- A solution via QCD effective charges
- Higher twist contributions to F<sub>2</sub>
- Some results
- Conclusion and Perspectives

() VII ONTQC 2/45

- $\blacksquare$  *ep* scattering: At large  $Q^2$  inelastic scattering is much more probable
- The deep-inelastic scattering (DIS) of leptons off nucleons is the instrumental tool for high precision measurements of the quark and gluon content of the nucleons



Inelastic electron-proton scattering

Two basic kinematical variables in the deep inelastic scattering (DIS) electron (k) + proton (p)  $\rightarrow$  electron(k') + X  $(p_X)$ :

$$Q^2 = -q^2 > 0$$
 (virtuality of photon)

$$x = \frac{Q^2}{2p \cdot q} = \frac{Q^2}{Q^2 + W^2 - M^2}$$
 (Bjorken variable)

where 
$$W^2 \equiv (p+q)^2 \ge M^2 \Longrightarrow 0 \le x \le 1$$

■ High energy limit:  $W^2 \gg Q^2 > M^2 \Longrightarrow x \simeq Q^2/W^2 \ll 1$ 

() VII ONTQC 4 / 45

- The nucleon structure function  $F_2(x, Q^2)$  at low  $Q^2$  has been measured in the previously unexplored small-x regime at the HERA collider
- $\Rightarrow$  a long-standing question is the extent to which the non-perturbative properties of QCD affect the behavior of  $F_2$
- $\Rightarrow$  the low  $Q^2$  and small-x regions bring us into a kinematical region where non-perturbative QCD effects becomes essential

These regions are very interesting kinematical domains for testing new QCD theoretical ideas



- The necessity of non-perturbative corrections arises as follows:
- $\implies$  at sufficiently small x the power series in  $\alpha_s \ln(1/x)$  may be resummed via BFKL equation

TQC 7 / 45

#### **Resummations in QCD**

- Every physical observable can be written, in pQCD, as a power series in  $\alpha_s$
- $\implies$  in these series the coupling constant is accompanied by large logarithms, which need to be resummed
- ⇒ according to the type and to the powers of logarithms that are effectively resummed one gets different evolution equations
- The solution of the DGLAP equation sums over all orders in  $\alpha_s$  the contributions from leading, single, collinear logarithms of the form  $\alpha_s \ln \left(Q^2/Q_0^2\right)$
- $\implies$  it does not include leading, single, soft singularities of the form  $\alpha_s \ln(1/x)$ , which are treated instead by the BFKL equation
- The BFKL equation describes the x-evolution of PDFs at fixed  $Q^2$

VII ONTQC 8 / 45

#### **Resummations in QCD**

■ The phase space regions which contribute these logarithms enhancements are associated with configurations in which successive partons have strongly ordered transverse,  $k_T$ , or longitudinal,  $k_L \equiv x$ , momenta:

$$\Rightarrow \alpha_s L_Q \sim 1, \ \alpha_s L_x \ll 1: \ Q^2 \gg k_{T,n}^2 \gg \cdots \gg k_{T,1}^2 \gg Q_0^2$$
$$\Rightarrow \alpha_s L_x \sim 1, \ \alpha_s L_Q \ll 1: \ x \ll x_n \ll \cdots \ll x_1 \ll x_0$$

- At small-x and slow  $Q^2$  (where gluons are dominant) we do not have strongly ordered  $k_T$ 
  - $\Rightarrow$  we have to integrate over the full range of  $k_T$
  - $\Rightarrow$  this leads us to work with the *unintegrated* gluon PDF  $\tilde{g}(x, k_T^2)$ :

$$xg(x,Q^2) = \int^{Q^2} \frac{dk_T^2}{k_T^2} \tilde{g}(x,k_T^2)$$

() VII ONTQC 9/45



## Ladder diagrams

■ The result of resumming these leading terms is sensitive to the infrared  $k_T$  region and it is found that

$$\tilde{g}(x,k_T^2) \sim C(k_T^2) \, x^{-\lambda}$$

where  $\lambda \sim 0.5$  and  $\tilde{g}(x, k_T^2)$  is the *unintegrated* gluon distribution

 $\implies$  the relation between  $\tilde{g}(x, k_T^2)$  and  $g(x, Q^2)$ , the *standard* gluon distribution (to be determined by the analysis of the  $F_2(x, Q^2)$  data) reads

$$\tilde{g}(x, k_T^2) = \left. \frac{\partial (xg(x, Q^2))}{\partial \ln Q^2} \right|_{Q^2 = k_T^2}$$

VII ONTQC 11 / 45

- At this point it is clear that non-perturbative contributions are needed:
- $\implies$  first, the resummation program requires knowledge of the gluon for all  $k_T^2$  including the deep infrared region
- $\implies$  second, the data in the small-x region show that  $F_2$  tend to a flat shape with decreasing  $Q^2$ , particularly for low  $Q^2$ 
  - $\implies$  this indicates that the singular behavior  $x^{-\lambda}$  predicted by BFKL must be suppressed by non-perturbative effects
- Hence approaching the low  $Q^2$  region from the QCD theory makes evident the problem of how to incorporate in an effective way non-perturbative corrections into the description of the structure function  $F_2$

ONTQC 12 / 45

Question: How to address this question?

## Leading-twist expansion of $F_2$

- Our task of calculating infrared contributions to the QCD description of data on  $F_2$  can succeed in a consistent way by analyzing exclusively the small-x region
- $\Rightarrow$  in this limit some of the existing analytical solutions of the DGLAP equation can be directly used
- $\Rightarrow$  in this approach the HERA data at small-x is interpreted in terms of the double-asymptotic-scaling (DAS) phenomenon
- $\Rightarrow$  The analytical solutions can be extended in order to include the subasymptotic part of the  $Q^2$  evolution
  - ⇒ generalized DAS approximation
  - $\implies$  parton distributions evolved from flat x distributions at some starting point  $Q_0$  for the DGLAP evolution

■ The twist-two term of  $F_2(x, Q^2)$  at NLO is given by [1,2]

$$\frac{1}{e}F_2^{\tau 2}(x,Q^2) = f_q^{\tau 2}(x,Q^2) + \frac{4T_R n_f}{3} \frac{\alpha_s(Q^2)}{4\pi} f_g^{\tau 2}(x,Q^2)$$

 $\Rightarrow$  it may be worth emphasizing that this expression is valid only for  $x \ll 1$ 

 $\Rightarrow$  the distributions  $f_a^{\tau^2}$  are written using a representation which follows from the solution of the DGLAP equation in the Mellin moment space (see [2])

[1] A.Y.Illarionov, A.V.Kotikov, G.Parente, Phys.Part.Nucl.39(2008)307;

[2] EGSL, A.L.dos Santos, A.A.Natale, Phys. Lett. B 698 (2011) 52.

() VII ONTQC 15 / 45

## **Higher-twist corrections**

- In pQCD we make approximations that use the leading power of an expansion in small variables like masses relative to a hard scale Q
- ⇒ It is natural to ask about the role of non-leading powers
- ⇒ higher twist corrections to DIS processes have been studied systematically in the framework of the OPE
- In this scenario the structure functions have *higher-twist* power corrections:

$$F(x,Q^2) = F^{\tau=2}(x,Q^2) + \frac{F^{\tau=4}(x,Q^2)}{Q^2} + \frac{F^{\tau=6}(x,Q^2)}{Q^4} + \dots$$

VII ONTQC 16 / 45

#### Some technical difficulties

- There are theoretical difficulties of controlling power corrections in effective theories...
- $\implies$  ... the calculation of power corrections requires the evaluation of the matrix elements of higher-twist operators...
- ⇒ ... but in order to cancel certain ambiguities it is also necessary to compute the Wilson coefficient functions to sufficiently high orders of the perturbation series
- ⇒ these 'renormalon' ambiguities are of the same order as the power corrections
- Fortunately, the twist-4 ambiguity cancels the corresponding ambiguity in the definition of the twist-2 contribution.

() VII ONTQC 17/45

- Unfortunately, it is not clear if the ambiguity of higher twist contributions can also be canceled
- ⇒ in general only a few terms of the perturbative series are known
- ⇒ these series are plagued by similar renormalon ambiguities
- However, the subtle relation between the twist-two and the twist-four contributions has inspired the hypothesis that the main contributions to the matrix elements of the twist-four operators are proportional to their divergent parts
- ⇒ this means that in practice we can obtain information about power corrections from the large-order behavior of the corresponding series
- ⇒ this approach is called *infrared renormalon model*.

■ The twist-four  $(\tau 4)$  correction to  $F_2(x, Q^2)$  in the [R] enormalon formalism is given by [3]

$$F_2^{[R]\tau^4}(x,Q^2) = e \sum_{a=q,g} A_a^{\tau^4} \tilde{\mu}_a^{\tau^4}(x,Q^2) \otimes f_a^{\tau^2}(x,Q^2)$$
$$= \sum_{a=q,g} F_{2,a}^{[R]\tau^4}(x,Q^2)$$

 $\Rightarrow$  the functions  $\tilde{\mu}_a^{\tau 4}(x, Q^2)$  are obtained by means of the infrared renormalon model, and

$$F_2^{[R]}(x,Q^2) = F_2^{\tau 2}(x,Q^2) + \frac{1}{Q^2} F_2^{[R]\tau 4}(x,Q^2)$$

[3] D.Hadjimichef, EGSL, M.Peláez, Phys. Lett. B **804** (2020) 135350.

() VII ONTQC 19 / 45

■ Similarly the twist-six ( $\tau$ 6) correction to  $F_2(x, Q^2)$  reads [3]

$$F_2^{[R]\tau 6}(x, Q^2) = e \sum_{a=q,g} A_a^{\tau 6} \tilde{\mu}_a^{\tau 6}(x, Q^2) \otimes f_a^{\tau 2}(x, Q^2)$$
$$= \sum_{a=q,g} F_{2,a}^{[R]\tau 6}(x, Q^2)$$

- $\Rightarrow$  the functions  $\tilde{\mu}_a^{\tau 6}(x,Q^2)$  are also obtained by means of the infrared renormalon model
- ⇒ now, taking into account all higher twist corrections, we have

$$F_2^{[R]}(x,Q^2) = F_2^{\tau 2}(x,Q^2) + \frac{1}{Q^2} F_2^{[R]\tau 4}(x,Q^2) + \frac{1}{Q^4} F_2^{[R]\tau 6}(x,Q^2)$$

VII ONTQC 20 / 45

If  $F_2^{[R]h\tau}(x, Q^2)$  denotes the higher-twist operators, we have

$$F_2^{[R]}(x,Q^2) = F_2^{\tau 2}(x,Q^2) + F_2^{[R]h\tau}(x,Q^2),$$

where the "+" and the "-" representations of  $F_2^{[R]h\tau}(x,Q^2)$  can each be put into a compact form [3]:

$$\begin{split} \frac{1}{e} \, F_2^{[R]h\tau,+}(x,Q^2) \, &= \, \frac{32 T_R n_f}{15 \beta_0^2} \, f_g^{\tau 2,+}(x,Q^2) \sum_{m=4,6} k_m \left\{ \frac{A_g^{\tau m}}{Q^{(m-2)}} \left( \frac{2}{\rho} \, \frac{\tilde{I}_1(\rho)}{\tilde{I}_0(\rho)} + \ln \left( \frac{Q^2}{|A_g^{\tau m}|^{l_m}} \right) \right) \right. \\ &\quad + \frac{4 C_F T_R n_f}{3 C_A} \, \frac{A_q^{\tau m}}{Q^{(m-2)}} \, \left[ \left( 1 - \bar{d}_{+-}^q(1) \frac{\alpha_s(Q^2)}{4\pi} \right) \left( \frac{2}{\rho} \, \frac{\tilde{I}_1(\rho)}{\tilde{I}_0(\rho)} + \ln \left( \frac{Q^2}{|A_q^{\tau m}|^{l_m}} \right) \right) \right. \\ &\quad + \left. \frac{20 C_A}{3} \, \frac{\alpha_s(Q^2)}{4\pi} \left( \frac{2}{\rho^2} \, \frac{\tilde{I}_2(\rho)}{\tilde{I}_0(\rho)} + \ln \left( \frac{Q^2}{|A_q^{\tau m}|^{l_m}} \right) \frac{1}{\rho} \, \frac{\tilde{I}_1(\rho)}{\tilde{I}_0(\rho)} \right) \right] \right\}, \\ \\ &\quad \frac{1}{e} \, F_2^{[R]h\tau,-}(x,Q^2) \, = \, \frac{32 T_R n_f}{15 \beta_0^2} \, t_g^{\tau 2,-}(x,Q^2) \sum_{m=4,6} k_m \left\{ \frac{A_g^{\tau m}}{Q^{(m-2)}} \ln \left( \frac{Q^2}{x_g^2 |A_g^{\tau m}|^{l_m}} \right) - 2 C_A \frac{A_q^{\tau m}}{Q^{(m-2)}} \left[ \ln \left( \frac{1}{x_g} \right) \ln \left( \frac{Q^2}{x_g |A_g^{\tau m}|^{l_m}} \right) - p'(\nu_q) \right] \right\}, \end{split}$$

with  $k_4 = 1$ ,  $k_6 = -8/7$ ,  $l_4 = 1$ , and  $l_6 = 1/2$ .

() VII ONTQC 21 / 45

## **QCD** effective charges

- The non-perturbative dynamics of QCD may generate an effective momentum-dependent mass  $m(q^2)$  for the gluons
- $\Rightarrow$  numerical simulations indicate that such a dynamical mass does arise when the non-perturbative regime of QCD is probed
  - ⇒ large-volume lattice QCD simulations, both for SU(2) and SU(3), reveal that the gluon propagator is finite in the deep infrared region
- $\Rightarrow$  in the continuum, it turns out that the non-perturbative dynamics of the gluon propagator is governed by the corresponding Schwinger-Dyson equations (SDEs)
  - ⇒ according to the SDEs a finite gluon propagator corresponds to a massive gluon

- The QCD effective charge  $\bar{\alpha}(q^2)$  is a non-perturbative generalization of the canonical perturbative coupling  $\alpha_s(q^2)$
- $\Rightarrow$  it is intimately related to the phenomenon of dynamical gluon mass generation
- The charge  $\bar{\alpha}(q^2)$  provides the bridge leading from the deep ultraviolet regime to the deep infrared one
- $\Rightarrow$  the definition of  $\bar{\alpha}(q^2)$  is not unique: may be obtained in two ways
  - $\implies$  despite the distinct theoretical origins of  $\bar{\alpha}(q^2)$ , they coincide exactly in the deep infrared.
  - ⇒ the ultimate reason for this is the existence of a non-perturbative identity relating various of the Green functions appearing in their respective definitions

- For example,  $\bar{\alpha}(q^2)$  can be obtained from the Schwinger-Dyson solutions for the gluon self-energy  $\hat{\Delta}(q^2)$
- $\Rightarrow$  in this definition the solutions for  $\hat{\Delta}(q^2)$  are used to form a renormalization-group invariant quantity:  $\hat{d}(q^2) = g^2 \hat{\Delta}(q^2)$
- $\Rightarrow$  the inverse of  $\hat{d}(q^2)$  quantity may be written

$$\hat{q}^{-1}(q^2) = \frac{\left[q^2 + m^2(q^2)\right]}{\bar{\alpha}(q^2)}$$

where now

$$rac{1}{ar{lpha}(oldsymbol{q}^2)} = b_0 \ln \left(rac{oldsymbol{q}^2 + m^2(oldsymbol{q}^2)}{\Lambda^2}
ight)$$

I ONTQC 24 / 45

- Note that here  $b_0$  is precisely the first coefficient of the QCD  $\beta$  function and  $\Lambda$  is the QCD mass scale
- $\Rightarrow$  thus  $\bar{\alpha}(q^2)$  has exactly the same form of the leading order (LO) perturbative QCD coupling:

$$\frac{1}{\alpha_s^{LO}(p^2)} = b_0 \ln \left( \frac{p^2}{\Lambda^2} \right)$$

if  $q^2 + m^2(q^2) \rightarrow p^2$  in the argument of the logarithm

 $\Rightarrow$  this will effectively ensure that, in practice, the QCD effective charge can be successfully obtained by saturating the perturbative strong coupling  $\alpha_s^{LO}(q^2)$ 

VII ONTQC 25 / 45

That is to say,

$$\begin{split} \bar{\alpha}^{LO}(q^2) &= \alpha_s^{LO}(q^2) \Big|_{q^2 \to q^2 + m^2(q^2)} \\ &= \frac{1}{b_0 \ln\left(\frac{q^2 + m^2(q^2)}{\Lambda^2}\right)}, \end{split}$$

where 
$$b_0 = \beta_0/4\pi = (11C_A - 2n_f)/12\pi$$

■ A next-to-leading order (NLO) effective charge can be built through the same procedure

$$\bar{\alpha}^{NLO}(q^2) = \frac{1}{b_0 \ln\left(\frac{q^2 + 4m^2(q^2)}{\Lambda^2}\right)} \left[1 - \frac{b_1}{b_0^2} \frac{\ln\left(\ln\left(\frac{q^2 + 4m^2(q^2)}{\Lambda^2}\right)\right)}{\ln\left(\frac{q^2 + 4m^2(q^2)}{\Lambda^2}\right)}\right],$$

where 
$$b_1 = \beta_1/16\pi^2 = [34C_A^2 - n_f(10C_A + 6C_F)]/48\pi^2$$

ONTQC 27 / 45

- We investigate three different types of QCD effective charge  $\bar{\alpha}^{NLO}(q^2)$
- ⇒ they can be constructed from two independent dynamical gluon masses having distinct asymptotic behaviors:

$$m_{log}^2(q^2) = m_g^2 \left\lceil \frac{\ln\left(rac{q^2 + 
ho m_g^2}{\Lambda^2}
ight)}{\ln\left(rac{
ho m_g^2}{\Lambda^2}
ight)} 
ight
ceil^{-1-\gamma_1}$$

and

$$m_{pl}^2(q^2) = rac{m_g^4}{q^2 + m_g^2} \left[ rac{\ln\left(rac{q^2 + 
ho m_g^2}{\Lambda^2}
ight)}{\ln\left(rac{
ho m_g^2}{\Lambda^2}
ight)} 
ight]^{\gamma_2 - 1}$$

VII ONTQC 28 / 45

- The first two QCD effective charges can be constructed simply by combining the above equations
- The third effective charge vanishes logarithmically in the infrared, in agreement with some recent lattice results using a renormalization group invariant coupling resulting from a particular combination of the gluon and ghost propagators

$$ar{lpha}_{_{CF}}(q^2) = rac{1}{1 + c_0 \ln \left(1 + rac{4m_{log}^2(q^2)}{q^2}
ight)} \, ar{lpha}_{log}(q^2)$$

- It may be worth emphasizing that the QCD effective charges  $\bar{\alpha}_{log}(q^2)$ ,  $\bar{\alpha}_{pl}(q^2)$  and  $\bar{\alpha}_{CF}(q^2)$  exhibit infrared fixed points as  $q^2 \to 0$ , i.e. the dynamical gluon mass tames the Landau pole
- In the limit  $q^2 \gg \Lambda^2$  these effective charges match with the canonical perturbative two-loop coupling:  $\bar{\alpha}(q^2 \gg \Lambda^2) \to \alpha_s(q^2)$
- The analyticity of  $\bar{\alpha}_{log}(q^2)$ ,  $\bar{\alpha}_{pl}(q^2)$  and  $\bar{\alpha}_{CF}(q^2)$  is automatically preserved if the gluon mass scale is set larger than half of the QCD scale parameter, namely  $m_q/\Lambda > 1/2$
- In a mathematical sense, the QCD effective charges belong to the class of holomorphic couplings



Canonical coupling and QCD effective charges at NLO

#### **Results**

- The nucleon structure function  $F_2(x, Q^2)$  has been measured in DIS of leptons off nucleons at the HERA collider
- $\Rightarrow$  we carry out global fits to small- $x F_2(x, Q^2)$  data at low and moderate  $Q^2$  values
- ⇒ we use HERA data from the ZEUS and H1 Collaborations, with the statistic and systematic errors added in quadrature
- $\Rightarrow$  specifically, we fit to the structure function at  $Q^2 = 0.2, 0.25, 0.3, 0.5, 0.65, 0.85, 1.2, 1.3, 1.5, 1.9, 2.0, 2.5, 3.5, 5.0, 6.5 and 10 GeV<sup>2</sup>$
- The global fits were performed using a  $\chi^2$  fitting procedure, adopting an interval  $\chi^2 \chi^2_{min}$  corresponding to the projection of the  $\chi^2$  hypersurface enclosing 90% of probability

() VII ONTQC 32 / 45

- We introduce a systematic expansion of the DIS cross sections in terms of  $\alpha_s(Q^2)$ , evaluated at the virtuality scale
- $\Rightarrow$  this means that all the couplings  $\alpha_s(Q^2)$  appearing in the calculations are replaced by QCD effective charges
- $\Rightarrow$  in all the fits we fix  $n_f = 3$  and  $\Lambda = 284$  MeV
  - $\implies$  the choice is  $n_f = 3$  justified by the fact that most of the data lie at Q values below the charm mass  $m_c$
  - $\implies$  in the  $n_f = 3$  scheme the charm can only be pair-produced by gluon splittings when kinematically allowed
  - $\implies$  at the low scales of the data considered in the fits, production of charm is not kinematically allowed and therefore in the  $n_f = 3$  scheme the charm quark decouples

VII ONTQC 33 / 45

**Table:** The values of the fitting parameters from the global fit to  $F_2$  data. Results obtained using the logarithmic effective charge.

|                             | au2                 | au2 + $	au$ 4       | au2 + $	au$ 4 + $	au$ 6 |
|-----------------------------|---------------------|---------------------|-------------------------|
| m <sub>g</sub> [MeV]        | 340±17              | 284±17              | 310±53                  |
| $Q_0^2$ [GeV <sup>2</sup> ] | $0.080 {\pm} 0.048$ | $0.54{\pm}0.17$     | $0.99 \pm 0.16$         |
| $A_g$                       | $0.091 \pm 0.070$   | $0.42{\pm}0.24$     | $1.19 \pm 0.26$         |
| $A_{a}$                     | $0.727{\pm}0.054$   | $0.60 {\pm} 0.12$   | $0.422{\pm}0.086$       |
| $A_g^{\tau 4}$              | -                   | $0.59 {\pm} 0.26$   | $0.58 \pm 0.19$         |
| $A_q^{\tilde{\tau}_4}$      | -                   | $0.020 {\pm} 0.018$ | $0.232{\pm}0.081$       |
| $A_g^{	au 6}$               | -                   | -                   | $0.139 \pm 0.076$       |
| $A_q^{	ilde{	au}6}$         | -                   | -                   | $0.0203 \pm 0.0082$     |
| $\overline{\nu}$            | 246                 | 244                 | 242                     |
| $	ilde{\chi}$               | 2.41                | 2.08                | 1.21                    |

**Table:** The values of the fitting parameters from the global fit to  $F_2$  data. Results obtained using the power-law effective charge.

|                                                | au2                 | au2 + $	au$ 4       | au2 + $	au$ 4 + $	au$ 6 |
|------------------------------------------------|---------------------|---------------------|-------------------------|
| $m_g$ [MeV]                                    | 360±9               | 282±24              | 415±67                  |
| $Q_0^2$ [GeV <sup>2</sup> ]                    | $0.11 \pm 0.15$     | $0.929 \pm 0.073$   | $1.17 \pm 0.19$         |
| $A_g$                                          | $-0.090\pm0.031$    | $0.856 {\pm} 0.080$ | $1.37 {\pm} 0.34$       |
| $A_q$                                          | $0.857 {\pm} 0.017$ | $0.488 {\pm} 0.042$ | $0.403{\pm}0.081$       |
| $A_q^{	au 4}$                                  | -                   | $0.69 {\pm} 0.14$   | $0.39 {\pm} 0.30$       |
| $A_{\alpha}^{	au4}$                            | -                   | $0.132 \pm 0.013$   | $0.38 {\pm} 0.16$       |
| $A_a^{	au 6}$                                  | -                   | -                   | $0.135 {\pm} 0.073$     |
| $A_q^{	ilde{	au}6}$                            | -                   | -                   | $0.040 {\pm} 0.014$     |
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | 246                 | 244                 | 242                     |
| $	ilde{\chi}$                                  | 2.88                | 1.38                | 1.19                    |

**Table:** The values of the fitting parameters from the global fit to  $F_2$  data. Results obtained using the Curci-Ferrari effective charge.

|                             | au2               | au2 + $	au$ 4       | $\tau2 + \tau4 + \tau6$ |
|-----------------------------|-------------------|---------------------|-------------------------|
| m <sub>g</sub> [MeV]        | 326±72            | 234±14              | 302±53                  |
| $Q_0^2$ [GeV <sup>2</sup> ] | $0.05{\pm}1.35$   | $0.883 {\pm} 0.071$ | $0.97{\pm}0.16$         |
| $A_g$                       | $0.09 {\pm} 0.30$ | $0.846{\pm}0.075$   | $1.19 \pm 0.28$         |
| $A_q$                       | $0.73 {\pm} 0.31$ | $0.491 \pm 0.041$   | $0.420{\pm}0.091$       |
| $A_g^{\tau 4}$              | -                 | $0.65{\pm}0.13$     | $0.55{\pm}0.19$         |
| $A_q^{\tau 4}$              | -                 | $0.1179 \pm 0.0090$ | $0.224{\pm}0.082$       |
| $A_a^{	au 6}$               | -                 | -                   | $0.131 {\pm} 0.076$     |
| $A_q^{	ilde{	au}6}$         | -                 | -                   | $0.0194 \pm 0.0078$     |
| $\overline{\nu}$            | 246               | 244                 | 242                     |
| $	ilde{\chi}$               | 2.39              | 1.34                | 1.20                    |

/II ONTQC

36 / 45











## **Conclusions and Perspectives**

- We have obtained an analytical approach to calculating higher twist corrections to the structure function  $F_2(x, Q^2)$
- $\Rightarrow$  the formalism is based on existing analytical solutions of the DGLAP equation in the small x region
- Our analytical approach, when combined with some non-perturbative information from QCD, results in an instrumental tool to study structure functions at very small *x* region in the infrared regime
- Comparing the renormalon and standard GDFs, we see that our distributions  $f_g(x, Q^2)$  are in good agreement with the CT14 and MMHT ones at very small x

## **Conclusions and Perspectives**

■ For inclusive  $e^{\pm}p$  DIS process the real experimentally measured data are the reduced cross sections  $\tilde{\sigma}$ ,

$$\frac{d^2\sigma^{e^\pm\rho}}{dx\,dQ^2} = \frac{2\pi\alpha^2\,Y_+}{xQ^4}\,\tilde{\sigma}(x,Q^2,y),$$

where  $\tilde{\sigma}(x, Q^2, y) = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$ , y is the inelasticity,  $\alpha$  is the fine structure constant and  $Y_+ = 1 + (1 - y)^2$ 

- $\Rightarrow$   $F_L$  is usually treated as a small correction in the  $F_2$  extraction from the reduced cross section  $\tilde{\sigma}$
- $\Rightarrow$  in our analysis the bias introduced by neglecting  $F_L$  is kept to a minimum

VII ONTQC 43 / 45

### **Conclusions and Perspectives**

 $\Rightarrow$  however  $F_L$  is an important quantity due to its rather direct relation to  $f_o(x, Q^2)$ 

 $\Rightarrow$  thus, it is clearly important to develop a consistent QCD method to describe directly the reduced cross section  $\tilde{\sigma}$ 

work in this direction, using the renormalon approach is in progress

I ONTQC 44 / 45

## THANK YOU