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Quadratic gravity: An overview
• Early explorers: Stelle, Fradkin-Tsetlyn, Adler, Zee, Smilga, Tomboulis,

Antoniadis, Hasslacher-Mottola, Lee-Wick, Coleman, Boulware-Gross...

• Current explorers: Einhorn-Jones, Salvio-Strumia, Holdom-Ren, Donoghue-
Menezes, Mannheim, Anselmi, Odintsov, Shapiro, Accioly, Narain-Anishetty...

• Related work: Lu-Perkins-Pope-Stelle, ‘t Hooft, Grinstein-O’Connell-Wise...
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Squad =

Z
d4x

p
�g


2

2
R+

1

6f2
0

R2 � 1

⇠2

✓
Rµ⌫R

µ⌫ � 1

3
R2

◆�
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Here Nq = 199/3 and Ne↵, is a number that depends on the number
of light degrees of freedom with the usual couplings to gravity, Ne↵ =
NV + 1

4NF + 1
6NS + 21/6. With the Standard Model fields plus gravity,

Ne↵ = 325/12.

Donoghue and GM, PRD 97, 126005 (2018) 

See also Ronaldo Thibes's talk



Lee-Wick theories
• In theories with fundamental curvature-squared terms, the graviton prop-

agator will be quartic in the momentum. This is generally considered to

be problematic. With a quartic propagator in free field theory one expects

negative norm ghost states, using for example (µ2 > 0)

1
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=
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q2
� 1

q2 � µ2

• This is also the case of the so-called Lee-Wick theories (e.g., a higher-

derivative QED). Interactions in such theories make the heavy state un-

stable, with a width which can be calculated in perturbation theory. This

feature is a crucial modification as it removes the ghost from the asymp-
totic spectrum.

• Past experience with Lee-Wick theories indicates that they can be stable

and unitary, although causality does seem to be violated on microscopic

scales of order the width of the resonance.

• The massive states for the Lee-Wick QED model must be heavier than en-

ergies probed by the LHC. The associated micro-causality violation would

then be associated with a time scale of ⇠⇠ 10
�25

seconds. In the gravi-

tational case, the micro-causality violation would be proportional to the

Planck time, 10
�43

seconds.

@designbyhumans



Ghost resonances
• The theories which we are studying have propagators of the form

iD(q) =
i

q2 + i✏� q4

M2 + ⌃(q)
.

The pole at q2 = 0 is the stable particle of the theory.

• At one-loop order, the self-energy typically has the form

⌃(q) = ��

⇡
log

✓
�q2 � i✏

µ2

◆
=


��

⇡
log

✓
|q2|
µ2

◆
+ i�✓(q2)

�

for some calculable quantity � with dimensions of mass squared.

• A massive resonance for timelike values of q2. Expanding near that reso-

nance:

iD(q)
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q2⇠m2

⇠ �i

q2 �m2 � i�
.

Observe the minus sign in the numerator – a ghost-like resonance.

Merlin modes!



Formal discussion of unitarity
• Unitarity:

hf |T |ii � hf |T †|ii = i
X

j

hf |T †|jihj|T |ii

• In processes that involve loop diagrams, the sum over real intermediate
states can by accomplished by the Cutkosky cutting rules.

• What we usually do: look first at the free field theory to identify the free
particles.

• Turn on interactions: some of these particles become unstable and no
longer appear as the asymptotic states of the theory. The free field limit

has mislead us.

• Should one include such unstable particles in the sums over states required
for unitarity? Veltman says no!

• Veltman: unitarity is indeed satisfied by the inclusion of only the asymp-
totically stable states. Cuts are not to be taken through the unstable
particles, and unstable particles are not to be included in unitarity sums.

• However, in the narrow-width approximation, the o↵-resonance produc-
tion becomes small and only resonance production is important. In this
limit a cut taken through the unstable particle with its width set to zero
reproduces the same result as a cut through the decay products.

Unitarity:

Who counts in unitarity relation?
- Veltman 1963 
- only stable particles count

- they form asymptotic Hilbert space
- do not make any cuts on unstable resonances

This looks funny from free-field quantization
- interaction removes states from the Hilbert space

Also, we know some states are almost stable 
- can treat them as essentially stable
- Narrow Width Approximation (NWA) 

Nevertheless, Veltman is correct



• Unitarity works with the stable particles as external states in the unitarity

sum.

• The ghost resonance does not occur as an external state.

• Normal resonances and ghost resonances can be described in the same

propagator using the coupling to the stable states described by the same

⌃(q).

• Veltman’s work: normal resonances satisfy unitarity to all orders. Hence

any discontinuity calculated with normal resonances in the intermediate

states, can be converted into a discontinuity with ghost resonances by

using:

6

We can take this last model and add an auxiliary field in order to accomplish at the Lagrangian level the factorization
of the propagator that one sees using partial fraction relations. To do this we introduce the auxiliary field ⌘, using
the Lagrangian
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Integrating out ⌘ returns us to our original Lagrangian, Eq. 20. Now if we perform a field redefinition � = h � ⌘, a
little algebra turns this into
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Note in particular the overall minus sign in the second line.
From these examples, one is able to see that all theories with four derivative kinetic energies, ⇠ 2�2� will fall

into the class of theories which we are discussing, as long as one avoids the tachyonic pole at space-like momenta. The
logic is as follows. Ordinary resonances arise when there is a coupling to the light states of the theory. The structure
of the resonance propagator is

iDr(q) =
i

q2 �m2 + ⌃(q)
. (24)

The imaginary part of the self energy must be positive, that is

Im[⌃(q)] = �(q), ✓(q2) > 0 (25)

such that the resonance mass m2�Re[⌃]� iIm[⌃] = (M � i�/2)2. Now if the Lagrangian is modified with a 22 term,
the propagator gets modified to be

iD(q) =
i

q2 �m2 + ⌃(q)� q4/⇤2
(26)

where the sign on the new term has been chosen to avoid the tachyonic pole. If we set ⇤ ! 1, we get a normal
resonance where the near the pole the propagator has the structure given in Eq. 6 with Z = +1. However for large
finite ⇤ there is inevitably a high mass resonance, when q2 ⇠ ⇤2. For illustration we can neglect m2 and Re[⌃], and
look at the structure near this resonance, such that
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The residue at this pole is always negative - it is ghost-like. In addition, the sign of the width is always opposite from
normal. That is, we find the correlated negative signs which we described in Eq. 6 with Z = �1. Indeed, for both
finite m and ⇤, there will be resonances of both types contained in the same propagator. In both cases, the imaginary
part of the self-energy arising from the coupling to stable states is the same, yet it manifests itself di↵erently near the
resonance because of the sign of the q4 term.

3. STABILITY AND ENERGY FLOW

Because of the change in sign in front of the width in the denominator of the propagator, one might worry that
there are exponentially growing modes. We show here that this is not the case. The stability of quadratic gravity
has also been addressed using the equations of motion in curved backgrounds, although without including the decay
width. The conclusion of [39] has been that the theory is stable in a curved background, at least for curvatures that
are below the ghost mass. In [40] this was extended as at least metastability to curvatures beyond the scale of the

• If the normal resonance satisfies the unitarity relation, the ghost resonance
will also!

Donoghue and GM, PRD 100, 105006 (2019)



Causality in higher-derivative theories

• Causality in quantum field theory is defined by the vanishing of field com-

mutators for space-like separations.

• However, this does not imply a direction for causal e↵ects. Hidden in our

conventions for quantization is a connection to the definition of an arrow

of causality.

• Mixing quantization conventions within the same theory, we get a violation

of microcausality. In such a theory with mixed conventions the dominant

definition of the arrow of causality is determined by the stable states.

• In some quantum gravity theories, such as quadratic gravity and possibly

asymptotic safety, such a mixed causality condition occurs.

Donoghue and GM, PRL 123, 171601 (2019) (Editor’s suggestion)



Modern Amplitudes Program

• Scattering experiments are fundamental for our understanding of nature.
The Standard Model of particle physics was constructed upon scattering
experiments.

• The primary observable associated with particle scattering experiments
is the scattering cross-section. It incorporates the probability of a given
process to take place as a function of the energy and momentum of the
particles involved.

• Interpretation of data from scattering experiments relies on predictions of
theoretical calculations of scattering cross-sections – quantum field the-
ory (QFT). This is the mathematical language for describing elementary
particles and their interactions.

• In quantum field theory, the di↵erential cross-section is proportional to
the norm-squared of the scattering amplitude.



Modern goals
• Early explorers: Bern, Dixon, Kosower, Dunbar, Chalmers, Morgan, Mahlon,

Berends, Giele, Parke, Taylor, Mangano, Kawai, Lewellen, Tye, Zhu,

Goebel, Halzen, Leveille, Kleiss, Stirling, Kuijf, . . . There was a lot of

particle phenomenology in the old days.

• Modern on-shell amplitudes program : Development of more e�cient ways

to calculate scattering amplitudes (recursion relations for tree-level am-

plitudes).

• Mathematical structure of on-shell amplitudes. Recent ideas comprise rep-

resentations of amplitudes in terms of contour integrals in Grassmannian

spaces (spaces of k-planes in n-dimensional space) and geometrizations

such as polytopes, amplituhedrons, associahedrons, etc. The amplitude is

related to a volume form for a geometric object in some abstract mathe-

matical space.

• Amplitude bootstrap: Traditionally one starts with a Lagrangian, writes

down the Feynman rules, and use them to calculate the amplitudes. A new

approach is to consider the physical observables – the amplitudes – as the

starting point, impose constraints on particle spectrum and symmetries

on the amplitudes and implement tests of mathematical consistency.



Color-kinematics, BCJ relations and double copy
Bern, Carrasco, Chiodaroli, Johansson and Roiban, 2019

Kawai, Lewellen and Tye, 1986

Bern, Carrasco and Johansson, 2008

• Gravity amplitudes are notoriously complicated!

• In the mid-80s it was realized that tree-level closed string amplitudes can
be written as sums of products of tree-level open-string amplitudes, the
Kawai-Lewellen-Tye (KLT) relations. In the limit of infinite string tension,
this becomes the field theory statement that the graviton tree amplitudes
can be obtained as a sum of products of gluon scattering amplitudes:

Gravity = Gauge Theory2.

This is the so-called double copy.

• Tree-level gauge theory amplitudes of gluon scattering could be written in
a form where certain kinematic numerators obey the same Jacobi identities
as the algebraic color factors of the non-abelian gauge group of the theory.
This is called color-kinematics duality. Moreover, if one replaces the color
factors in this representation of the amplitude with the kinematic factors
of gauge theory, remarkably the result is the gravity tree amplitude! This
is the BCJ (Bern, Carrasco, and Johansson) double copy.



How does it work?
• The full color-dressed n-point tree amplitude of Yang–Mills theory can be

conveniently organized in terms of diagrams with only cubic vertices

• The tree amplitude is then written as a sum over all distinct trivalent
diagrams:

Atree
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X
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cini

⇧↵ip
2
↵i



• In general, for any set of three trivalent diagrams whose color factors are
related through a Jacobi identity, ci+cj+ck = 0, the following numerator-
deformation leaves the amplitude invariant:

ni ! ni + si� nj ! nj + sj� nk ! nk + sk�

274 A colorful duality

++ = 0

si

sj
sk

ci cj ck

Fig. 13.1 Three trivalent diagrams whose color factors ci , c j , and ck are related by the Jacobi identity. Note that the diagrams
share the same propagators except one, indicated by a thicker gray line. We denote the unshared inverse propagators
as si , s j , and sk .

where the color factors

cs ≡ f̃ a1a2b f̃ b a3a4 , ct ≡ f̃ a1a3b f̃ b a4a2 , cu ≡ f̃ a1a4b f̃ b a2a3 , (13.5)

as already introduced in (2.68). The normalization of the structure constants f̃ abc was
discussed in footnote 5 on page 30 of Chapter 2.

The numerators ni can be constructed straightforwardly using Feynman rules. Feynman
diagrams with only cubic vertices directly contribute terms of the form ci ni∏

αi
p2

αi
. The Yang–

Mills 4-point contact terms can be “blown up” into s-, t- or u -channel 3-vertex pole diagrams
by trivial multiplication by 1 = t/t = s/s = u /u . Note that since cs + ct + cu = 0, this
does not give a unique prescription for how to assign a given contact term into the cubic
diagrams, so the numerators in (13.3) are not uniquely defined.

We can deform the numerators ni in several ways without changing the result of the
amplitude. For example, one can trivially shift the polarization vectors as ϵi (pi ) → ϵi (pi ) +
αi pi ; this changes the kinematic numerator factors ni , but not the overall amplitude because
it is gauge invariant. A more non-trivial deformation uses the color factor Jacobi identity
cs + ct + cu = 0: taking ns → ns + s#, nt → nt + t#, and nu → nu + u #, where # is an
arbitrary function, leaves the amplitude invariant since the net deformation is proportional
to cs + ct + cu .

In general, for any set of three trivalent diagrams whose color factors are related through
a Jacobi identity,

ci + c j + ck = 0 , (13.6)

the following numerator-deformation leaves the amplitude invariant:

ni → ni + si#, n j → n j + s j#, nk → nk + sk# . (13.7)

Here 1/si , 1/s j , and 1/sk are the unique propagators that are not shared among the three
diagrams, as shown in Figure 13.1. Since # can be an arbitrary function, it is similar to a
gauge parameter, except that now it is not a transformation of the gauge field, but rather a

Elvang and Huang, 2015



Color-kinematics duality
• The duality states that scattering amplitudes of Yang–Mills theory, and

its supersymmetric extensions, can be given in a representation where the
numerators have the same algebraic properties as the corresponding color
factors:

ci = �cj $ ni = �nj

ci + cj + ck = 0 $ ni + nj + nk = 0

• The duality does not state that the numerator factors have to be local;
they are allowed to have poles.

• Under color-kinematics duality, one can derive relations among color-
ordered amplitudes, such as

tAtree
4 [1324] = sAtree

4 [1234].

This is an example of the BCJ relations.

Bern, Carrasco and Johansson, 2008

Gauge redundancy of numerators!



Non-planar contributions can be derived from planar terms!

19

Relations Between Planar and Nonplanar

Interlocking set of equations restrict numerators

Generally, planar is simpler than non-planar.  Can we
obtain non-planar from planar?  The answer is yes!

Numerators satisfy identities
similar to color Jacobi identities.

Non-planar contributions 
can be derived from 
planar contributions.

ZB, Carrasco, Johansson 

Numerator relations

Zvi Bern, Cargese 2010



Gluon scattering in QCD
Five gluon tree level scattering with Feynman diagrams:

Picture from Zvi Bern



Higher-derivative Yang-Mills theory
• We consider that only the gauge sector displays a higher-derivative con-

tribution. The Lagrangian reads:

M2L = �M2

4
F a
µ⌫F

aµ⌫ +
1

2
DµF

aµ⌫D�F
a�
⌫ .

• 3-particle amplitudes involving only physical gluons will not display con-
tributions coming from higher-order derivative terms:

A(4)
3 [1h1 , 2h2 , 3h3 ] = M2A(2)

3 [1h1 , 2h2 , 3h3 ].

Using the BCFW recursion relations, one can show that this result carries
out to an arbitrary number of gluons.

• Amplitudes involving a single Merlin particle vanish:

A(4)
n+1(1

h1 , 2h2 , . . . , nhn , kIJ) = 0.

First obtained by H. Johansson, G. Mogull and F. Teng (2018).

GM, arXiv:2112.00978 [hep-th]See also:  Grinstein, O'Connell and Wise, 2008



3-point Amplitudes with Merlins

• Propagator:

Dab
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See also: Durieux, Kitahara, Shadmi and Weiss, 2020



Tree-level Compton Amplitudes: gluon-Merlin scattering

• Amplitudes involving gluons and Merlins:

A4[2, 1
+, 4+,3] = 2M4
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• The color-ordered amplitudes in this case obey the standard BCJ relations.
For instance:

(s12 �M2)A4[2, 1
+, 4+,3] = (s13 �M2)A4[2, 4

+, 1+,3].

See also: H. Johansson and A. Ochirov, 2019



Tree-level Compton Amplitudes: scalar-Merlin scattering

• Amplitude involving massive scalars and Merlins:
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• In order to discuss CK duality, we need to work with the full amplitude.

Numerators:
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• Observe that

cs � cu = ct $ ns � nu = nt.

• Amplitudes do not obey standard BCJ relations!

Unique, gauge-invariant numerators!
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Tree-level Compton Amplitudes: fermion-Merlin scattering
• Amplitude involving massless fermions and Merlins:
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• Numerators for the full amplitude:
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• Observe that

cs � cu = ct $ ns � nu = nt.

• Amplitudes do not obey standard BCJ relations!

Unique, gauge-invariant numerators!



This is all so nice, but…what about gravity?
• Color-kinematics and BCJ relations allows us to write gravity amplitudes

as

M tree
n =

X

i

n2
i

⇧↵ip
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↵i

It can be generalized in terms of the product of two possibly distinct
Yang–Mills numerators:

M tree
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X

i
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• The general idea is to start from the above formula, use color-kinematics
duality and BCJ relations to show that we obtain the KLT relations, such
as

M tree
4 (1, 2, 3, 4) = �is12A

tree
4 (1, 2, 3, 4) eAtree

4 (1, 2, 4, 3)

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5) eAtree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5) eAtree

5 (3, 1, 4, 2, 5)

Bern, Carrasco and Johansson, 2008, 2010

Bjerrum-Bohr, Donoghue and Vanhove, 2014

BCJ double copy!



So indeed gravity = (gauge theory)2!

• This is the famous double-copy formula. Only one copy of the numerators

needs to satisfy the duality, not both.

• Assuming that there exists a duality-satisfying set of local numerators

for the Yang– Mills tree amplitude, one can rigorously prove that the

doubling-relation produces the correct gravity tree amplitude for any n.
The proof is established inductively by showing that the di↵erence between

this equation and the gravity amplitude obtained from BCFW recursion

vanishes if one assumes the doubling-relation to hold for all lower-point

amplitudes.
Bern, Dennen, Huang and Kiermaier, 2010

Elvang and Huang, 2015

3-point graviton amplitudes:
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Caveats…
Unlike at tree-level, there is currently not a formal proof of the existence

of duality-satisfying numerators at loop level. Furthermore, the map does not
produce a pure Einstein gravity. Typically the double copy of two vector fields
contains more than just the graviton. For example, a gluon in four dimension has
two helicities ±1, so the square has four states: the ±2 correspond to graviton,
and the zero-helicity states which are identified as the dilaton scalar � and a
Kalb-Ramond two-form Bµ⌫ . This is a consequence of the fact that low-energy
string theory produces
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where Hµ⌫� is the fully antisymmetric field strength for Bµ⌫ . The projection
to pure gravity, which eliminates the dilaton and axion, can be performed in
any case: When using the four-dimensional helicity method, we simply correlate
the helicities of the two copies of gauge theory amplitudes. Moreover, we can
simply apply the projection to graviton on each of the massless cut legs, which
are external lines for tree-level blobs in a generalized unitarity cut.

But see: Borsten, Jurco, Kim, Macrelli, Saemann, Wolf, 
arXiv:2102.11390 [hep-th]

In summary:

4d axion-dilaton gravity = YM⌦YM

and similarly

N = 8 SUGRA = (N = 4 SYM)⌦ (N = 4 SYM)



Quadratic gravity amplitudes
• Work in the Einstein frame (Einstein-Weyl theory):

S =

Z
d4x

p
�g


2

2
R� 1

2⇠2
Cµ⌫↵�C

µ⌫↵�

�

where 2
= 32⇡G.

• Employ the map:

(Higher-derivative YM)⌦YM = Weyl-Einstein

• Spectrum: Besides the graviton, dilaton and axion, we also have additional

five physical degrees of freedom associated with a gravitational Merlin,

three states associated with a Merlin 2-form field and a Merlin scalar!

• Projection to pure gravity: Simply correlate the helicities in the two gauge-

theory copies. This works in a similar fashion for quadratic gravity: In

order to work with only gravitational Merlins, we take the symmetric

tensor product of gauge-theory Merlins.

See also: Bob Holdom, 2021

See also: H. Johansson and J. Nohle, 2017; H. Johansson, G. Mogull and F. Teng, 2018

YM: spontaneously broken!

GM, arXiv:2112.00978 [hep-th]



3-point amplitudes and propagator
• Propagator:

Dµ⌫⇢�(p) =
1

2p2

⇣
⌘µ⇢⌘⌫�+⌘µ�⌘⌫⇢�⌘µ⌫⌘⇢�

⌘
� 1

2(p2 �M2 � iM�)

⇣
⌘µ⇢⌘⌫�+⌘µ�⌘⌫⇢�

2

3
⌘µ⌫⌘⇢�

⌘
.

• 3-particle amplitudes involving only physical gravitons do not display con-
tributions coming from higher-order derivative terms:

M (4)

3
[1h1 , 2h2 , 3h3 ] = M2M (2)

3
[1h1 , 2h2 , 3h3 ]

and this result generalizes to an arbitrary number of gravitons by using
BCFW recursion relations.

• Amplitudes involving a single gravitational Merlin particle vanishes:

M (4)

n+1
(1h1 , 2h2 , . . . , nhn ,k) = 0

• 3-particle amplitude involving two gravitational Merlin particles:

M3(1
++,2,3) = iAtree, HD

3
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3
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Tree-level Compton Amplitudes: graviton-Merlin scattering

• Amplitudes involving gravitons and Merlins:

M tree

4
(2, 1++, 4++,3) = �is23A

tree, HD

4
[2, 1+, 4+,3]Atree, YM

4
[2, 4+, 1+,3]

= 4i

⇥
14

⇤4

s23

h32i4

(s12 �M2)(s13 �M2)

M tree

4
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tree, HD

4
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4
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s23(s12 �M2)(s13 �M2)
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⇤
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⇥
42
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See also: H. Johansson and A. Ochirov, 2019



Triple graviton vertex, calculated from quadratic gravity (Jordan frame)



Tree-level Compton Amplitudes: scalar-Merlin scattering

• To evaluate Compton scattering amplitude involving two gravitational
Merlin particles and two matter particles, we apply the BCJ double-copy
prescription:

M(1s, 2, 3, 4s) = i
X

k

n(s1)
k ñ(s2)

k

sk

where s = s1+ s2, 2, 3 are graviton or Merlin particles, ñk are numerators
belonging to the spontaneously broken gauge theory of the double copy
described earlier and sk are inverse propagators (they could be massive).

• For the scalar case:
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Loops and Generalized Unitarity

• The strategy of calculating gluon amplitudes of standard Yang-Mills the-

ory from Grassmann integrations of N = 4 SYM does not work at loop

level. Now the gluon amplitudes di↵er in both theories. However, the

tree-level method will still be useful since we are going to use tree-level

amplitudes to reconstruct loop-level amplitudes. This is the so-called gen-

eralized unitarity method

• The knowledge of tree amplitudes can be recycled into information about

loop integrands. The operation of taking loop propagators on-shell is

called a unitarity cut. It originates from the unitarity constraint of the S-

matrix. To see how, recall the unitarity demands that generalized optical

theorem holds, that is, for an arbitrary process a ! b one has that

iA(a ! b)�iA⇤
(b ! a) = �

X

f

Z
d⇧fA⇤

(b ! f)A(a ! f)(2⇡)4�4(a�f)

and there is an overall delta function assuring energy-momentum conser-

vation.

Bern, Dixon, Dunbar and Kosower, 1994, 1995



• If we examine this constraint order by order in perturbation theory, it
tells us that the imaginary part of scattering amplitudes at a given order
is related to the product of lower-order results. Using the cutting rules, it
is possible to associated to each cut a one-particle final state; hence, for
two-particle cuts one associates a two-particle final state, for three-particle
cuts one associated a three-particle state, and so on.

• For one-loop process, one finds a product of two tree amplitudes. This
product involves the sum over all possible on-shell states that can cross
the cut. Only states from the physical spectrum of the theory are included

in this sum. In a unitarity cut, we restrict the loop-momenta to be on-shell
and only physical modes are included in the two on-shell amplitudes .

• The cutting rules also include integrals of any remaining freedom in the
loop-momentum after imposing the so-called cut constraints and momen-
tum conservation. For instance, for one-loop 2 ! 2 processes, the integral
over all allowed kinematic constraints takes the form

Z
d4`�+(`

2)�+((`� p1 � p2)
2).

Carrasco and Johansson, 2011



• The imaginary part of the amplitude probes its branch-cut structure,

hence the unitarity cut allows us to relate the pole structure of the in-

tegrand with the branch-cut structure of the loop-integral. One can re-

construct the integrand by analyzing di↵erent sets of unitarity cuts. The

unitarity cuts can also involve more than two cut lines. An N -line cut

simply means that N internal line are taken on-shell. Reconstruction of

the full loop amplitude from systematic application of unitarity cuts is

called the generalized unitarity method. To identify contributions to the

amplitude, one computes generalized unitarity cuts on the level of the

integrand, expressing them as a product of on-shell subamplitudes

X

states

A(1)A(2)A(3) · · ·A(m).

The cuts can be computed directly from the theory by feeding in the

corresponding subamplitudes and summing over the intermediate states.

• The unitarity method instructs us to reconstruct amplitudes using the

information from the set of all generalized unitarity cuts of a theory.

• The method of generalized unitarity consists in finding an integrand that

reproduces all the unitarity cuts, including of course all the maximal cuts.

Carrasco and Johansson, 2011 Bern and Huang, 2011 Britto, 2011



• The information from unitarity cuts can be utilized most e�ciently if we
know a priori a complete basis of integrals that can appear in the scattering
amplitudes. In D dimensions all one-loop amplitudes can be written as a
sum of m-gon one-loop scalar integrals Im for m = 1, 2, 3, . . . , D :

A1�loop
n =

X

i

C(i)
D I(i)D;n+

X

j

C(j)
D�1I

(j)
D�1;n+· · ·+

X

k

C(k)
2 I(k)2;n+

X

l

C(l)
1 I(l)1;n+R

where R denotes terms that are rational in the external variables and C(i)
D

are kinematic-dependent coe�cients related to the tree-level amplitudes

for the m-gon scalar integrals I(i)m .

• The D = 4 one-loop integral reduction to box, triangle, bubble and tad-

pole scalar integrals. The latter are related to the coe�cients C(l)
1 ; such

integrals vanish in dimensional regularization when only massless particles
circulate in the loop.



Loop amplitudes involving unstable particles
• In a theory with unstable particles (of any kind) unitarity is satisfied by

the inclusion of only the asymptotically stable states. This means that

cuts should not be taken through the unstable particles, and unstable

particles are not to be included in unitarity sums.

• In an one-loop analysis, four-dimensional amplitudes can be written as

a linear combination of scalar boxes, scalar triangles, scalar bubbles and

scalar tadpoles, with rational coe�cients:

A1�loop
=

4X

n=1

X

K

cn(K)In(K)

where Ki are sums of external momenta and In are scalar integrals. The

coe�cients cn are calculated using generalized cuts.

• For instance, the quadruple cut picks up a contribution from exactly one

box integral, namely the one with momenta K1,K2,K3,K4 at the corners.

Therefore, the cut expansion collapses to a single term

�4A
1�loop

= c4(K1,K2,K3,K4)�4I4(K1,K2,K3,K4).

• Hence in principle the quadruple cut of the scalar box integral would su�ce

to calculate the box coe�cient.

Unitarity:

Who counts in unitarity relation?
- Veltman 1963 
- only stable particles count

- they form asymptotic Hilbert space
- do not make any cuts on unstable resonances

This looks funny from free-field quantization
- interaction removes states from the Hilbert space

Also, we know some states are almost stable 
- can treat them as essentially stable
- Narrow Width Approximation (NWA) 

Nevertheless, Veltman is correct



• However, for unstable particle this procedure does not quite determine
such a coe�cient. Using a modified Lehmann representation for the cut
propagator, one obtains the general expression
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• This means that we were not able to put the internal momenta on-shell;
this will only happen if the spectral function has a contribution from
one-particle states, which is not the case for unstable particles. So when
cutting an internal line corresponding to an unstable particle, the result we
obtain is not a contribution to the scattering amplitude. Hence in order
to implement the generalized unitarity method to a theory containing
unstable particles, we must consider the inclusion of only cuts from stable
states in unitarity sums.

• The question lies on whether external momentum configurations of an
amplitude allows the unstable propagator to become resonant. At least
in the Complex-Mass Scheme, this can be thoroughly answered: The cut
of an unstable propagator o↵ resonance gives a contribution of higher
contribution in perturbation theory. Such cuts can be ignored: In this
sense, they give a vanishing result. On the other hand, for a resonant
unstable propagator, one can show that the cut of this propagator proceeds
through the cut of only stable particles, preserving unitarity in Veltman’s
sense. At leading order, the cut of the bare unstable propagator equals the
cut through its first loop correction – through stable particle propagators.



How to implement the unitarity method in the presence of unstable particles  

• In order to implement the technique in a straightforward way, one must

ensure that external momentum configurations of an amplitude allows the

unstable propagator to become resonant. In this case the cut unstable

propagator will have the correct cut structure to guarantee that unitarity

is satisfied.

• On the other hand, there is also other situation that the method can be

applied without further issues: In the narrow-width approximation! Near

the resonance, we can treat the resonant particle as being on-shell. This

means that in this limit a cut taken through the unstable particle with its

width set to zero reproduces the same result as a cut through the decay

products.

• In other words, for unstable particles the present practice of the unitarity

method is valid if the assumption of a resonant unstable propagator is

warrant. This can happen depending on external momentum configura-

tions or else one should verify whether the narrow-width approximation

holds in the particular case under studied.

GM, arXiv:2111.11570 [hep-th]



Beware…
• Suppose we wish to study a particular process a+ b ! c+ d which takes

place exclusively through loops of unstable particles and let us assume

that we are o↵ resonance. Using the reasoning above, the cuts of internal

unstable propagators will produce a vanishing contribution, resulting in a

vanishing amplitude if we use the current practice of the unitarity method

to reconstruct it. This is obviously an unsatisfactory answer.

• There are ways to circumvent this issue. For instance, one can eliminate

the unstable fields in the Lagrangian. So we are able to reformulate the

theory in terms of the stable particles only.

• But this will actually introduce non-local vertices in our description. There

is one constraint that we should impose in this situation. In order to pre-

serve unitarity, the only acceptable poles in amplitudes are the ones that

come from propagators. Since non-local vertices may generate unphysical

poles that would not correspond to an exchange of a physical particle, we

must impose that such poles have zero residue. Or we must claim that

the residues of all such spurious poles must cancel among the diagrams to

give zero.



A Standard Model example: � � � scattering via W loops

• Consider the scattering �+�+ ! �+�+ proceeding via W-boson loops. At
one-loop, this is finite (no bubbles).

• The unitarity method produces:

A1�loop
4 = �16e4M4 s12s23

h12ih23ih34ih41iI4(p1, p2, p3, p4) +R.

• Could we have considered a non-local description? Yes! For instance,
consider the non-local scalar QED:

LNL = �⇤(x)⌃(x� y)U(x, y)�(y)

For the same process �+�+ ! �+�+, now via scalar loops, one finds that

A1�loop
4 = �32e4m4[F (m2)]4

s12s23
h12ih23ih34ih41iI4(p1, p2, p3, p4) +R

F (p02) = @⌃(p02)
@p02 .

GM, arXiv:2111.11570 [hep-th]



Color-ordered one-loop amplitude associated with the process g+g+ ! g+g+

Unitarity method produces

A1�loop
4 (1+, 2+, 3+, 4+) = � 2i

(4⇡)2�✏

s12s23
h12ih23ih34ih41i

h
I4[µ

4]+8I4[(M2 + µ2)2]
i

One-loop amplitude for the graviton scattering process h++h++ ! h++h++

Unitarity method produces

M1�loop
4 (1++, 2++, 3++, 4++) =

2i
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GM, arXiv:2112.00978 [hep-th]



Outlook
Modern Scattering Amplitudes Program is increasingly relevant 
to diverse areas across Physics


Essential directions:

• New computational tools

• Sophisticated mathematical structure (positive geometry)

• Amplitude Bootstrap

• Double copy

• Gravitational-wave Physics and related subjects


