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The non-abelian generalization of the gauge symmetry proposed by C. N. Yang and R. Mills in 1954 was
done a la Maxwell, i.e., in terms of a set of partial differential equations. However, the integral formulation
counterpart of this generalization was not known until quite recently.

The critical problem in constructing the integral Yang-Mills equations is the need for a consistent definition
of the flux of the non-abelian electric and magnetic fields with which we can build a relationship with the
dynamically conserved charges in such a way that these charges are invariant under gauge transformations.
Indeed, the naive definition of the flux of the non-abelian fields ®(F) = [, Fl a;: aai:dadr is strongly

dependent of the gauge choice since under a local gauge transformation g(z), Fj.. () — g(z)Fyu(x)g™" ()
and therefore, the flux through a closed surface cannot be directly associated to gauge-invariant charges inside.

The problem of finding the gauge-invariant charges in non-abelian gauge theories is therefore linked to the
problem of formulating the integral version of the Yang-Mills equations.

By scanning the 3 + 1 dimensional Minkowski space-time with closed 2-dimensional surfaces based at a
reference point x r, which are in turn scanned by a family of homotopically equivalent loops based at z g, it
can be shown that the flux of the “conjugate field-strength” F}},, (v) = W' F, ()W through that closed
surface, with W being the holonomy defined along a loop from z r to x, will transform, under a local gauge
transformation g(z), as ® — g(zr)®g(xr) ™", i.e., bringing the gauge group element to that defined at the
reference point.

A relation between the flux of the conjugate field through the closed surface 92 and quantities evaluated
inside the volume (2 can be established and expanding this construction for the dual field strength F,,, =
2 €uvopF7P, with the use of the (differential) Yang-Mills equations

\begin{eqnarray}

D_\mu F'{\mu\nu} &=& J"\nu_\textrm{e}\\

D_\mu \widetilde{F}"{\mu\nu} &=& J_\textrm{m} \nu,

\end{eqnarray}

with D, x = 8, x +ie[A,, %] the covariant derivative, F},, = 9, A, — 8, A, + ie[A,, A, the field strength

and J¥,, the electric and magnetic currents, we obtain their integral formulation:

\beginfeqnarray}

\oint_{\partial\Omega}W " {-1}F_{\mu\nu}W\frac{\partial x \mu}{\partial \sigma}\frac{\partial x"\nu}{\partial \tau}d\sigma
d\tau =\int_{\Omega}\epsilon_{\lambda\mu\nu\gamma}W"{-1}J_\textrm{m}"{\gamma}W\frac{\partial x"{\lambda}}{\partial
\zetaP\frac{\partial x"\mu}{\partial \sigma}\frac{\partial x"\nu}{\partial \tau} d\sigma d\tau d\zeta \nonumber\\
+\int_{\Omegaj\int_0"\sigma [F"W_{\mu\nu}(\sigma),F"W_{\alpha\beta}(\sigma"\prime)]\bigg(\frac{\partial x"\beta}{\partial
\zeta}(\sigma"\prime)\frac{\partial x"\nu}{\partial \tau}(\sigma)

- \frac{\partial x"\beta}{\partial \tau}(\sigma"\prime)\frac{\partial x \nu}{\partial \zeta}(\sigma) \bigg)\frac{\partial
x"\alpha}{\partial \sigma"\prime}\frac{\partial x"\mu}{\partial \sigma}d\sigma \prime d\sigma d\tau d\zeta

\end{eqnarray}

\beginfeqnarray}

\oint_{\partia\Omega}W"{-1}\tilde{F}{\mu\nu}W\frac{\partial x \mu}{\partial \sigmaj\frac{\partial x \nu}{\partial
\taujd\sigma d\tau = \int{\Omega}\epsilon_{\lambda\mu\nu\gamma}W"{-1}J \textrm{e}"{\gamma}W\frac{\partial
x*{\lambda}}{\partial \zeta}\frac{\partial x"\mu}{\partial \sigma}\frac{\partial x"\nu}{\partial \tau} d\sigma d\tau

d\zeta \nonumber\\

+\int_{\Omegaf\int_0"\sigma [\tilde{F}'W_{\mu\nu}(\sigma),F"W_{\alpha\beta}(\sigma"\prime)]\bigg(\frac{\partial
x"\beta}{\partial \zeta}(\sigma"\prime)\frac{\partial x"\nu}{\partial \tau}(\sigma)

- \frac{\partial x"\beta}{\partial \tau}(\sigma"\prime)\frac{\partial x "\nu}{\partial \zeta}(\sigma) \bigg)\frac{\partial
x"\alpha}{\partial \sigma"\prime}\frac{\partial x\mu}{\partial \sigma}d\sigma\prime d\sigma d\tau d\zeta.

\end{eqnarray}

In order to obtain the conserved charges, we consider the generalization of the holonomy operator by as-
signing to each loop parameterized by 7, scanning a closed 2-dimensional surface with base-point at x r, the
quantity B = §7 WﬁlBWW% %“”—:da and define the 2-holonomy by the differential equation
\begin{equation}

\frac{dV}{d\tau}+ieV\mathcal{B} = 0,

\end{equation}



whose solution is the ordered series

\beginfequation}

V[\partial \Omega] = V_\circ\;P_2\;e*{-ie\oint W*{-1}B_{\mu\nu}W\frac{\partial x"\mu}{\partial \sigma}\frac{\partial
x\nu}{\partial \tau}d\sigma d\tau}.

\end{equation}

This same operator can be obtained if we consider the 2-dimensional surface where it is calculated to be the

result of continuous deformations from an infinitesimal surface at zg. This leads to a definition of the 2-
holonomy as the ordered series

\begin{equation}

V[\Omega] = P_3\;e*{ie\int_{0}"{2\pi}\mathcal{A}(\zeta)d\zeta}\;V_\circ

\end{equation}

with

\begin{eqnarray]/

\mathcal{A} &=& \int_\Sigma VW{-1)\left(D_\lambda B_{\mu\nuj+D_\mu B_{\nu\lambda}+D_\nu B_{\lambda
\mul\right) WV {-1)\frac{\partial x \mu}{\partial \sigma}\frac{\partial x \nu}{\partial \tauj\frac{\partial x \lambda}{\partial
\zeta}d\sigma d\tau\\

&+&ie\int_\Sigma V\int_{0}"{\sigma}\left[\mathcal{F{{\mu\nu} "W (\sigma’),B"W {\mu\nu}(\sigma)\right]\left(\frac{\partial
x\muj{\partial \sigma}\frac{\partial x"{\nu}}{\partial \zeta}\frac{\partial x"\alpha}{\partial \sigma’}\frac{\partial

x \beta}{\partial \tau} - \frac{\partial x \mu}{\partial \sigma}\frac{\partial x"{\nuf}{\partial \tau}\frac{\partial x \alpha}{\partial
\sigma’}\frac{\partial x"\beta}{\partial \zeta}\right)V"{-1}d\sigma d\tau

\endfeqnarray}

where F,,, = Fo — By,

The fact that the operator V' can be calculated in these two different but equivalent approaches lead us to the
identity

\begin{equation}

P_3\;e"{ie\int_{0}"{2\pi}\mathcal{A}(\zeta)d\zeta}= P_2\;e"{-ie\oint W"{-1}B_{\mu\nu}W\frac{\partial x"\mu}{\partial
\sigmaj\frac{\partial x"\nu}{\partial \tau}d\sigma d\tau}.

\end{equation}

For B, = aF,., + Bﬁ uv» the above equation, which is the non-abelian Stokes theorem, leads to the integral
Yang-Mills equations.

Two given closed surfaces in space-time can be regarded as points in the loop space L?Q and the volume
between them will define a path in this space.

A consequence of the integral Yang-Mills equations is that the operator V[Q] is path-independent in L,
i.e., it does not change under a reparameterization of the volume enclosed by 0.

By appropriately splitting space-time into space and time one can then show that V' evolves fromat = 0
volume Qg to a t > 0 volume €; as

\beginfequation}

V[\Omega_t] = UV[\Omega_0]U"{-1},

\end{equation}

i.e., it undergoes a unitary tranformation, thus preserving its eigenvalues which can be identified with the
conserved charges.

The integral Yang-Mills equations can be regarded as a zero-curvature equation in the loop space L*Q and
the conserved charges are a consequence of the hidden gauge symmetry there.
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