Towards hidden symmetries in gauge theories

Gabriel Luchini

In collaboration with Luiz Agostinho Ferreira

Inspirations from flatland

lacksquare Hidden symmetries play a crucial role in 1+1 dimensional integrable field theories.

Zero-curvature representation of the equations of motion

$$F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}] = 0$$

■ Flatness of $A = A_{\mu}^{a} T_{a} dx^{\mu}$ leads to conserved charges.

The holonomy (parallel transport operator)

$$\frac{dW}{d\sigma} + A_{\mu} \frac{dx^{\mu}}{d\sigma} W = 0 \qquad W = P e^{-\int_{\gamma} A_{\mu} \frac{dx^{\mu}}{d\sigma} d\sigma} W_{\circ}$$

■ Variations of the path $x^{\mu} \rightarrow x^{\mu} + \delta x^{\mu}$ will change the holonomy as

$$\delta W = W \int_0^{2\pi} d\sigma \ W^{-1} F_{\mu\nu} W \frac{dx^{\mu}}{d\sigma} \delta x^{\nu} = 0 \Rightarrow W[\gamma] = 1$$

$$W[\gamma_t] = W[\gamma_L] \cdot W[\gamma_0] \cdot W^{-1}[\gamma_{\mathsf{x}_R}]$$

- With boundary conditions, $A_t|_{x=x_R} = A_t|_{x=L}$, $U(t) = P e^{-\int_0^t dt A_t|_{x=L}}$
- The holonomy restricted to space undergoes a isospectral evolution

$$W[\gamma_t] = U(t) \cdot W[\gamma_0] \cdot U^{-1}(t)$$
 $W[\gamma_t] = P e^{-\int_{x_R}^L dx A_x|_{t=0}}$

- The eigenvalues of the holonomy are conserved charges.
- The zero curvature equation is gauge invariant

The gauge transformation is a symmetry

$$A_{\mu} \rightarrow g A_{\mu} g^{-1} - \partial_{\mu} g \ g^{-1} \qquad F_{\mu\nu} \rightarrow g F_{\mu\nu} g^{-1}$$

■ These conserved charges are gauge invariant.

From integrable to integral equations

- Could we use a similar construction in gauge theories?
- But why? There is a problem concerning the charges of Yang-Mills theories.
- Yang-Mills equations were constructed à la Maxwell, for non-abelian gauge groups

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ie[A_{\mu}, A_{\nu}], \quad \widetilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\lambda\rho}F_{\lambda\rho}, \\ D_{\mu}\star = \partial_{\mu}\star + ie[A_{\mu},\star]$$

Yang-Mills equations

$$D_{\mu}F^{\mu\nu}=J^{\nu}\qquad D_{\mu}\widetilde{F}^{\mu\nu}=0$$

■ The local conservation of non-abelian charges is not trivial:

$$\mathcal{J}^{
u}=J^{
u}-ie[A_{\mu},F^{\mu
u}] \qquad \partial_{\mu}\mathcal{J}^{\mu}=0$$

• A key point in Maxwell electrodynamics is the Stokes theorem.

The Stokes theorem for a 2-form $B=\frac{1}{2}B_{\mu\nu}dx^{\mu}\wedge dx^{\nu}$

$$\oint_{\partial\Omega}B=\int_{\Omega}dB$$

■ The integral equations are a consequence of the Stokes theorem and the Maxwell differential equations

$$B_{\mu\nu} = \alpha f_{\mu\nu} + \beta \widetilde{f}_{\mu\nu} \quad dB = \frac{1}{3!} \left(\alpha \partial_{\mu} \widetilde{f}^{\mu\nu} + \beta \partial_{\mu} f^{\mu\nu} \right) \epsilon_{\nu\rho\sigma\lambda} dx^{\rho} \wedge dx^{\sigma} \wedge dx^{\lambda}$$

$$\oint_{\partial\Omega} f_{\mu\nu} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau = 0$$

$$\oint_{\partial\Omega} \tilde{f}_{\mu\nu} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau = \frac{4\pi}{c} \int_{\Omega} \epsilon_{\lambda\rho\gamma\mu} j^{\mu} \frac{\partial x^{\lambda}}{\partial \sigma} \frac{\partial x^{\rho}}{\partial \tau} \frac{\partial x^{\gamma}}{\partial \zeta} d\sigma d\tau d\zeta$$

■ To appear soon: Zaché, Victor and L.,G.

Yang-Mills integral equations

■ Can we relate charge and flux in Yang-Mills theories? For $B_{\mu\nu}$ either $F_{\mu\nu}$ or $\widetilde{F}_{\mu\nu}$,

$$\Phi = \oint_{\partial\Omega} B_{\mu\nu} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau$$

 We expect charges to be gauge invariant and under a gauge transformation,

$$\Phi \to \oint_{\partial\Omega} g(x) B_{\mu\nu}(x) g^{-1}(x) \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau.$$

- So, we have a problem... but we can make things better!
- First thing to learn: a fancy way to define points in space-time.

■ Introduce the "conjugate field": $B_{\mu\nu}^W = W \ B_{\mu\nu} \ W^{-1}$.

Under a gauge transformation

$$B_{\mu\nu}(x) \rightarrow g(x)B_{\mu\nu}(x)g^{-1}(x)$$

 $W[\gamma] \rightarrow g(x)W[\gamma]g^{-1}(x_R)$
 $B_{\mu\nu}^W(x) \rightarrow g(x_R)B_{\mu\nu}^W(x)g^{-1}(x_R)$

$$\Phi \to g(x_R) \Phi g^{-1}(x_R)$$

A derivation of Stokes theorem for the conjugate field

$$\Phi(B_{\mu\nu}^W, \Sigma_0) = \int_{\Sigma_0} W^{-1} B_{\mu\nu} W \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau.$$

$$\begin{split} \frac{d\Phi}{d\zeta} &= \int_{\Sigma} W^{-1} (D_{\lambda} B_{\mu\nu} + D_{\mu} B_{\nu\lambda} + D_{\nu} B_{\lambda\mu}) W \frac{\partial x^{\lambda}}{\partial \zeta} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau \\ &+ \int_{\Sigma} \int_{0}^{\sigma} \left([B_{\mu\nu}^{W}(\sigma), F_{\alpha\beta}^{W}(\sigma')] S^{\beta\nu} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\alpha}}{\partial \sigma'} d\sigma d\tau \right) d\sigma'. \end{split}$$

$$S^{\beta\nu} \equiv \left(\frac{\partial x^{\beta}}{\partial \zeta}(\sigma')\frac{\partial x^{\nu}}{\partial \tau}(\sigma) - \frac{\partial x^{\beta}}{\partial \tau}(\sigma')\frac{\partial x^{\nu}}{\partial \zeta}(\sigma)\right)$$

The Stokes theorem

$$\int_{\partial\Omega}W^{-1}B_{\mu\nu}W\frac{\partial x^{\mu}}{\partial\sigma}\frac{\partial x^{\nu}}{\partial\tau}d\sigma d\tau=\int_{0}^{2\pi}\mathcal{K}(\zeta)d\zeta$$

$$\mathcal{K}(\zeta) \equiv \int_{\Sigma} W^{-1}(D_{\lambda}B_{\mu\nu} + D_{\mu}B_{\nu\lambda} + D_{\nu}B_{\lambda\mu})W\frac{\partial x^{\lambda}}{\partial \zeta}\frac{\partial x^{\mu}}{\partial \sigma}\frac{\partial x^{\nu}}{\partial \tau}d\sigma d\tau + \int_{\Sigma} \int_{0}^{\sigma} \left([B_{\mu\nu}^{W}(\sigma), F_{\alpha\beta}^{W}(\sigma')]S^{\beta\nu}\frac{\partial x^{\mu}}{\partial \sigma}\frac{\partial x^{\alpha}}{\partial \sigma'} \right)d\sigma' d\sigma d\tau.$$

■ Taking $B_{\mu\nu} = \alpha F_{\mu\nu} + \beta \widetilde{F}_{\mu\nu}$ and using the Yang-Mills differential equations we make this theorem an integral physical law.

$$\begin{split} \oint_{\partial\Omega} W^{-1} F_{\mu\nu} W \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau &= \int_{\Omega} \epsilon_{\lambda\mu\nu\gamma} W^{-1} J_{m}^{\gamma} W \frac{\partial x^{\lambda}}{\partial \zeta} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau d\zeta \\ &+ \int_{\Omega} \int_{0}^{\sigma} [F_{\mu\nu}^{W}(\sigma), F_{\alpha\beta}^{W}(\sigma')] S^{\beta\nu} \frac{\partial x^{\alpha}}{\partial \sigma'} \frac{\partial x^{\mu}}{\partial \sigma} d\sigma' d\sigma d\tau d\zeta, \end{split}$$

and

$$\begin{split} \oint_{\partial\Omega} W^{-1} \tilde{F}_{\mu\nu} W \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau &= \int_{\Omega} \epsilon_{\lambda\mu\nu\gamma} W^{-1} J_{\rm e}^{\gamma} W \frac{\partial x^{\lambda}}{\partial \zeta} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau d\zeta \\ &+ \int_{\Omega} \int_{0}^{\sigma} [\tilde{F}_{\mu\nu}^{W}(\sigma), F_{\alpha\beta}^{W}(\sigma')] S^{\beta\nu} \frac{\partial x^{\alpha}}{\partial \sigma'} \frac{\partial x^{\mu}}{\partial \sigma} d\sigma' d\sigma d\tau d\zeta. \end{split}$$

The conserved charges

- We define a "new" holonomy such that the dynamical (integral) equations imply its path independence.
- Introduce the 2-holonomy on a closed surface $\partial\Omega$ scanned by loops labelled by $\tau \in [0, 2\pi]$:

$$rac{dV}{d au}+ieV\mathcal{B}=0, \qquad \mathcal{B}=\oint_{\gamma}W^{-1}B_{\mu
u}Wrac{\partial x^{\mu}}{\partial\sigma}rac{\partial x^{
u}}{\partial au}d\sigma$$

$$V[\partial\Omega] = V_{\circ} \; P_{2} \; e^{-ie\int_{\partial\Omega} W^{-1}B_{\mu\nu}W rac{\partial x^{\mu}}{\partial\sigma} rac{\partial x^{\nu}}{\partial\tau} d\sigma d au}$$

Consider $\partial\Omega$ to be obtained from Σ_0 . V changes from $V[\Sigma_0]$ as

$$\mathbf{X}_{\mathsf{R}}$$

$$\frac{dV}{d\zeta} - ie\mathcal{A}V = 0 \qquad V[\Omega] = P_3 \ e^{ie\int_0^{2\pi} \mathcal{A}(\zeta)d\zeta} \ V_{\circ}$$

$$\mathcal{A}(\zeta) = \int_{\Sigma} VW^{-1} \left(D_{\lambda} B_{\mu\nu} + D_{\mu} B_{\nu\lambda} + D_{\nu} B_{\lambda\mu} \right) WV^{-1} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} \frac{\partial x^{\lambda}}{\partial \zeta} d\sigma d\tau$$

$$+ ie \int_{\Sigma} V \int_{0}^{\sigma} \left[F_{\mu\nu}^{W}(\sigma') - B_{\mu\nu}^{W}(\sigma'), B_{\mu\nu}^{W}(\sigma) \right] S^{\mu\alpha\beta\nu} V^{-1} d\sigma' d\sigma d\tau$$

$$S^{\mu\alpha\beta\nu} \equiv \left(\frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \zeta} \frac{\partial x^{\alpha}}{\partial \sigma'} \frac{\partial x^{\beta}}{\partial \tau} - \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} \frac{\partial x^{\alpha}}{\partial \sigma'} \frac{\partial x^{\beta}}{\partial \zeta} \right)$$

An important identity

$$P_3 e^{ie \int_0^{2\pi} \mathcal{A}(\zeta) d\zeta} = P_2 e^{-ie \oint W^{-1} B_{\mu\nu} W \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} d\sigma d\tau}$$

We look at $V[\Omega]$ as an operator in loop space $L^2\Omega$.

The path-independence of $V[\Omega]$ gives

$$V[\Omega_t] = V[\Omega_\infty]V[\Omega_0]V^{-1}[\Omega_R] = U(t)V[\Omega_0]U^{-1}(t).$$

Under a gauge transformation: $V[\Omega_t] \to g(x_R)V[\Omega_t]g^{-1}(x_R)$.

The eigenvalues of $V[\Omega]$ are gauge invariant dynamically conserved charges of Yang-Mills theories.

UFES-FAPES

The magnetic monopole configuration

Wu-Yang and 't Hooft-Polyakov (at $\|\mathbf{x}\| \to \infty$)

$$A_i = -\frac{1}{e} \epsilon_{ija} \frac{x^j}{r^2} T_a, \qquad A_0 = 0, \qquad F_{ij} = \frac{1}{e} \epsilon_{ijk} \frac{\hat{r}^k}{r^2} \hat{r} \cdot \vec{T}.$$

One can show that

$$\frac{d}{d\sigma}\left(W^{-1}\ \hat{r}\cdot\vec{T}\ W\right) = W^{-1}\ D_i\left(\hat{r}\cdot\vec{T}\right)\ W = 0$$

and the flux of the conjugate field through a spatial surface becomes "abelianized":

$$\Phi = \oint_{\partial\Omega} W^{-1} F_{ij} W \frac{\partial x^i}{\partial \sigma} \frac{\partial x^j}{\partial \tau} d\sigma d\tau = -\frac{1}{e} \oint_{\partial\Omega} \frac{\hat{r}}{r^2} T_R \cdot d\vec{S} = -\frac{4\pi}{e} T_R$$

where
$$\mathcal{T}_R \equiv \left(W^{-1} \; \hat{r} \cdot \vec{\mathcal{T}} \; W
ight) \Bigg|_{x_R}$$
 .

The integral equation

$$\oint_{\partial\Omega} W^{-1} F_{ij} W \frac{\partial x^{i}}{\partial \sigma} \frac{\partial x^{j}}{\partial \tau} d\sigma d\tau = \int_{\Omega} \epsilon_{kij0} W^{-1} J_{m}^{0} W \frac{\partial x^{k}}{\partial \zeta} \frac{\partial x^{i}}{\partial \sigma} \frac{\partial x^{j}}{\partial \tau} d\sigma d\tau d\zeta
+ \int_{\Omega} \int_{0}^{\sigma} \underbrace{\left[F_{ij}^{W}(\sigma), F_{kl}^{W}(\sigma')\right]}^{0} S^{lj} \frac{\partial x^{k}}{\partial \sigma'} \frac{\partial x^{i}}{\partial \sigma} d\sigma' d\sigma d\tau d\zeta$$

requires a non-vanishing contribution from the conjugate charge density. The Yang-Mills equation ($[A_i, B_i] = 0$ for Wu-Yang configuration)

$$\partial_i B_i = 0$$

can be treated in terms of distributions:

$$\langle T_{B_i}, \mathcal{F} \rangle \equiv \int_{\Omega} B_i \mathcal{F} \ dV, \quad \langle \partial_j T_{B_i}, \mathcal{F} \rangle \equiv - \int_{\Omega} B_i \partial_j \mathcal{F} \ dV,$$

$$\langle \partial_i T_{B_i}, \mathcal{F} \rangle^a = -\frac{1}{e} \mathcal{F}(\vec{0}) \int \hat{r}^a \sin \theta d\theta d\varphi = 0$$

Then, we must find a function ρ such that

$$\int_{\Omega} d^3x \; \rho \; \mathcal{F} = \int_{\Omega} d^3x \; \partial_i B_i = 0$$

Any function of the type

$$\rho = C \frac{\delta(r)}{r^2} \hat{\mathbf{r}} \cdot \vec{T}$$

will do but the constant C can only be fixed using the integral equations:

$$\rho = -\frac{1}{e} \frac{\delta(r)}{r^2} \hat{\mathbf{r}} \cdot \vec{T}$$

The charges of the Wu-Yang monopole

The charge operator reads

$$V = P_3 \; e^{i\alpha e \int_{\Omega} VW^{-1} J_m^{\gamma} WV^{-1} \epsilon_{\lambda\mu\nu\gamma} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} \frac{\partial x^{\lambda}}{\partial \zeta} d\sigma d\tau d\zeta} = e^{i\alpha 4\pi T_R}$$

The charges g of the monopole are then given by the eigenvalues of the flux operator of the conjugate magnetic field

$$Q = \int_{\partial\Omega} W^{-1} \mathsf{B} W \cdot d\mathsf{S} = -\frac{4\pi}{e} T_R$$

which in a diagonal basis of the spin j representation of SU(2) are given by

$$g=\frac{4\pi}{e}(j,j-1,\ldots,-j).$$

The hidden symmetry

■ The local Yang-Mills equations imply the zero curvature

$$\delta A + A \wedge A = 0$$

with

$$\mathcal{A} = \int d\tau \int d\sigma V \left\{ ie\beta \widetilde{J}_{\mu\nu\lambda}^{W} \frac{\partial x^{\mu}}{\partial \sigma} \frac{\partial x^{\nu}}{\partial \tau} \delta x^{\lambda} \right.$$

$$+ e^{2} \int_{0}^{\sigma} d\sigma' \left[\left((\alpha - 1) F_{\kappa\rho}^{W} + \beta \widetilde{F}_{\kappa\rho}^{W} \right) (\sigma'), \left(\alpha F_{\mu\nu}^{W} + \beta \widetilde{F}_{\mu\nu}^{W} \right) (\sigma) \right]$$

$$\times \frac{\partial x^{\kappa}}{\partial \sigma'} \frac{\partial x^{\mu}}{\partial \sigma} \left(\frac{\partial x^{\rho}}{\partial \tau} (\sigma') \delta x^{\nu} (\sigma) - \frac{\partial x^{\nu}}{\partial \tau} (\sigma) \delta x^{\rho} (\sigma') \right) \right\}$$

which is a connection in the loop space $L^2\Omega$.

This is a conservation law.

- There is more to the conserved charge then the matter fields from the current J^{μ} .
- The commutator term in the integral equations is new and it contributes to the flux of the (conjugate) field strength.
- The hidden symmetry leading to the conserved charges is the path independence of the 3-holonomy in the loop space.
- We need to understand what are the gauge transformations in loop space, which are symmetries of the zero-curvature equation.

Thanks!