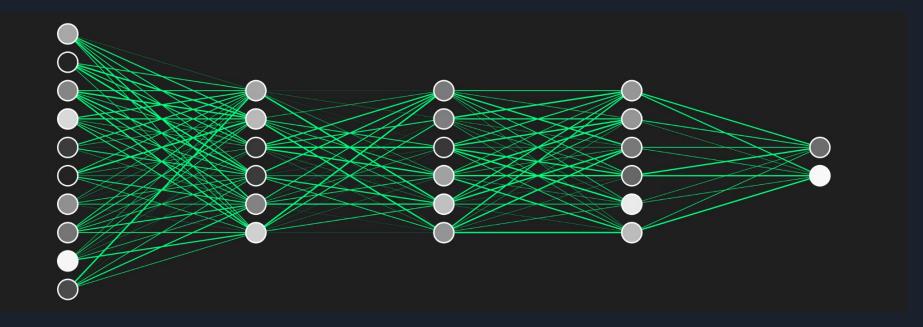

Uso de machine learning no estudo de jatos e suas propriedades

John J. Hopfield Geoffrey E. Hinton

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"


THE ROYAL SWEDISH ACADEMY OF SCIENCES

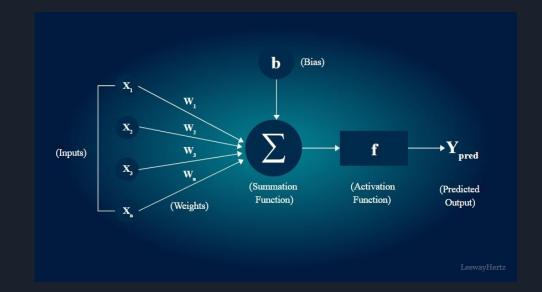
Uso de IA!

Tudo não passa de uma "caixa preta"?

A estrutura de uma red<u>e</u> neural

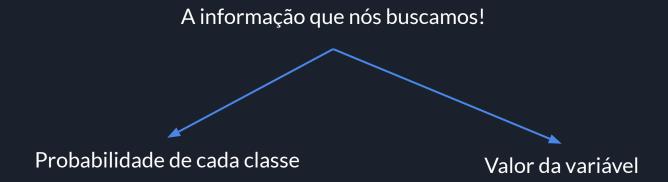
A estrutura de uma rede neural

Camada de entrada


A estrutura de uma rede neural

Camadas escondidas

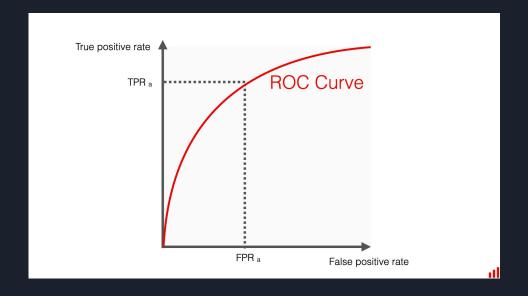
Onde a "mágica" acontece!



$$x_i = f\left(\sum_{n=1}^N w_n x_n + b_n\right)$$

A estrutura de uma rede neural

Camada de saída



Avaliação de performance

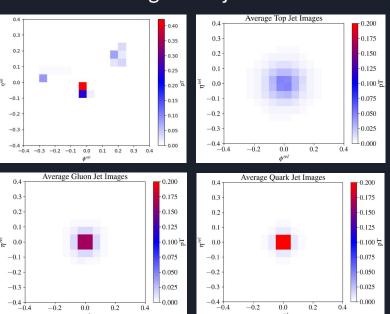
Como saber se a rede é boa ou não?

Métricas de performance:

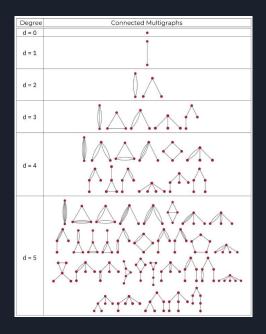
- Acurácia
- Falso positivo
- Falso negativo
- Verdadeiro Positivo
- Verdadeiro Negativo
- Curva ROC e AUC

Motivação

Projeto final da disciplina de ML e IA em física


Classificação de jatos em colisões p+p no LHC

Aplicar algoritmos para tentar classificar jatos como sendo originados por quarks pesados, leves ou glúons


Motivação

Projeto de classificação de jatos

Imagens de jatos

Energy Flow Polynomials (EFPs)

Motivação

Modelo

Boosted DT EFPs

CNN JetImages

Random Forests EFPs

Particle Cloud

CNN EFPs + mean ΔR_{ii}

0.952

0.952

0.954

0.954

0.973

0.997

0.997

0.997

0.997

0.999

Projeto de classificação de jatos

Quark-gluon tagging

Top tagging

Modelo	AUC			duantidade de parametros
		$\varepsilon_s = 0.3$	$\varepsilon_s = 0.5$	Quantildade de parametros
Logistic Regression EFPs	0.848	0.98	0.93	55
Discriminat Analysis EFPs	0.856	0.98	0.95	55
CNN JetImages	0.863	0.98	0.95	520.002
Decision Tree	0.864	0.98	0.95	-
Boosted DT EFPs	0.867	0.98	0.95	-
Random Forests EFPs	0.867	0.98	0.96	-
Point Net	0.872	0.99	0.96	16.066
Particle Cloud	0.880	0.99	0.96	3.842
CNN EFPs + mean ΔR_{ij}	0.892	0.99	0.97	584.267
Modelo	AUC	Background Rejection (1 - ε_b)		Quantidade de parâmetros
		$\varepsilon_s = 0.3$	$\varepsilon_s = 0.5$	Quantidade de parametros
Logistic Regression EFPs	0.949	0.996	0.984	55
Decision Tree	0.950	0.996	0.984	_
Discriminat Analysis EFPs	0.950	0.994	0.985	55
Point Net	0.950	0.995	0.983	16.066

Background Rejection $(1 - \varepsilon_b)$

Da literatura^{[1],[2]}

AUC: 0.91

AUC: 0.98

0.987

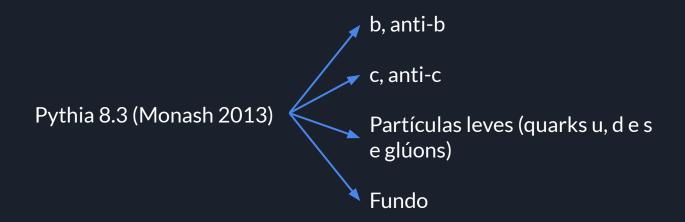
0.987

0.987

0.987

0.995

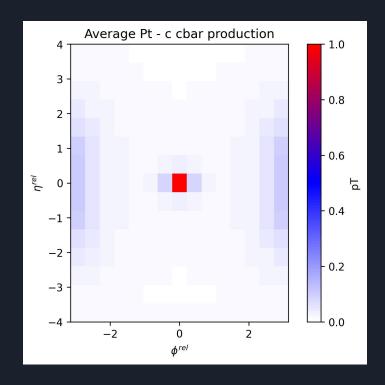
593.218

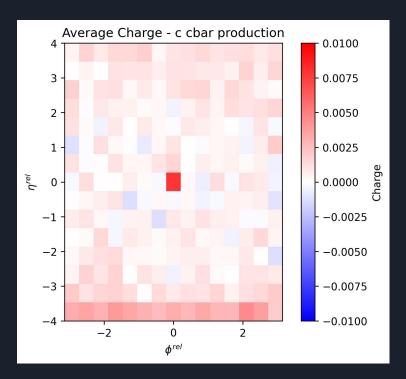

6.306

584.257

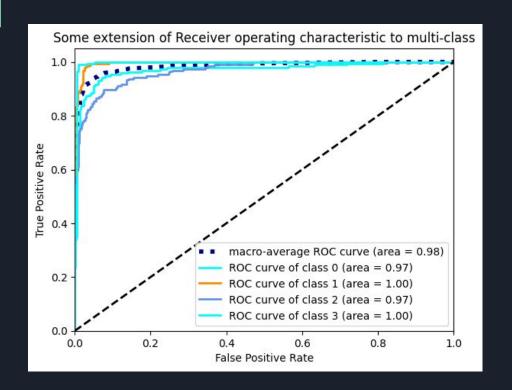
^[1] Gregor Kasieczka et al. "The Machine Learning landscape of top taggers". Em: SciPost Physics 7.1 (2019). ISSN: 2542-4653. DOI: 10.21468/scipostphys.7.1.014. URL: http://dx.doi.org/10.21468/sciPostPhys.7.1.014.

E agora?


Geração de dados



Cortes no espaço de fase (hard process): 10 a 30 GeV, 40 a 60 GeV e 90 a 110 GeV


Imagens de jatos

Dois canais de "cores"

Treino das redes

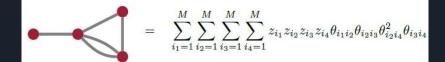
Bom demais pra ser verdade...

Próximos passos

- Funções de ativação
- Rever o que é considerado um sinal
- Geração de dados (parte 2)
- Aplicação de outros métodos

Obrigado!

Apêndice


EFPs (a matemática por trás)

$$EFP_G = \sum_{i_1=1}^{M} \cdots \sum_{i_N=1}^{M} z_{i_1} \cdots z_{i_N} \prod_{(k,l \in G)} \theta_{i_k,i_l}$$

$$z_i = \frac{p_{T,i}}{p_{T,J}}, \qquad p_{T,J} \equiv \sum_{i=1}^M p_{T,i}$$

$$\theta_{ij} = (\Delta y_{ij}^2 + \Delta \phi_{ij}^2)^{\beta/2}$$

$$\bullet_{j} \iff \sum_{i_{j}=1} z_{i_{j}}, \qquad k \longrightarrow l \iff \theta_{ij}$$

