Bound-states and resonances in the DSE/BSE approach

 K^{-}

 \overline{K}^{0}

 π^+

 η

 π^0

 K^0

 K^{-}

 π^{-}

Richard Williams University of Gießen

RW, Fischer, Heupel PRD 93 (2016) RW, arXiv:1804.11161

Bundesministerium für Bildung und Forschung

Motivation

Extract properties of hadrons from QCD

- Propagators and vertices
- Formulate description of bound-states in the continuum.

Test truncations against Hadronic Spectrum

• Include/Exclude interaction terms

Interaction terms responsible for

- Binding quarks and (anti)quarks
- Unquenching effects
- Decay channels
- Splitting between parity partners ...

Extract from Green's functions

Hadronic states

BSE

Spectral decomposition.

•
$$\Psi^{\lambda}_{\alpha\beta\gamma} = \langle 0 | T \psi_{\alpha} \psi_{\beta} \psi_{\gamma} | \lambda \rangle$$
 BS wavefunction

DSE and BSE

Trade one unknown G, for another unknown K

Solution (on-shell) yields Bethe-Salpeter wavefunction

DSE and BSE

Solution (on-shell) yields Bethe-Salpeter wavefunction

Irreducible three-body force small:

DSE

It's QCD:

- Mass function runs
- Coupling runs
- Vertices run

Everything runs!

Very difficult to disentangle in detail

BSE

Expose corrections to the Bethe-Salpeter kernel

- Systematic and improvable
- Lead to meaningful inclusion of "physics"
- Preserve axial-vector Ward-Takahashi identity

Diagrammatic

[Fischer, RW PRL 103 (2009) 122001] [Sanchis-Alepuz, RW PLB 749 (2015) 592] [Binosi, Chang, Papavassiliou, Qin, Roberts PRD 93 (2016) 096010]

Effective/Composite

[Fischer, Nickel, Wambach ORD 76 (2007) 094009] [Fischer, RW PRD 78 (2008) 074006] [Sanchis-Alepuz, Fischer, Kubrak PLB 733 (2014) 151]

Infinite tower of coupled Green's functions to consider ... truncation

Routinely solved by standard methods

- Quark for complex momenta (Cauchy, shell-method, path deformation)
- One-loop BSE kernel independent of total momentum P

e.g. [Sanchis-Alepuz, RW, arXiv:1710.04903]

 $k^2 [GeV^2]$

Truncation3Pl 3-loopQuark DSE-1-1Meson BSE=

... truncate using e.g. nPI effective action

[RW, Fischer, Heupel, PRD93 (2016)]

Truncation

3PI 3-loop

truncate using e.g. nPI effective action

[RW, Fischer, Heupel, PRD93 (2016)] [M. Q. Huber, EPJC77 (2017)]

Ghost/Gluon

$$D^{\mu\nu}(p) = \left(\delta^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2}$$

$$D_G(p) = -\frac{G(p^2)}{p^2}$$

By now, convergence between different functional approaches.

3g/gh vertex

Unquenching effects due to quark loop

(tree-level tensor structure)

Quark

Quenched vs Unquenched

$$S^{-1}(p) = A(p^2)(-i\gamma \cdot p + M(p^2))$$

Wavefunction

QG Vertex

4 longitudinal and 8 transverse components

$$\Gamma^{\mu}(l,k) = \Gamma^{\mu}_{L}(l,k) + \Gamma^{\mu}_{T}(l,k)$$

Transverse part satisfies:

$$k^{\mu}\Gamma_{T}^{\mu}=0 \qquad \left(\delta_{\mu\nu}-\frac{k^{\mu}k^{\nu}}{k^{2}}\right)\Gamma_{T}^{\mu}(l,k)=\Gamma_{T}^{\mu}(l,k)$$

Longitudinal part satisfies:

$$\left(\delta_{\mu\nu}-\frac{k^{\mu}k^{\nu}}{k^{2}}\right)\Gamma_{L}^{\mu}(l,k)\neq 0$$

Not vanishing. Mixes.

=

In Landau gauge, the *transversely projected* combination enters. Constraints from STI are highly relevant but mix with transverse components

$$\left(\delta_{\mu\nu}-\frac{k^{\mu}k^{\nu}}{k^2}\right)\Gamma^{\mu}(l,k)$$

8 transverse components

Light Spectrum

Notable features

- Correct ρa_1 splitting. Degeneracy in axial-vectors
- Lightest $q\bar{q}$ scalar pushed above 1 GeV.

Light Spectrum

But something is missing

- Bound states **below** strong decay threshold: π , K, D, B
- Most hadrons lie **above** strong decay threshold

Resonances

(in)finite volume

Lattice: finite volume. No cuts. Bound states, scattering states

0.20.20.150.150.10.1branch point 0.050.05 $\begin{bmatrix} \underline{s} \\ \underline{s} \end{bmatrix} \begin{bmatrix} 0 \\ -0.05 \end{bmatrix}$ $\begin{bmatrix} s \\ m \\ -0.05 \end{bmatrix} = 0$ bound states, scattering states bound state -0.1-0.1resonances -0.15-0.15-0.2-0.2-0.8-0.8-0.6-0.4-0.2-0.6-0.4-0.20 $\operatorname{Re}[s]$ $\operatorname{Re}[s]$ (sketch)

Resonances

- Appear as poles on the "unphysical sheet" (labelled II).
- Information reconstructed on the Lattice via Lüscher formalism.

Continuum: infinite volume.

Branch cuts. Bound states, resonances

Resonances

Consider: function V(s) that exposes "pole" of correlation function e.g. two-point correlator on the lattice, vertex function etc.

Below decay threshold

- Expect poles on the real-axis
- Bound state

$$V(s) \sim \frac{1}{s + M^2}$$

Above decay threshold

- Expect poles shifted from real-axis, in "unphysical sheet"
- Resonance

Let's visualize
this:
$$V(s) \sim \frac{1}{s + \left(M - \frac{i\Gamma}{2}\right)^2}$$

Pole readily apparent on the real-axis

Poles on the "unphysical" sheet

Resonance

What would we expect to see in the BSE approach?

Resonance

What would we expect to see in the BSE approach?

This is the Bethe-Salpeter approach! ©

[Watson, Cassing, FBS 35 (2004)] [Fischer, Nickel, Wambach, PRD 76 (2007)] [Fischer, RW, PRD 78 (2008)]

Specifically

- Two-pion decay kernel
- **Couples** to *e.g.* vector and scalar mesons.
- Does **not couple** to pseudoscalar (CP and P): *maintains chiral symmetry*

Truncation

Clarification

- Not calculating $\rho \rightarrow \pi \pi$ in impulse approximation
- Not calculating $g_{\rho\pi\pi}$

• Calculating (in)homogeneous Bethe-Salpeter equation and determining solution $P^2 = \left[i\left(M_R - \frac{i\Gamma_R}{2}\right)\right]^2$ for $\Gamma \neq 0$

Truncation

Decomposition

pseudoscalar

Covariant basis for boundstate:

$$\Gamma^{(\rho)} = \sum_{i} g_i \tau_i^{(\rho)}, \quad \chi^{(\rho)} = \sum_{i} h_i \tau_i^{(\rho)}$$

vector

Quark rotation matrix:

$$Y_{ij} = \operatorname{Tr}\left[\overline{\tau}_i^{(\rho)} S(p_+) \tau_j^{(\rho)}(p, P) S(p_-)\right]$$

Kernel trace:

$$L_{ij}^{\mathrm{RL}} = \int_{k} \mathrm{Tr} \left[\overline{\tau}_{i}^{\rho}(p,P) \gamma^{\mu} \tau_{j}^{\rho}(k,P) \gamma^{\nu} \right] D^{\mu\nu}(q)$$
$$L_{ij}^{\pi\pi,\mathrm{s}} = \int_{k} \int_{l} \overline{J}_{i}^{\rho}(p,l,P) J_{j}^{\rho}(k,l,P) D_{+}^{\pi} D_{-}^{\pi},$$

 $J_{j}^{\rho}(k,l,P) = \operatorname{Tr}\left[\overline{\Gamma}_{\pi}\tau_{j}^{\rho}(k,P)\overline{\Gamma}_{\pi}S(k-l)\right],$ $\overline{J}_{i}^{\rho}(p,l,P) = -\left[C^{T}J_{i}^{\rho}(-p,-l,-P)C\right]^{T}.$

BSE:

$$g_i = \sum_A L_{ij}^A h_j = \sum_A L_{ij}^A Y_{jk} g_k = M_{ik} g_k,$$

Integrating over Poles

Consider: integral of the form

$$A(p^{2}) = \int d^{4}k \frac{C(k,p)}{k^{2} + p^{2} - 2k \cdot p + m^{2}}$$

With pole dependent upon the angle between k and p

- Angular integral "sweeps" out the pole.
- Radial integral should be deformed to avoid cut structure.

Applied to quark propagator

Integrating over Poles

Applied to rare pion decay $\pi^0 \rightarrow e^+ e^-$ to avoid cut structure during integration

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p+\Sigma)^2 + m^2} \, \frac{F(Q^2, {Q'}^2)}{Q^2 \, {Q'}^2}$$

• Results in agreement with dispersion relations

Technique has further applications

Integrating over Poles

Two-pion cuts $l_{\rm cut}^2 = -z\sqrt{t} + \sqrt{t(t)}$

$$t_{\text{eut}}^2 = -z\sqrt{t} + \sqrt{t(z^2 - 1) - m_\pi^2}, \qquad t = P^2/4$$

See also [Windisch, Huber, Alkofer, APPS 6 (2013)]

Two-pion integral

$$F(l,P) \propto \frac{l_T^{\rho}}{l_T^2} \int_k J_j^{\rho}(k,l,P) h_j(k,P) \,. \qquad I(P^2) = \int_l \frac{1}{l^2 \left(l_+^2 + m_\pi^2\right) \left(l_-^2 + m_\pi^2\right)}.$$

Calculation

Put together:

- Solve quark for complex momenta
- Calculate one-loop RL kernel
- Calculate two-loop pi-pi kernel
- Choose appropriate path deformation

Solve BSE as eigenvalue equation for $\lambda(P^2) = 1$ complex

$$\Gamma = \lambda(P^2) \, K \, \Gamma, \qquad P^2 \in \mathbb{C}$$

(Or solve for pole in inhomogeneous system)

$$\Gamma = I + K \Gamma$$

Use **right tools** for solving the (eigen)system

Eigenvalues $\operatorname{Re}[\lambda(s) - 1]$

• "tent structure" in real part

 $\operatorname{Im}[s]$

-0.2

-0.2

0.2

 $\operatorname{Re}[s]$

-0.8

-0.6

• Branch cut in imaginary part

```
No solution on "physical sheet" where: \lambda(s) = 1
```

-0.2

-0.1

0

 $0 \\ 0.1$

Analytic Continuation

Analytic continuation (from e.g. z_1 to z_5)

- Using power series (i.e. Hadamard method)
- Pade approximants. RVP and Schlessinger point method.

[Tripolt et al, arXiv:1801.10384]

Analytically continue to find $\lambda(s) = 1$ on "unphysical sheet"

	s [GeV ²]	$M_R [GeV]$	$\Gamma_R [GeV]$	
RL	-0.55	0.74	0.0	
RL+decay	-0.408 + 0.065i	0.64	0.1	
$P^2 \left[i\left(M i\Gamma_R\right)\right]^2$			Repulsive corrections BRL	
$S \equiv P^{-} \equiv$	$\left[l\left(M_{R}-\frac{1}{2}\right)\right]$		[Fischer and RW, PRL 103 (2009)]	

Mass dependence

Here: strong coupling constant $g_{\rho\pi\pi} \sim 5.7$ (experimental value $g_{\rho\pi\pi} \sim 6.0$)

RL: (impulse approximation) $g_{\rho\pi\pi} \sim 5.2$ [Jarecke, Maris, Tandy, PRC67 (2003)] [Mader, Eichmann, Blank, Krassnigg, PRD84 (2011)]

$$\Gamma_R = \frac{p^3}{M_R^2} \frac{g_{\rho\pi\pi}^2}{6\pi}, \quad p = \sqrt{M_R^2/4 - m_\pi^2} ,$$

Summary

 Bound-states with coupled 3 point fns.

[RW, Fischer, Heupel PRD 93 (2016)]

Resonances in BSE!

[RW, arXiv:1804.11161]

Next Steps

- Extend to other bound-states
 - Baryons
 - Tetraquarks See Fischer
- Solidify truncation + ... more

Review

Eichmann, Sanchis-Alepuz, RW, Alkofer, Fischer 1606.9602 Prog. Part. Nucl. Phys. (in press)

Summary

 Bound-states with coupled 3 point fns.

[RW, Fischer, Heupel PRD 93 (2016)]

Eichmann, Sanchis-Alepuz, RW, Alkofer, Fischer 1606.9602 Prog. Part. Nucl. Phys. (in press)