Latest developments in Ultra Fast Silicon Detectors for synchrotron radiation detection

Guilherme Saito

VII Reunião Geral Projeto Especial FAPESP "Física e Instrumentação de Áltas Energias com o LHC-CERN"

On this presentation

- → Introduction:
 - Ultra Fast Silicon Detectors
- → Setup assembly at SIRIUS
- → Analysis and results
- → Outlook and Remarks

2x2 DC-LGAD setup at Carnaúba beam Line (2024)

Low Gain Avalanche Detectors (LGAD)

- Proposal made within the RD50 collaboration (*Sadrozinski et al*) ~ 2013 aiming at very radiation hard devices for LHC etc.
- LGADs are PiN Si diodes + an intrinsic gain layer for charge multiplication
 - \circ Moderate gain (10 ~ 50)

1906.11542v2

(a)

2

- Very fast response (< 30 ps for MIP)
- DC LGADs can be segmented (area >> gain layer thickness) for position sensing
- Devices can be fabricated from $\sim 30 \,\mu m$ to $\sim 300 \,\mu m$ active thickness
- Operates at reverse bias (tens to hundreds of Volts)

LGAD response to ⁹⁰Sr electrons

LGAD: rise time proportional to gain/thickness

2x2 LGADs (HPK 3.1) tests @ Sirius Carnaúba BL

- ATLAS HPK 3.1 2x2 array prototype
- Beam size **350** *µ***m** or **150 nm**
- Detector can move and rotate wrt to the beam
- LN2 nozzle can be used to **change temperature**
- Energy/timing resolution wrt
 - X-ray energy, bias and temperature
- EPIC by Sirius to control/store conditions
- Readout similar to SSRL
 - St. Cruz 1st stage amplifier + broadband amplifier (now on-board)
 - Oscilloscope 2 GHz/50 GS/s
 - Jitter from electronics < 1 ps

150 nm or 350 μm X-ray beam

4 Cooling nozzle

Tektronix 6 Series 10 GHz 50 GS/s Oscilloscope

Data Analysis

Amplitude [V

- Beam size **350** µm
- Different X-ray energies, bias
- Trigger signal from machine

Single pad LGAD data processing

https://iopscience.iop.org/article/10.1088/1748-0221/18/10/P10006

2x2 LGAD Energy response

- Energy resolution (σ E/E) measured as a function of X-ray energy and bias voltage
- Linearity ~ $\pm 5 \%$

2x2 LGAD Energy response

Pad 1

Multiple photon conversions observed (up to 5)

ΝN

Applications Utility Help

2x2 LGAD Timing response

- Multiple photon conversions can be used to measure the intrinsic timing resolution
 - $\circ \sigma(t_2 t_3)$
- Data was taken with **AND** between two pads signals

2x2 LGAD Interpad measurements

• Important do assess the Fill Factor

LGAD **CURRENT** profile

- 150 nm beam
- $5\mu m$ step beam lateral scan

Extract device gain from ratio
(G=1)

```
region (<u>Skomina et al</u>)
```


LGAD PULSE AMPLITUDE profile

2x2 LGAD temperature response

- HPK 3.1 2x2 array
- N2 cooling nozzle and detector position remotely controlled
- Temperature recorded by 2 PT100 on the PCB

- Beam line using a focused beam at 7.21 keV
- Bias and temperature scan
- Increase in signal amplitude (due to increased gain) as expected

Where we stand

- New applications can profit from a robust R&D for LGAD sensors done for HL-LHC
- Comprehensive measurement campaign of LGADs X-Ray performance is underway
- **Two facilities** (SLAC and Sirius) providing similar test conditions
- Devices are very robust, **survived several days** of high intensity, highly focused X-rays
- X-ray applications will need **highly segmented devices** (*µ*m resolution)
 - However, even the millimeter size devices can be used at beam lines for diagnostics and beam studies
- Continue the tests, focusing on alternative segmented LGAD designs, optimized electronics and signal processing

Excellent support from Sirius people and management \Rightarrow very efficient (and very intense) campaigns !!!

BACKUP

AC LGAD Tests

- AC LGAD limited tests at SSRL (wide beam)
- BNL strip design (not very useful for X_rays)

Figure 17: (a) Picture of AC-LGAD with strip length 5 mm and 10 mm. The strips used on the analysis are highlighted by the orange box. The sum of $p_{\rm max}$ from the three signal strips are used to measure the energy resolution. (b) Response of the middle strip as a function of position perpendicular to the strip, AC-LGAD with strip length 5 mm (red) and 10 mm (black), data taken with an IR laser TCT setup.

Figure 18: p_{max} distributions for the sum of three selected strips for 5 mm long (a) and 10 mm long (b) strip sensors with superimposed energy resolution fit. A selection of 40 mV is applied to the middle strip in both cases to remove events not centered in the three strips. The beam was illuminating more than the 5 mm sensor; this explains the higher tail due to the increased number of double photon events.

We are designing a 16ch two-stage amplifier board for testing pixel and strip devices at Sirius

LGAD Design Variations

Fact: DC-LGADs have a coarse spatial resolution and large inter pad (inactive) region (\sim 50 μ m) and electrodes facing the beam **Challenge**: How to fabricate devices with optimal (μ m) spatial resolution and few μ m interpad region and zero front dead-region?

Intro : The light source facilities

SSRL (SLAC) at Stanford (USA)

Sirius at LNLS-CNPEM in São Paulo (Brazil)

Beam Line 11-2 @ SSRL

Beam Line Specifications

Source

26-pole, 2.0-Tesla Wiggler, ≤1.5 mrad variable acceptance

	Energy Range	Resolution ΔE/E	Spot Size
Focused	5000-20000 eV	1 × 10 ⁻⁴	0.5 x 1 mm ²
Unfocused	5000-37000 eV	1 × 10 ⁻⁴	3 x 30 mm ²
Collimated	5000-23000 eV	1 x 10 ⁻⁴	2 x 30 mm ²

2Beam direction

Carnaúba beam line @ Sirius

PARAMETERS

Parameter	Value	Condition	
Energy Range *	2.05 – 15 keV	Si(111)	
Energy Resolution (ΔE/E)	$10^{-4} - 10^{-5}$		
Harmonic Content	< 10 ⁻⁵	Above 5 keV	
Energy Scan	Yes		
Beamsize at sample [µm] @Tarumã	0.15 x 0.15 (0.55 x 0.55)	8 keV (2 keV)	
Beam Divergence at sample [mrad] @Tarumã	(1 x 1)	All energy range	
Estimated flux [ph/s/100 mA] @Tarumã	10 ¹¹	-	

* BL being commissioned, available now : 5.8 to 13.8 keV.

Both sites provide high intensity, quasi-monochromatic pulsed X-ray beams (10 ps wide pulses, 2 ns appart) with several geometries

I - Single Pad LGADs tests @ SSRL BL 11-2

- "Flat" beam : 25mm x 1 mm (nominal)
- Energy scan from 5 to 37 keV (70 keV with harmonics)
- Bias Scan
- Single pad (1.3 x 1.3 mm²) LGADs

For details, See <u>*Ref.*</u>

Keysight UXR 13 GHz

128 GS/s

Oscilloscope

Santa Cruz board with LGAD and 1-ch. amplifier

https://iopscience.iop.org/article/10.1088/1748-0221/18/10/P10006

BNL

DC LGAD

Device	Active Thick.	Gain Layer	Breakdown	
HPK LGAD type 3.1	50 μm shallow (1μ		~230 V	
HPK LGAD type 3.2	50 µm	deep (2µm)	~130 V	
HPK PIN	50 µm	no gain layer	~400 V	
BNL LGAD 20um	20 µm	shallow (1µm)	~100 V	
Simple Measurement Setup	DC BIAS	LGAD 2 GHz 4 TIA on F	G = 10 G = 10 Broadband Voltage Amplifier	

Devices Tested

I - Simulations - Single Pad LGAD

I - Simulations - Single Pad LGAD

- Garfield++ (<u>link</u>) framework can simulate the impact ionization process
- Predicts the transient response of the signal
- Simple field calculation, but can import data from = TCAD
- Can also import the hits from Geant 4

- R. Van Overstraeten and H. de Man
- Grant
- Okuto and Crowell
- Massey.

I – Autocorrelation of Digitized Signals

- For MIP, we use a telescope for timing measurement (Δt); for X-rays we have to resort to something else
- Acquisition is synchronized by a machine trigger signal, but not good enough for timing
- We can rely on the very uniform bunch separation of 2.1ns
- This can be measured using the LGAD !
- The SSRL fill structure is : ...1–0–fill–0–fill–0–fill–0...

SSRL News	×.	Photon Source Parameters				
User Resources	×.	Ream Line Man I Ream Lines by Techniques I Ream Lines by Number				
Beam Lines						
Science at SSRL	×	Beam Energy	3 GeV			
Publications	2	Injection Energy	3 GeV			
SPEAR3	2	Current	500 mA			
Safety Staff Descurres	÷	Fill Pattern	280 bunches distributed in 4 groups of 70 bunches each			
Contact Us		Circumference	234.137			
		Radio Frequency	476.315 MHz			
ENERG	Y	Bunch Spacing	2.1 n			
Office of Scien	e of Science Horizontal Emittance		10 nm*rad			
		Vertical Emittance	14 pm*rad			
		Critical Energy	7.6 keV			
		Energy Spread	0.097			

I – Single Pad LGAD X-ray Energy Response

21

I – Single Pad LGAD X-ray Energy Response

I – Single Pad LGAD X-ray Timing Response

I – Single Pad LGAD Summary Results

	HPK PIN	HPK3.1		HPK3.2		BNL 20um	
Bias V	$200\mathrm{V}$	$150\mathrm{V}$	$230\mathrm{V}$	80 V	$130\mathrm{V}$	$50\mathrm{V}$	$100\mathrm{V}$
Energy Resolution	14%	6%	17%	10%	20%	6%	16%
Energy Response	$19\mathrm{mV}$	$75\mathrm{mV}$	$185\mathrm{mV}$	$68\mathrm{mV}$	$211\mathrm{mV}$	$66\mathrm{mV}$	$147\mathrm{mV}$
$\sigma_t \operatorname{CFD}$	$78\mathrm{ps}$	$141\mathrm{ps}$	$123\mathrm{ps}$	$371\mathrm{ps}$	$171\mathrm{ps}$	$69\mathrm{ps}$	$65\mathrm{ps}$

Table 2: Summary of energy and time resolution for the three tested sensors for the different bias voltages that yield the best energy and best time resolution for a 35 keV X-ray beam energy.

The problem

- 200 collisions @ 40MHz
- Irreducible background
- **Challenging for track/vertex** reconstruction
- New full silicon tracker (ITk) to extend coverage to $|\eta| < 4$
- **Insufficient spatial resolution in** forward region

The solution

Introduce the 4th **dimension** (time)

Truth Vertex, 1 event

- 30 ps timing resolution
- **High segmentation**

ATLAS Simulation

HS interaction

The Implementation

- The ATLAS HGTD
- **New detector**
- 8 layers of state-of-the-art Ultra Fast Semiconductor Detectors (LGADs)
- Two 2m x 12cm disks $(2.4 |\eta| 4.0)$
- 3.6 M sensors (1.3 mm^2 each)
- Very radiation hard

ATLAS High Granularity Timing Detector (HGTD)

- The HGTD will deploy 3.6 ultra-fast, radiation-hard, state-of-the art silicon sensors (LGADs) arranged in 15x15 arrays
- ATLAS Brasil is collaborating with the HGTD since the R&D phase of the sensors and with CERN is part of production QA/QC
- A semiconductor lab was assembled @USP (FAPESP Strategic Project) for this task, and is fully operational
- The Brazilian group will also provide significant contribution to the construction and commissioning of the detector at CERN
- This activity also involves Electronics Readout, DAQ chain and simulation.

What are Low Gain Avalanche Detectors (LGADS)?

IHEP-IME LGAD test structure for ATLAS HGTD being probed at the USP semiconductor sensor lab.

Introduction

Motivation

- 4th generation and newer light sources facilities poses many challenges for detectors due to high intensity and fast timing bunch structure
- LGADs are natural candidates for facing these challenges :
 - Extensive R&D for HL-LHC timing detectors (ATLAS & CMS)
 - Intrinsic gain provides good signal-to-noise ratio (important for low energy photon detection)
 - Very fast timing (time-resolved applications)
 - Radiation hard (TID) \Rightarrow operation under very high intensity beams
- However, these synchrotron light application will require :
 - \circ Very fine (few μ m) spatial resolution
 - $\circ \quad \ \ {\rm Active \ region \ facing \ the \ beam}$
 - Full characterization of LGADs performance for X-ray photons, under different conditions

- We will discuss some of the results of recent characterization campaigns at **synchrotron light source facilities** for
 - I Single pad DC-LGADs
 - II 2x2 DC-LGADs
 - III AC-LGADs

But before, One slide on how this started...

Simulated pp collision at 14 TeV at the HL-LHC, including approximately 200 pileup interactions

I - Single pad LGADs (HPK 3.1) summary results

Carnaúba beam line energies

Flux at sample corrected for attenuation (log plot)

Carnaúba beam line setup

Autocorrelation of Digitized Signals

- Used to measure the bunch separation
- SSRL had a non-uniform filling (empty-1 bunch empty-fill) per orbit
- Sirius had full orbit filled with bunches

Constant Fraction Discriminator

- Fraction = 20%
- Signal window = 5ns
- Delay = 1.75ns

Garfield++

A framework for signal simulation in detectors (mainly gaseous detectors, but now being developed for semiconductors).

Impact ionization coefficient models:

- R. Van Overstraeten and H. de Man (default)
- Grant
- Okuto and Crowell
- and Massey.

- HEED: Ionization produced by relativistic charged particles and photons
- Low-energy ions calculated by the SRIM software can be imported.

integration tools

http://garfieldpp.web.cern.ch/garfieldpp/

The simulation results presented in this work were obtained using the internal field generation and geometry tools of Garfield++.

Garfield++: We can model the signal at the output of the front-end electronics by convolving the induced current with the transfer function (or delta response function)

Raw signal + 100 e- ENC

Electronics transfer function Optimize for timing

Induced signal

The Challenge That Lies Ahead

- ${\sim}14$ TeV is our limit so far
- So many questions still ...
- We took only ${\sim}5\%$ of
- (HL)LHC data promised

Increase the number of collisions per bunch crossing (3x of the today)

- Complex topology (pileup)
- Pressure on trigger and DAQ
- (Very) High radiation

- New detectors
- New electronics
- New methods for reconstruction
- New strategies for event generation (MC)
- Precise luminosity determination(bunch-by-bunch, leveling)

