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Outline:

o Lee-Wick theories and Quadratic Gravity

e (Color-kinematics Duality in Higher-Derivative QCD
e Double Copy for quadratic gravity amplitudes

e Loops and Generalized Unitarity

e Outlook



Quadratic gravity: An overview

Early explorers: Stelle, Fradkin-Tsetlyn, Adler, Zee, Smilga, Tomboulis,
Antoniadis, Hasslacher-Mottola, Lee-Wick, Coleman, Boulware-Gross...

Current explorers: Einhorn-Jones, Salvio-Strumia, Holdom-Ren, Donoghue-
Menezes, Mannheim, Anselmi, Odintsov, Shapiro, Accioly, Narain-Anishetty...

Related work: Lu-Perkins-Pope-Stelle, ‘t Hooft, Grinstein-O’Connell-Wise...

See also Ronaldo Thibes's talk

Action (k? = 327G):
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Spin-two part of the propagator: (Parametrization: g,, = n,(e")?, =

1 A
Donoghue and GM, PRD 97, 126005 (2018)
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Here N, = 199/3 and Ngg, is a number that depends on the number
of light degrees of freedom with the usual couplings to gravity, Neg =
Ny + iN r+ %NS + 21/6. With the Standard Model fields plus gravity,
Neg = 325/12.



IL.ee-Wick theories

e In theories with fundamental curvature-squared terms, the graviton prop-
agator will be quartic in the momentum. This is generally considered to
be problematic. With a quartic propagator in free field theory one expects
negative norm ghost states, using for example (u? > 0) ‘

200!

1 1 1
4 T 2 2 2 .
@designbyhumans

e This is also the case of the so-called Lee-Wick theories (e.g., a higher-
derivative QED). Interactions in such theories make the heavy state un-
stable, with a width which can be calculated in perturbation theory. This
teature is a crucial modification as it removes the ghost from the asymp-
totic spectrum.

e Past experience with Lee-Wick theories indicates that they can be stable
and unitary, although causality does seem to be violated on microscopic
scales of order the width of the resonance.

e The massive states for the Lee-Wick QED model must be heavier than en-
ergies probed by the LHC. The associated micro-causality violation would
then be associated with a time scale of ~~ 1072° seconds. In the gravi-
tational case, the micro-causality violation would be proportional to the
Planck time, 10~*3 seconds.



Ghost resonances

e The theories which we are studying have propagators of the form
?

¢® +ie — = + S(q)

1D(q) =

The pole at ¢° = 0 is the stable particle of the theory.

e At one-loop order, the self-energy typically has the form

(g) = —~ log <_q2 - ie) = {—llog <q—?> +i79(q2)}

T 1 T 1

for some calculable quantity v with dimensions of mass squared.

e A massive resonance for timelike values of ¢°. Expanding near that reso-

narnce:

— Merlin modes!

1D(q)
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Observe the minus sign in the numerator — a ghost-like resonance.



Formal discussion of unitarity

Unitarity:
(FITLG) = (FIT i)y = i Y (AT (GIT i)

J

In processes that involve loop diagrams, the sum over real intermediate
states can by accomplished by the Cutkosky cutting rules.

What we usually do: look first at the free field theory to identify the free
particles.

Turn on interactions: some of these particles become unstable and no
longer appear as the asymptotic states of the theory. The free field limit
has maslead us.

Should one include such unstable particles in the sums over states required
for unitarity? Veltman says no!

Veltman: unitarity is indeed satisfied by the inclusion of only the asymp-
totically stable states. Cuts are not to be taken through the unstable
particles, and unstable particles are not to be included in unitarity sums.

However, in the narrow-width approximation, the off-resonance produc-
tion becomes small and only resonance production is important. In this
limit a cut taken through the unstable particle with its width set to zero
reproduces the same result as a cut through the decay products.

UNITARITY AND CAUSALITY IN A RENORMALIZABLE
FIELD THEORY WITH UNSTABLE PARTICLES

M. VELTMAN %)



e Unitarity works with the stable particles as external states in the unitarity
sum.

e The ghost resonance does not occur as an external state.

e Normal resonances and ghost resonances can be described in the same
propagator using the coupling to the stable states described by the same

¥(q).

e Veltman’s work: normal resonances satisty unitarity to all orders. Hence
any discontinuity calculated with normal resonances in the intermediate
states, can be converted into a discontinuity with ghost resonances by
using:

. i
WDia) = ¢> —m?+3(q) — ¢* /A

e If the normal resonance satisfies the unitarity relation, the ghost resonance

will also!
Donoghue and GM, PRD 100, 105006 (2019)



Causality in higher-derivative theories

Donoghue and GM, PRL 123, 171601 (2019) (Editor’s suggestion)

Causality in quantum field theory is defined by the vanishing of field com-
mutators for space-like separations.

However, this does not imply a direction for causal effects. Hidden in our
conventions for quantization is a connection to the definition of an arrow
of causality.

Mixing quantization conventions within the same theory, we get a violation
of microcausality. In such a theory with mixed conventions the dominant
definition of the arrow of causality is determined by the stable states.

In some quantum gravity theories, such as quadratic gravity and possibly
asymptotic safety, such a mixed causality condition occurs.



Modern Amplitudes Program

Scattering experiments are fundamental for our understanding of nature.
The Standard Model of particle physics was constructed upon scattering
experiments.

The primary observable associated with particle scattering experiments
is the scattering cross-section. It incorporates the probability of a given
process to take place as a function of the energy and momentum of the
particles involved.

Interpretation of data from scattering experiments relies on predictions of
theoretical calculations of scattering cross-sections — quantum field the-
ory (QFT). This is the mathematical language for describing elementary
particles and their interactions.

In quantum field theory, the differential cross-section is proportional to
the norm-squared of the scattering amplitude.



Modern goals

Early explorers: Bern, Dixon, Kosower, Dunbar, Chalmers, Morgan, Mahlon,
Berends, Giele, Parke, Taylor, Mangano, Kawai, Lewellen, Tye, Zhu,
Goebel, Halzen, Leveille, Kleiss, Stirling, Kuijf, ... There was a lot of
particle phenomenology in the old days.

Modern on-shell amplitudes program : Development of more efficient ways
to calculate scattering amplitudes (recursion relations for tree-level am-
plitudes).

Mathematical structure of on-shell amplitudes. Recent ideas comprise rep-
resentations of amplitudes in terms of contour integrals in Grassmannian
spaces (spaces of k-planes in n-dimensional space) and geometrizations
such as polytopes, amplituhedrons, associahedrons, etc. The amplitude is
related to a volume form for a geometric object in some abstract mathe-
matical space.

Amplitude bootstrap: Traditionally one starts with a Lagrangian, writes
down the Feynman rules, and use them to calculate the amplitudes. A new
approach is to consider the physical observables — the amplitudes — as the
starting point, impose constraints on particle spectrum and symmetries
on the amplitudes and implement tests of mathematical consistency.



Color-kinematics, BCJ relations and double copy

Bern, Carrasco, Chiodaroli, Johansson and Roiban, 2019

e Gravity amplitudes are notoriously complicated!

e In the mid-80s it was realized that tree-level closed string amplitudes can
be written as sums of products of tree-level open-string amplitudes, the
Kawai-Lewellen-Tye (KLT) relations. In the limit of infinite string tension,
this becomes the field theory statement that the graviton tree amplitudes
can be obtained as a sum of products of gluon scattering amplitudes:

. 2
GI’&VIty = Gauge Theory : Kawai, Lewellen and Tye, 1986

This is the so-called double copy.

e Tree-level gauge theory amplitudes of gluon scattering could be written in
a form where certain kinematic numerators obey the same Jacobi identities
as the algebraic color factors of the non-abelian gauge group of the theory.
This is called color-kinematics duality. Moreover, if one replaces the color
factors in this representation of the amplitude with the kinematic tfactors
of gauge theory, remarkably the result is the gravity tree amplitude! This
is the BCJ (Bern, Carrasco, and Johansson) double copy.

Bern, Carrasco and Johansson, 2008



How does it work?

e The full color-dressed n-point tree amplitude of Yang—Mills theory can be
conveniently organized in terms of diagrams with only cubic vertices

S

e The tree amplitude is then written as a sum over all distinct trivalent

diagrams:
Atree _ E : CiTy
n o 2

1




e In general, for any set of three trivalent diagrams whose color factors are
related through a Jacobi identity, ¢; +c; +ci = 0, the following numerator-
deformation leaves the amplitude invariant:

ni — 1 + 82 n; —n;+s;A ng — ng + spA

ARV d

C; + Cj + Ci = 0

Elvang and Huang, 2015



Color-kinematics duality

e The duality states that scattering amplitudes of Yang—Mills theory, and
its supersymmetric extensions, can be given in a representation where the
numerators have the same algebraic properties as the corresponding color
factors:

C; = —Cj <> Ny = —MNy

¢it+tci+tc=0cn;+n; +ni =0

e The duality does not state that the numerator factors have to be local;
they are allowed to have pOleS. Gauge redundancy of numerators!

e Under color-kinematics duality, one can derive relations among color-
ordered amplitudes, such as

tALe°[1324] = s AT°[1234].

This is an example of the BCJ relations.

Bern, Carrasco and Johansson, 2008



Non-planar contributions can be derived from planar terms!

Zvi Bern, Cargese 2010



Gluon scattering in QCD

Five gluon tree level scattering with Feynman diagrams:

Result of a brute force calculation:
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Higher-derivative Yang-Mills theory

GM, arXiv:2112.00978 [hep-th]

See also: Grinstein, O'Connell and Wise, 2008

e We consider that only the gauge sector displays a higher-derivative con-
tribution. The Lagrangian reads:

M? 1
MPL = ———Fj, F*" + 5D, F*" D\F*".

e 3-particle amplitudes involving only physical gluons will not display con-
tributions coming from higher-order derivative terms:

A 22 3hs) = M2 AP 1M ohe 3he).

Using the BCF'W recursion relations, one can show that this result carries
out to an arbitrary number of gluons.

e Amplitudes involving a single Merlin particle vanish:

A(4)

naq (1202 ol BTy = 0.

First obtained by H. Johansson, G. Mogull and F. Teng (2018).



3-point Amplitudes with Merlins

e Propagator:

5ab

PuPv 6 PuPv
|9 % (p) p2 <”,u ( g) 2 ) 2 7‘ [2 717‘ [F ”,u 7‘ (2

e 3-particle amplitudes with two Merlins:

As[17,2,3] = f2<r<f’1‘>1} (32)2
A3[17,2,3] = \/2["“\3!1> 32]°.

1r]
e 3 Merlins:

As[1,2,3] = 2\/5([12} 13](23) + [12](13)[23] + (12)|13] [23}).

See also: Durieux, Kitahara, Shadmi and Weiss, 2020



Tree-level Compton Amplitudes: gluon-Merlin scattering

e Amplitudes involving gluons and Merlins:

14]  (32)2
<14> S192 — M2

Ayl2,17, 4% 3] = 2M*

_ 4 1 2
Adf2,17,47,8) = 20— ([43](12) + (13) [42] )

e The color-ordered amplitudes in this case obey the standard BCJ relations.
For instance:

(812 — MQ)A4[2, 1+, 4+, 3] — (813 — MQ)A4[2, 4+, 1+, 3]

See also: H. Johansson and A. Ochirov, 2019



Tree-level Compton Amplitudes: scalar-Merlin scattering

Amplitude involving massive scalars and Merlins:

L (110a1](2/¢512] 1

A4[€A71727€B] — M2 s — m2

1 2

_ % [(12> [21)(1—2) - 04— (<1WAI1] (21]2] - <2|€A|2}<1I2|1])} (g BEEYE

In order to discuss CK duality, we need to work with the full amplitude.

Numerators:
(0)
_ CrTy
ne = ]\22<1|£A|1}<2|532]+<12]\>}221} [2(1-04) + M?] A(172»374)—§]; 5
ny = W(<12>[21}(1—2).eA+<1\zA|1}<2|eB|2}—<2|5A|2}<1|53\1])
ne = i)z + 22 pe 0 4

Unique, gauge-invariant numerators!

Observe that
CS_Cu:CtHnS_nu:nt-

Amplitudes do not obey standard BCJ relations!




Tree-level Compton Amplitudes: fermion-Merlin scattering

Amplitude involving massless fermions and Merlins:

) (31)[1|(1 + 3)|2)[24] 1
M?2

n % [<12> 21](3](1 — 2)|4] — 2({13} 41](2[1]2] — (23)[42] <1‘2‘1]>]

1 2
t  t— M?

Numerators for the full amplitude:

A4[3_1/27 17 274+1/2] —

ne = %(31>[1|(1+3) 2) [24]
me = o |2 [21)3100 - 2)l4] + 2((31)[14] 213 — 4)12] — (32) [24] (113 - 1] )]
- %<32>[2|(2+3)\1>[14}.

Unique, gauge-invariant numerators!

Observe that

Amplitudes do not obey standard BCJ relations!



This is all so nice, but...what about gravity?

e Color-kinematics and BCJ relations allows us to write gravity amplitudes
as

2

Mtree _ E ni
mn H 9

It can be generalized in terms of the product of two possibly distinct
Yang—Mills numerators:

Mtree — TiTti BCJ double copy!
mn H pQ
079 o'

1

e The general idea is to start from the above formula, use color-kinematics
duality and BCJ relations to show that we obtain the KLT relations, such
as

Miree(1,2,3,4) = —is;aA(1,2,3,4)A5°(1,2,4,3)
M{Er°(1,2,3,4,5) = is12532A%(1,2,3,4,5)A%°(2,1,4,3,5)
+ iS13504A%°(1,3,2,4,5)A°(3,1,4, 2, 5)

Bern, Carrasco and Johansson, 2008, 2010

Bjerrum-Bohr, Donoghue and Vanhove, 2014



So indeed gravity = (gauge theory)?!

e This is the famous double-copy formula. Only one copy of the numerators
needs to satisty the duality, not both.

e Assuming that there exists a duality-satisfying set of local numerators
for the Yang— Mills tree amplitude, one can rigorously prove that the
doubling-relation produces the correct gravity tree amplitude for any n.
The proof is established inductively by showing that the difference between
this equation and the gravity amplitude obtained from BCFW recursion
vanishes if one assumes the doubling-relation to hold for all lower-point
amplitudes.

Bern, Dennen, Huang and Kiermaier, 2010

Elvang and Huang, 2015

3-point graviton amplitudes:

Ms(177,277,31) = (12)° = A3[17,27,3™)?
- 12]° b oot a2
Ms3(1Ft*,277 377) = > = As[17,27,37)°




But see: Borsten, Jurco, Kim, Macrelli, Saemann, Wolf,
Caveats . arXiv:2102.11390 [hep-th]

Unlike at tree-level, there is currently not a formal proof of the existence
of duality-satisfying numerators at loop level. Furthermore, the map does not
produce a pure Einstein gravity. Typically the double copy of two vector fields
contains more than just the graviton. For example, a gluon in four dimension has
two helicities 41, so the square has four states: the £2 correspond to graviton,
and the zero-helicity states which are identified as the dilaton scalar ¢ and a
Kalb-Ramond two-form B,,,,. This is a consequence of the fact that low-energy
string theory produces

K2 3o/
_ ie—Sqﬁ/(D 2)H \HPA i dOHp + O(a!)
12 D—-2"

where H,, is the fully antisymmetric field strength for B,,. The projection
to pure gravity, which eliminates the dilaton and axion, can be performed in
any case: When using the four-dimensional helicity method, we simply correlate
the helicities of the two copies of gauge theory amplitudes. Moreover, we can
simply apply the projection to graviton on each of the massless cut legs, which
are external lines for tree-level blobs in a generalized unitarity cut.

In summary:

4d axion-dilaton gravity = YM ® YM
and similarly

N =8 SUGRA = (N =4 SYM) ® (M =4 SYM)



Quadratic gravity amplitudes

See also: Bob Holdom, 2021 GM, arXiv:2112.00978 [hep-th]
Work in the Einstein frame (Einstein-Weyl theory):

1

2 ryo
S:/d4azx/—g {?R 2§2CW@50“ B

where k* = 327G.

Employ the map:

YM: spontaneously broken!

(Higher-derivative YM) ® YM = Weyl-Einstein
See also: H. Johansson and J. Nohle, 2017; H. Johansson, G. Mogull and F. Teng, 2018

Spectrum: Besides the graviton, dilaton and axion, we also have additional
five physical degrees of freedom associated with a gravitational Merlin,
three states associated with a Merlin 2-form field and a Merlin scalar!

Projection to pure gravity: Simply correlate the helicities in the two gauge-
theory copies. This works in a similar fashion for quadratic gravity: In
order to work with only gravitational Merlins, we take the symmetric
tensor product of gauge-theory Merlins.



3-point amplitudes and propagator

Propagator:

1

1 2
D,pra (p) — ﬁ (nupnz/a"_nﬂanvp_nuvnpa) — 2(]?2 _ M2 — ZMF) (Uﬂp”ua"‘nuanup_gnuunpa) .

3-particle amplitudes involving only physical gravitons do not display con-
tributions coming from higher-order derivative terms:

M{P [k ohe 3hs] — a2 pg{P (1 2he 3ha]

and this result generalizes to an arbitrary number of gravitons by using
BCFW recursion relations.

Amplitudes involving a single gravitational Merlin particle vanishes:

@

nop (122 i k) =0

3-particle amplitude involving two gravitational Merlin particles:

2
++ - gtree, HD 4 + tree,YM 4 + o <T|3‘1] 4
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Tree-level Compton Amplitudes: graviton-Merlin scattering

e Amplitudes involving gravitons and Merlins:

Moo (2,171 47+ 3)

M (2,177,471, 3)
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See also: H. Johansson and A. Ochirov, 2019



Triple graviton vertex, calculated from quadratic gravity (Jordan frame)
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Tree-level Compton Amplitudes: scalar-Merlin scattering

e To evaluate Compton scattering amplitude involving two gravitational
Merlin particles and two matter particles, we apply the BCJ double-copy

prescription:

M(14,2,3,4) =iy -
k

(Sl)ﬁ(82)

k k
Sk

where s = s1 + s9, 2,3 are graviton or Merlin particles, n; are numerators
belonging to the spontaneously broken gauge theory of the double copy
described earlier and s are inverse propagators (they could be massive).

e For the scalar case:
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Loops and Generalized Unitarity

Bern, Dixon, Dunbar and Kosower, 1994, 1995

e The strategy of calculating gluon amplitudes of standard Yang-Mills the-
ory from Grassmann integrations of N' = 4 SYM does not work at loop
level. Now the gluon amplitudes differ in both theories. However, the
tree-level method will still be useful since we are going to use tree-level
amplitudes to reconstruct loop-level amplitudes. This is the so-called gen-
eralized unitarity method

e The knowledge of tree amplitudes can be recycled into information about
loop integrands. The operation of taking loop propagators on-shell is
called a unitarity cut. It originates from the unitarity constraint of the S-
matrix. To see how, recall the unitarity demands that generalized optical
theorem holds, that is, for an arbitrary process a — b one has that

iA(a = b)—i A7 (b a) = — Z/dHfA*(b — F)A(a = )(2r)*6* (a— f)
f

and there is an overall delta function assuring energy-momentum conser-
vation.



e If we examine this constraint order by order in perturbation theory, it
tells us that the imaginary part of scattering amplitudes at a given order
is related to the product of lower-order results. Using the cutting rules, it
is possible to associated to each cut a one-particle final state; hence, for
two-particle cuts one associates a two-particle final state, for three-particle
cuts one associated a three-particle state, and so on.

e For one-loop process, one finds a product of two tree amplitudes. This
product involves the sum over all possible on-shell states that can cross
the cut. Only states from the physical spectrum of the theory are included
in this sum. In a unitarity cut, we restrict the loop-momenta to be on-shell
and only physical modes are included in the two on-shell amplitudes .

e The cutting rules also include integrals of any remaining freedom in the
loop-momentum after imposing the so-called cut constraints and momen-
tum conservation. For instance, for one-loop 2 — 2 processes, the integral
over all allowed kinematic constraints takes the form

/ U6, ()5, (0 — p1 — p2)?).

Carrasco and Johansson, 2011



e The imaginary part of the amplitude probes its branch-cut structure,
hence the unitarity cut allows us to relate the pole structure of the in-
tegrand with the branch-cut structure of the loop-integral. One can re-
construct the integrand by analyzing different sets of unitarity cuts. The
unitarity cuts can also involve more than two cut lines. An N-line cut
simply means that N internal line are taken on-shell. Reconstruction of
the full loop amplitude from systematic application of unitarity cuts is
called the generalized unitarity method. To identify contributions to the
amplitude, one computes generalized unitarity cuts on the level of the
integrand, expressing them as a product of on-shell subamplitudes

> AWARAG) - A,

states

The cuts can be computed directly from the theory by feeding in the
corresponding subamplitudes and summing over the intermediate states.

e The unitarity method instructs us to reconstruct amplitudes using the
information from the set of all generalized unitarity cuts of a theory.

e The method of generalized unitarity consists in finding an integrand that

reproduces all the unitarity cuts, including of course all the maximal cuts.
Carrasco and Johansson, 2011 Bern and Huang, 2011 Britto, 2011



e The information from unitarity cuts can be utilized most efficiently if we
know a priori a complete basis of integrals that can appear in the scattering
amplitudes. In D dimensions all one-loop amplitudes can be written as a
sum of m-gon one-loop scalar integrals I,, for m =1,2,3,...,D :

Ao S O0I0 4 Y ORI e Y O Y IR
7 k [

1

where R denotes terms that are rational in the external variables and Cg)
are kinematic-dependent coeflicients related to the tree-level amplitudes

for the m-gon scalar integrals Lgi).

e The D = 4 one-loop integral reduction to box, triangle, bubble and tad-
pole scalar integrals. The latter are related to the coefficients C’%l); such
integrals vanish in dimensional regularization when only massless particles

circulate in the loop.
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Loop amplitudes involving unstable particles

e In a theory with unstable particles (of any kind) unitarity is satisfied by
the inclusion of only the asymptotically stable states. This means that
cuts should not be taken through the unstable particles, and unstable
particles are not to be included in unitarity sums. UNITARITY AND CAUSALITY IN A RENORMALIZABLE

FIELD THEORY WITH UNSTABLE PARTICLES
M. VELTMAN %)

e In an one-loop analysis, four-dimensional amplitudes can be written as
a linear combination of scalar boxes, scalar triangles, scalar bubbles and
scalar tadpoles, with rational coefficients:

AP = AN e (K)In(K)

n=1 K

where K; are sums of external momenta and I,, are scalar integrals. The
coefficients c,, are calculated using generalized cuts.

e For instance, the quadruple cut picks up a contribution from exactly one
box integral, namely the one with momenta K1, Ko, K3, K4 at the corners.
Therefore, the cut expansion collapses to a single term

AgA TP = ¢y (K1, Ko, K3, K4) Ayl (K1, Ko, K3, Ky).

e Hence in principle the quadruple cut of the scalar box integral would suffice
to calculate the box coefficient.



e However, for unstable particle this procedure does not quite determine
such a coefficient. Using a modified Lehmann representation for the cut
propagator, one obtains the general expression

T

AgAlTlooP (H | s ﬁ(S”) [ 50 - 0BG - 50D ~ 51)
X BUOA0) — a8 AT(£) AF*(0) AT (0) AT (0).

e This means that we were not able to put the internal momenta on-shell;
this will only happen if the spectral function has a contribution from
one-particle states, which is not the case for unstable particles. So when
cutting an internal line corresponding to an unstable particle, the result we
obtain is not a contribution to the scattering amplitude. Hence in order
to implement the generalized unitarity method to a theory containing
unstable particles, we must consider the inclusion of only cuts from stable
states in unitarity sums.

e The question lies on whether external momentum configurations of an
amplitude allows the unstable propagator to become resonant. At least
in the Complex-Mass Scheme, this can be thoroughly answered: The cut
of an unstable propagator off resonance gives a contribution of higher
contribution in perturbation theory. Such cuts can be ignored: In this
sense, they give a vanishing result. On the other hand, for a resonant
unstable propagator, one can show that the cut of this propagator proceeds
through the cut of only stable particles, preserving unitarity in Veltman’s
sense. At leading order, the cut of the bare unstable propagator equals the
cut through its first loop correction — through stable particle propagators.



How to implement the unitarity method in the presence of unstable particles
GM, arXiv:2111.11570 [hep-th]

e In order to implement the technique in a straightforward way, one must
ensure that external momentum configurations of an amplitude allows the
unstable propagator to become resonant. In this case the cut unstable
propagator will have the correct cut structure to guarantee that unitarity
is satisfied.

e On the other hand, there is also other situation that the method can be
applied without further issues: In the narrow-width approximation! Near
the resonance, we can treat the resonant particle as being on-shell. This
means that in this limit a cut taken through the unstable particle with its
width set to zero reproduces the same result as a cut through the decay
products.

e In other words, for unstable particles the present practice of the unitarity
method is valid if the assumption of a resonant unstable propagator is
warrant. This can happen depending on external momentum configura-
tions or else one should verify whether the narrow-width approximation
holds in the particular case under studied.



Beware...

e Suppose we wish to study a particular process a + b — ¢ + d which takes
place exclusively through loops of unstable particles and let us assume
that we are off resonance. Using the reasoning above, the cuts of internal
unstable propagators will produce a vanishing contribution, resulting in a
vanishing amplitude if we use the current practice of the unitarity method
to reconstruct it. This is obviously an unsatisfactory answer.

e There are ways to circumvent this issue. For instance, one can eliminate
the unstable fields in the Lagrangian. So we are able to reformulate the
theory in terms of the stable particles only.

e But this will actually introduce non-local vertices in our description. There
is one constraint that we should impose in this situation. In order to pre-
serve unitarity, the only acceptable poles in amplitudes are the ones that
come from propagators. Since non-local vertices may generate unphysical
poles that would not correspond to an exchange of a physical particle, we
must impose that such poles have zero residue. Or we must claim that
the residues of all such spurious poles must cancel among the diagrams to
give Zero.



A Standard Model example: v — ~ scattering via W loops
GM, arXiv:2111.11570 [hep-th]

e Consider the scattering vy — vT~™ proceeding via W-boson loops. At
one-loop, this is finite (no bubbles).

e The unitarity method produces:

Al—loop — 16 4M4 512523 i R.
4 e <12><23><34><41> 4(p17p27p37p4)_|_

e Could we have considered a non-local description? Yes! For instance,
consider the non-local scalar QED:

LnL = @™ (2)X(x — y)U(z, y)9(y)

For the same process vty — T~ now via scalar loops, one finds that

Al—loop — _39 4 4 I3 2\14 512523 i
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Color-ordered one-loop amplitude associated with the process gt gt — gT g™

GM, arXiv:2112.00978 [hep-th]

Unitarity method produces

22 512523

Ai—loop(1+, 2T,3%,47) = — (47)2—€ (12)(23)(34)(41)

Iy [ +8T, (M2 + 14?)?]

One-loop amplitude for the graviton scattering process h™Th™t — ATThATT

Unitarity method produces
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Outlook

| " Modern Cin itud Prgris inreingly relevant
| todiverse areas across Physics | | i

Essential directions:

e New computational tools

e Sophisticated mathematical structure (positive geometry)
e Amplitude Bootstrap

e Double copy

e Gravitational-wave Physics and related subjects
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