RELATIVISTIC BEC-BCS CROSSOVER IN A COLD/MAGNETIZED NJL MODEL

Dyana Duarte

In collaboration with R.L.S.Farias, R.O.Ramos, N.N.Scoccola, P.G.Allen and P.H.A.Manso

Universidade Federal de Santa Maria Instituto Tecnológico de Aeronáutica

Many Manifestations of Nonperturbative QCD May 01, 2018

Motivation

- The BEC-BCS crossover
- $N_c = 2$ NJL model in the presence of an external magnetic field
- Beyond mean field effecs in the crossover

QCD Phase Diagram

L. McLerran, Nucl. Phys. Proc. Suppl. 195 (2009) 275-280

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

QCD Phase diagrams - Approaches

- Perturbative: Based on asymptotic freedom → high energy experiments, at weak coupling.
- $1/N_c$ Expansion: Initially, $N_c \rightarrow \infty$, and set equal 3 after all calculations. Usually provides qualitative results.
- Dyson-Schwinger equations;
- Holographic QCD, based in the correspondence AdS/CFT
- Effective models/theories: Valid in specific regimes. Ex: ChPT, QMM, NJL/PNJL,...

QCD Phase Diagram - Approaches

 \rightarrow Lattice QCD simmulations: Large computational resources, but describes situations inaccessible with other methods.

Fodor and Hoelbling, Rev.Mod.Phys.84, 449 (2012)

 \Rightarrow First principles calculations and numerical simulations make use of Monte Carlo method, but the Fermion determinant becomes complex when the chemical potential is finite

Sign problem!

Importance of developing effective models to describe the $T \times \mu$ **phase diagram. Ex.: NJL model**

$$\mathcal{L}_{NJL} = \bar{\psi} \left(i\partial - m_c \right) \psi + G \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma^5 \tau_a \psi \right)^2 \right];$$

 \rightarrow First principles calculations and numerical simulations make use of Monte Carlo method, but the Fermion determinant becomes complex when the chemical potential is finite

Sign problem!

Importance of developing effective models to describe the $T \times \mu$ phase diagram. Ex.: NJL model

$$\mathcal{L}_{NJL} = \bar{\psi} \left(i \partial - m_c \right) \psi + G \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma^5 \tau_a \psi \right)^2 \right];$$

(4 間) (4 回) (4 回)

QCD Phase Diagram

 \rightarrow Critical point location on the QCD phase diagram, in different approaches:

 \rightarrow Condensed matter: Ultracold Fermi gases can realize a smooth crossover from a BCS superfluid to a Bose-Einstein condensation when the attraction between the difermion molecules increase^{*}.

→ Quark matter: if the coupling constant become sufficiently high at moderate densities:

 $CSC-BCS \rightarrow CSC-BEC.$

$$\varepsilon_k^+ = \sqrt{\left(\sqrt{k^2 + m^2} - \mu\right)^2 + \Delta^2}$$

E. Ferrer, Proc. of Compact Stars in the QCD Phase Diagram III (2012)

*D. M. Eagles, Phys. Rev. 186, 456 (1969).

BEC-BCS Crossover

 \rightarrow At low temperatures, the phase transition between chirally broken phase at low densities and the color superconducting phase at large densities proceeds in a smooth way instead of being a strong first-order transition: Possibility of a BEC-BCS crossover with the increasing of the density!

Sun, He and Zhuang, Phys. Rev. D 75, 096004 (2007).

BEC-BCS crossover for a $N_c = 2$ model:

→ Comparison with chiral perturbation theory:

Kogut et. al., Nucl. Phys. B 582 477 (2000).

→ No sign problem!

イロト イポト イヨト イヨト

BEC-BCS crossover for a $N_c = 2$ model:

 \rightarrow Comparison with lattice simulations.

Braguta, et. al., Phys. Rev.D 94, 114510 (2016)

4 A 1

NJL model + Diquarks + Finite eB

→ Standard Lagrangian Density:

$$\mathcal{L} = \bar{\psi} (i \mathcal{D} - m_c) \psi + G_S \left[(\bar{\psi} \psi)^2 + (\bar{\psi} i \gamma_5 \tau \psi)^2 \right]$$

+ $G_D \left(\bar{\psi} i \gamma_5 \tau_2 t_2 C \bar{\psi}^T \right) \left(\psi^T C i \gamma_5 \tau_2 t_2 \psi \right) .$

 $D_{\mu} = \partial_{\mu} - iQ\mathcal{A}_{\mu}$ (*Q* is the charge matrix $Q = \text{diag}(q_u, q_d)$, and $\mathcal{A}_{\mu} = \delta_{\mu 2} x_1 B$.)

Fierz transformation on color space:^{\dagger} $G_S = G_D = G$

$$\Omega_0 = \frac{(m - m_c)^2 + \Delta^2}{4G} - 4 \sum_{s=\pm 1} \int \frac{d^3k}{(2\pi)^3} \sqrt{\left(\sqrt{k^2 + m^2} + s\mu\right)^2 + \Delta^2} ,$$

→ Changing in the dispersion comparing to nonrelativistic case $\implies \mu_N = \mu - m$ controls the BEC-BCS crossover, instead of μ only.

NJL model + Diquarks + Finite eB

→ Standard Lagrangian Density:

$$\mathcal{L} = \bar{\psi} (i \mathcal{D} - m_c) \psi + G_S \left[(\bar{\psi} \psi)^2 + (\bar{\psi} i \gamma_5 \tau \psi)^2 \right]$$

+ $G_D \left(\bar{\psi} i \gamma_5 \tau_2 t_2 C \bar{\psi}^T \right) \left(\psi^T C i \gamma_5 \tau_2 t_2 \psi \right) .$

 $D_{\mu} = \partial_{\mu} - iQ\mathcal{A}_{\mu}$ (*Q* is the charge matrix $Q = \text{diag}(q_u, q_d)$, and $\mathcal{A}_{\mu} = \delta_{\mu 2} x_1 B$.)

Fierz transformation on color space:^{\dagger} $G_S = G_D = G$

$$\Omega_0 = \frac{(m-m_c)^2 + \Delta^2}{4G} - 4 \sum_{s=\pm 1} \int \frac{d^3k}{(2\pi)^3} \sqrt{\left(\sqrt{k^2 + m^2} + s\mu\right)^2 + \Delta^2} ,$$

→ Changing in the dispersion comparing to nonrelativistic case $\implies \mu_N = \mu - m$ controls the BEC-BCS crossover, instead of μ only.

*C. Ratti and W. Weise, Phys. Rev. D 70, 054013 (2004) + (B) (2) (2)

Thermodynamic Potential

→ Inclusion of finite magnetic field effects:

$$2\int \frac{d^3k}{(2\pi)^3} \to \sum_{f=u}^d \frac{|q_f|B}{4\pi} \sum_{l=0}^\infty \alpha_l \int_{-\infty}^{+\infty} \frac{dk_3}{2\pi},$$
$$E_k \to E_{k_3,l} = \sqrt{k_3^2 + 2l|q_f|B + m^2},$$

 $\alpha_l = 2 - \delta_{l,0} \rightarrow$ takes into account the degeneracy of Landau levels. The thermodynamic potential at T = 0 becomes:

$$\begin{aligned} \Omega_0(m,\Delta,B,\mu) &= \frac{(m-m_c)^2 + \Delta^2}{4G} \\ &- 2\sum_{f=u}^d \frac{|q_f| B}{4\pi} \sum_{s=\pm 1} \sum_{l=0}^\infty \alpha_l \int_{-\infty}^{+\infty} \frac{dk_3}{2\pi} \sqrt{(E_{k_3,l} + s\,\mu)^2 + \Delta^2} \,. \end{aligned}$$

イロト イポト イヨト イヨト

Regularization: Form factors

→ Smooth functions multiplying the integrand:

• Wood-Saxon:
$$U_{\Lambda}^{WS\alpha}(x) = \left[1 + \exp\left(\frac{x/\Lambda - 1}{\alpha}\right)\right]^{-1}$$

• Lorentziano: $U_{\Lambda}^{\text{LorN}}(x) = \left[1 + \left(\frac{x^2}{\Lambda^2}\right)^N\right]^{-1}$

Prescription:

$$\sum_{l=0}^{\infty} \int_{-\infty}^{+\infty} \frac{dk_3}{2\pi} \to \sum_{l=0}^{\infty} \int_{-\infty}^{+\infty} \frac{dk_3}{2\pi} U_{\Lambda} \left(\sqrt{k_3^2 + 2l \left| q_f \right| B} \right)$$

Non-physical oscillations in some physical quantities

イロト イポト イヨト イヨト

→ Complete separation of magnetic field dependent contributions and divergent terms: MFIR scheme![‡]!

$$I_{f} = \frac{|q_{f}|B}{2\pi} \sum_{s=\pm 1} \sum_{l=0}^{\infty} \alpha_{l} \int_{-\infty}^{+\infty} \frac{dk_{3}}{2\pi} \sqrt{(E_{k_{3},l} + s\mu)^{2} + \Delta^{2}}$$
$$\pm \frac{|q_{f}|B}{\pi} \sum_{l=0}^{\infty} \alpha_{l} \int_{-\infty}^{+\infty} \frac{dk_{3}}{(2\pi)} \sqrt{E_{k_{3},l}^{2} + \Delta^{2}}$$

→ Complete separation of magnetic field dependent contributions and divergent terms: MFIR scheme![‡]!

$$I_{f} = \frac{|q_{f}|B}{2\pi} \sum_{s=\pm 1} \sum_{l=0}^{\infty} \alpha_{l} \int_{-\infty}^{+\infty} \frac{dk_{3}}{2\pi} \sqrt{(E_{k_{3},l} + s\mu)^{2} + \Delta^{2}}$$
$$\pm \frac{|q_{f}|B}{\pi} \sum_{l=0}^{\infty} \alpha_{l} \int_{-\infty}^{+\infty} \frac{dk_{3}}{(2\pi)} \sqrt{E_{k_{3},l}^{2} + \Delta^{2}}$$

[‡]P. G. Allen *et al.*, Phys. Rev. D **92**, 074041 (2015).

Magnetic Field Independent Regularization - MFIR

Final expression for the thermodynamic potential[§]:

$$\begin{aligned} \Omega_0 (m, \Delta, B, \mu) &= \Omega_0 \\ &- \frac{N_c}{4\pi^2} \sum_{f=u}^d \left(|q_f| B \right) \int_0^\infty dk_3 \left\{ \sum_{l=0}^\infty \alpha_l F \left(k_3^2 + 2l \left| q_f \right| B \right) \right. \\ &- 2 \int_0^\infty dy \, F \left(k_3^2 + 2y \left| q_f \right| B \right) \right\} \\ &- \frac{N_c}{2\pi^2} \sum_{f=u}^d \left(|q_f| B \right)^2 \left[\zeta' \left(-1, x_f \right) - \frac{1}{2} \left(x_f^2 - x_f \right) \ln \left(x_f \right) + \frac{x_f^2}{4} \right] \end{aligned}$$

with $x_f = (m^2 + \Delta^2)/(2|q_f|B)$ $F(z^2) = \sum_{s=\pm 1} \left[\sqrt{(\sqrt{z^2 + m^2} + s\mu)^2 + \Delta^2} - \sqrt{z^2 + m^2 + \Delta^2}\right]$

[§]Duarte et. al., Phys. Rev, D 93, 025017 (2016)

人口区 医静脉 医原环 医原环

Magnetic Field Independent Regularization - MFIR

Order parameters m and Δ as functions of eB

< A →

 \Rightarrow Effects of temperature and/or external magnetic fields does not generate new divergencies to the theory, and can not modify the behavior of the physical quantities.

→ Many works had been associated the oscillations that arises due to the wrong regularization to the well known "De Haas–van Alphen" effect[¶].

 \rightarrow These oscillations are present in situations where the diquark coupling is small, or when only two quarks participate in the pairing, but in this work it is not the case.

Model Parametrization

→ Parameters to be fixed: Λ , *G* and m_c , that reproduces the empirical values of m_{π}, f_{π} and $\langle \bar{\psi}\psi \rangle_0$.

But the experimental values are valid for $N_c = 3$. How to proceed in two color case?

→ Purpose: Rescaling of the physical quantities by N_c^{\parallel} :

 $f_{\pi} \propto \sqrt{N_c}$, $\langle \bar{\psi} \psi \rangle_0 \propto N_c$, and m_{π} does not depends on N_c

$$f_{\pi} \sim 92.4 \text{ MeV} \rightarrow 75.45 \text{ MeV}$$

 $\langle \bar{\psi}\psi \rangle_0^{1/3} \sim -250 \text{ MeV} \rightarrow -218 \text{ MeV}$
 $m_{\pi} \sim 140 \text{ MeV} \rightarrow 140 \text{ MeV}$

"T. Brauner *et al.*, Phys. Rev. D 80, 074035 (2009) - <ロ > < 母 > < ヨ > く ヨ > く ヨ > こ つ o

Model Parametrization

→ Parameters to be fixed: Λ , *G* and m_c , that reproduces the empirical values of m_{π}, f_{π} and $\langle \bar{\psi}\psi \rangle_0$.

But the experimental values are valid for $N_c = 3$. How to proceed in two color case?

→ Purpose: Rescaling of the physical quantities by N_c^{\parallel} :

 $f_{\pi} \propto \sqrt{N_c}$, $\langle \bar{\psi} \psi \rangle_0 \propto N_c$, and m_{π} does not depends on N_c

$$f_{\pi} \sim 92.4 \text{ MeV} \rightarrow 75.45 \text{ MeV}$$

 $\langle \bar{\psi}\psi \rangle_0^{1/3} \sim -250 \text{ MeV} \rightarrow -218 \text{ MeV}$
 $m_{\pi} \sim 140 \text{ MeV} \rightarrow 140 \text{ MeV}$

Order parameters, MFIR × Wood-Saxon

э

Numerical Results

μ_N , MFIR × Wood-Saxon

э

-

A

900

Critical chemical potentials, MFIR \times Form factors

If eB = 0, the BEC transition occurs in $\mu_{B_c}^{BEC} = m_{\pi}^{**}$.

If we can write the expression of the pion mass as a function of the magnetic field, we expect that the condition $\mu_{B_c}^{BEC}(eB) = m_{\pi}(eB)$ still remains valid!

 \rightarrow Diquarks in BEC phase are neutral, so we express the transition point in terms of effective mass of neutral pion.

**Nishida, Y., Abuki, H., Phys. Rev. D, 72 096004, (2005). 🗤 🖅 🖉 🖌 📱 🔊 🤉

If
$$eB = 0$$
, the BEC transition occurs in $\mu_{B_c}^{BEC} = m_{\pi}^{**}$.
 \Downarrow

If we can write the expression of the pion mass as a function of the magnetic field, we expect that the condition $\mu_{B_c}^{BEC}(eB) = m_{\pi}(eB)$ still remains valid!

 \rightarrow Diquarks in BEC phase are neutral, so we express the transition point in terms of effective mass of neutral pion.

**Nishida, Y., Abuki, H., Phys. Rev. D, 72 096004, (2005). 🗤 🖅 🖉 🖌 📱 🔊 🤉

If
$$eB = 0$$
, the BEC transition occurs in $\mu_{B_c}^{BEC} = m_{\pi}^{**}$.
 $\downarrow \downarrow$

If we can write the expression of the pion mass as a function of the magnetic field, we expect that the condition $\mu_{B_c}^{BEC}(eB) = m_{\pi}(eB)$ still remains valid!

 \rightarrow Diquarks in BEC phase are neutral, so we express the transition point in terms of effective mass of neutral pion.

Numerical Results

$$\mu_{B_c}^{BEC} = m_{\pi}(B)$$

A

э

æ

900

phase	m	Δ
$\mu_B < m_\pi(eB)$	m(eB,0)	0
$\mu_B \ge m_{\pi}(eB)$	$m(eB,0)\left[\frac{m_{\pi}(eB)}{\mu_B}\right]^2$	$m(eB,0)\sqrt{1-\left[\frac{m_{\pi}(eB)}{\mu_B}\right]^4}$

A D > A B >

-

-

900

$$\mu_B = m_{\pi}(eB) \Longrightarrow \mu_{B,c}^{BEC-BCS} \simeq \left[2m(eB)m_{\pi}^2(eB)\right]^{1/2}$$

 \rightarrow Separation of medium contributions from divergent integral is crucial to correctly describe the behavior of the system.

- \rightarrow With MFIR it is possible:
 - To reproduce the usual NJL when eB = 0;
 - Prevent the non-physical oscillations in order parameters and critical chemical potentials.
 - Show that, if the pion mass is a function of the magnetic field, the BEC phase transition will occur in $\mu_B = m_{\pi}(B)$.
 - Obtain expressions equivalent to the well established ChPT in the presence of the external magnetic field.

BEC-BCS Crossover + OPT

 \rightarrow More realistic problem, considering now three color degrees of freedom, where quarks forms barions that must be neutral in relation to color charge.

$$\mathcal{L} = \bar{\psi} \left(i \partial_{\mu} - m_c \right) \psi + G_s \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \vec{\tau} \psi \right)^2 \right]$$

$$+ \sum_{a=2,5,7} G_d \left[\left(\bar{\psi} i \gamma^5 \tau_2 \lambda_a C \bar{\psi}^T \right) \left(\psi^T i \gamma^5 \tau_2 \lambda_a C \psi \right) \right]$$

Fierz transformation: $G_d = 0.75G_s$, but with this value we can not observe the BEC-BCS crossover \implies free parameters!

$$\Omega_0 = \frac{(m-m_0)^2}{4Gs} + \frac{\Delta}{4G_d} - 4\sum_{s=\pm 1} \int \frac{d^3k}{(2\pi)^3} E_{\Delta}^s$$
$$- 4 \int \frac{d^3k}{(2\pi)^3} \left[E_k + (\mu_b - E_k)\theta(\mu_b - E_k) \right]$$

BEC-BCS Crossover + OPT

 \rightarrow More realistic problem, considering now three color degrees of freedom, where quarks forms barions that must be neutral in relation to color charge.

$$\mathcal{L} = \bar{\psi} \left(i \partial_{\mu} - m_c \right) \psi + G_s \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \vec{\tau} \psi \right)^2 \right]$$

$$+ \sum_{a=2,5,7} G_d \left[\left(\bar{\psi} i \gamma^5 \tau_2 \lambda_a C \bar{\psi}^T \right) \left(\psi^T i \gamma^5 \tau_2 \lambda_a C \psi \right) \right]$$

Fierz transformation: $G_d = 0.75Gs$, but with this value we can not observe the BEC-BCS crossover \implies free parameters!

$$\Omega_0 = \frac{(m-m_0)^2}{4Gs} + \frac{\Delta}{4G_d} - 4\sum_{s=\pm 1} \int \frac{d^3k}{(2\pi)^3} E^s_{\Delta}$$
$$- 4 \int \frac{d^3k}{(2\pi)^3} \left[E_k + (\mu_b - E_k)\theta(\mu_b - E_k) \right]$$

BEC-BCS Crossover + OPT

 \rightarrow More realistic problem, considering now three color degrees of freedom, where quarks forms barions that must be neutral in relation to color charge.

$$\mathcal{L} = \bar{\psi} \left(i \partial_{\mu} - m_c \right) \psi + G_s \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \vec{\tau} \psi \right)^2 \right]$$

$$+ \sum_{a=2,5,7} G_d \left[\left(\bar{\psi} i \gamma^5 \tau_2 \lambda_a C \bar{\psi}^T \right) \left(\psi^T i \gamma^5 \tau_2 \lambda_a C \psi \right) \right]$$

Fierz transformation: $G_d = 0.75Gs$, but with this value we can not observe the BEC-BCS crossover \implies free parameters!

$$\Omega_0 = \frac{(m-m_0)^2}{4Gs} + \frac{\Delta}{4G_d} - 4\sum_{s=\pm 1} \int \frac{d^3k}{(2\pi)^3} E_{\Delta}^s$$
$$- 4\int \frac{d^3k}{(2\pi)^3} \left[E_k + (\mu_b - E_k)\theta(\mu_b - E_k) \right]$$

$$E_k = \sqrt{k^2 + m^2}; E_{\Delta}^{\pm} = \sqrt{(E_k - \mu_r)^2 + \Delta^2}$$

Optimized perturbation Theory application

→ Results beyond mean field: Optimized Perturbation Theory.

$$\mathcal{L}_{\delta} = \delta \mathcal{L} + (1 - \delta) \mathcal{L}_{0}(\eta_{i})$$

= $\mathcal{L}_{0}(\eta_{i}) + \delta \left[\mathcal{L} - \mathcal{L}_{0}(\eta_{i}) \right]$

- $\delta = 0$: Solvable Lagrangean \mathcal{L}_0
- $\delta = 1$: Original Lagrangean
- δ : "bookkeeping"

→ All physical quantities becomes functions of the parameters η_i . How to determine it?

Principle of minimum sensitivity - PMS (variational):

 $\left.\frac{\partial P}{\partial \eta_i}\right|_{\eta_i = \bar{\eta}_i} = 0$

イロト イポト イヨト イヨト

Optimized perturbation Theory application

→ Results beyond mean field: Optimized Perturbation Theory.

$$\mathcal{L}_{\delta} = \delta \mathcal{L} + (1 - \delta) \mathcal{L}_{0}(\eta_{i})$$

= $\mathcal{L}_{0}(\eta_{i}) + \delta \left[\mathcal{L} - \mathcal{L}_{0}(\eta_{i}) \right]$

- $\delta = 0$: Solvable Lagrangean \mathcal{L}_0
- $\delta = 1$: Original Lagrangean
- δ : "bookkeeping"

→ All physical quantities becomes functions of the parameters η_i . How to determine it?

Principle of minimum sensitivity - PMS (variational):

$$\left. \frac{\partial P}{\partial \eta_i} \right|_{\eta_i = \bar{\eta}_i} = 0$$

• □ > • □ > • □ > • □ > • □ >

OPT and Parametrization

Since every physical quantity in OPT is dependent on η_i , we have to be careful with the model parametrization, once m_{π}, f_{π} and $\langle \bar{\psi}\psi \rangle_0$ also depends on $\eta_i^{\dagger\dagger}$.

→ Equations to solve:

$$\frac{m_c}{M} = 4GN_cN_fm_\pi^2 I_1(m_\pi^2)$$

$$f_\pi^2 = 2N_cN_fM^2 I_1(0)$$

$$\langle \bar{\psi}\psi \rangle = -\frac{M-m_c}{4G}$$

$$\bar{\eta} = \sigma_c \left[1 + \frac{1}{2N_cN_f} + \frac{G_d}{G_s}\frac{(N_c-1)}{2N_c^2N_f}\right]$$

with $I_1(q^2) = \int \frac{a^{+\kappa}}{(2\pi)^4} \frac{1}{(p^2 - M^2)[(p+q)^2 - M^2]}$.

^{††}J.-L. Kneur et. al., Phys.Rev. C **81** 065205 (2010).

Thermodynamic potential

→ At $O(\delta^1)$ there are contributions of 1 and 2 loops:

Numerical Results - No color neutrality

Duarte, Farias, Manso and Ramos, Phys. Rev. D 96, 056009 (2017)

 $G_d = 1.4Gs$

Numerical Results

→Including color neutrality.

Duarte, Farias, Manso and Ramos, Phys. Rev. D 96, 056009 (2017)

 $G_d = 1.4Gs$

Numerical Results - Including color neutrality

Duarte, Farias, Manso and Ramos, Phys. Rev. D 96, 056009 (2017)

< A > < > >

Numerical Results - μ_{B_c}

Duarte, Farias, Manso and Ramos, Phys. Rev. D 96, 056009 (2017)

 \rightarrow We study the effects of the application of OPT, taking into account contributions beyond mean field approximation, on the BEC-BCS crossover with three color degrees of freedom.

 \rightarrow In the case without color neutrality the physical quantities in the OPT has the same behavior that ones calculated in the LN approximation.

→ Including the color neutrality condition, it is necessary to increase the ratio G_d/G_s to observe the BEC phase, and consequently the BEC-BCS crossover.

イロト イポト イヨト イヨト

1 PNJL with chiral imbalance;

2 Quark matter in β -equilibrium;

• Meson fluctuation effects, in the presence of an external magnetic field;

Osolution of Bethe-Salpeter equation in Minkowski space, including more realistic ingredients to QCD (T. Frederico talk yesterday).

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks for your attention!

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - の々で

- 1 GeV² $\simeq 5.13 \times 10^{19}$ Gauss. Range $0 \le eB \le 3.02 \times 10^{19}$ Gauss in $N_c = 2$ problem.
- Mass: 1 GeV $\simeq 1.78 \times 10^{-24}$ g.
- Temperature: $1 \text{ GeV} \simeq 1.16 \times 10^{13} \text{ K}.$
- Density: $1 \text{ GeV}^3 \simeq 130.149 \text{ fm}^{-3}$ ($\rho_0 \sim 0.16 \text{ fm}^{-3}$).

• □ > • □ > • □ > • □ > • □ >

LN				
Ratio	$\mu_{B_c}^{\text{BEC}}$ (GeV)	$\mu_{B_c}^{\text{BEC-BCS}}$ (GeV)	$\mu_B(n_B/n_0 > 1)$ (GeV)	
1.3	0.7137	0.7370	0.7380	
1.4	0.6144	0.6603	0.6578	
1.5	0.4474	0.5767	0.5706	
OPT				
Ratio	$\mu_{B_c}^{\text{BEC}}$ (GeV)	$\mu_{B_c}^{\text{BEC-BCS}}$ (GeV)	$\mu_B(n_B/n_0 > 1)$ (GeV)	
1.53	0.4653	0.5651	0.5641	
1.54	0.4366	0.5573	0.5565	
1.55	0.3939	0.5496	0.5496	

Approximate values of the densities for LN and OPT

イロト イポト イヨト イヨト

Critical Points calculation methods (Slide 5)

- CO: Composite Operators
- RM: Random matrix
- HB: Hypotesis Bootstrap
- CJT: Cornwall-Jackiw-Tomboulis
- LR: Lattice Results
- LTE: Lattice Taylor Expansion

3 > 4 3