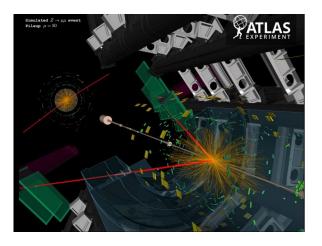
ATLAS 4D track reconstruction at the HL-LHC

Rodrigo Estevam de Paula Advisors: Marco Aurelio Lisboa Leite Vitor Heloiz do Nascimento February 22, 2024

Challenges of track reconstruction at the HL-LHC

- For the HL-LHC the expected pileup is up to < µ > ≈ 200 simultaneous collisions. A significant increase from the < µ > ≈ 65 of Run 3.
- The consequent increase in occupancy of the tracking detector imposes many challenges in the reconstruction:
 - Harder to differentiate Hard Scatter from Pileup
 - Increase in information data to be processed in the same time frame



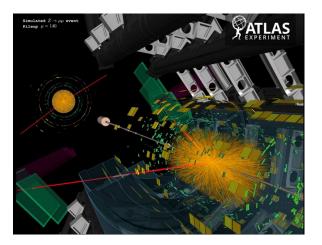


Figure 1: Simulation of a Z \rightarrow µµ event in the ATLAS experiment with < µ > = 50 (left) and < µ > = 140 (right)

ATLAS preparation for tracking in the HL-LHC

- The Inner Detector (ID) will be substituted to a more segmented detector, the Inner Tracker (ITk)
- An additional detector, called HGTD, will be installed in the endcap region to complement the tracking in the region where the ITk resolution is insufficient (2.4 <| η |< 4.0)
 - Tracks of the ITk will be associated with hits in HGTD
 - HGTD also provides time information (not present in the ITk) that can help with pileup rejection

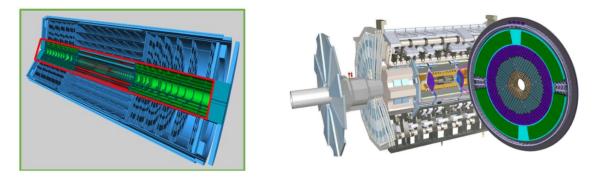


Figure 2: ITk layout (left) and HGTD position within the ATLAS experiment (right)

• New track reconstruction methods that are adapted to the new detectors and meet the requirements imposed by the HL-LHC scenario need to be devised!

Outline

Existing techniques

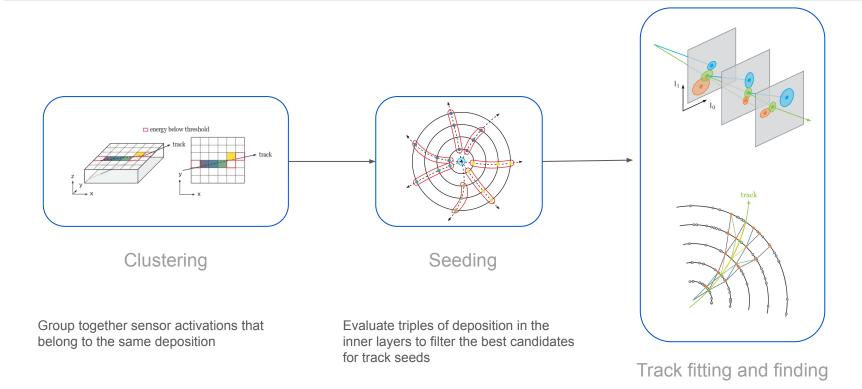
- **1.** ATLAS tracking particle process
- 2. Combinational Kalman Filters applied for track fitting and finding

Understanding the existing scenario gives us a baseline performance to be expected of new methods

Proposal for HL-LHC

- **3.** ACTS simulator first steps
- 4. New methods proposal
- 5. Next steps

Track reconstruction processing chain



EPIC

Combinational Kalman Filters

Defining a state space

- We can define the measures we observe as a function of the true position and measurement errors
- A simple measurement equation would be:

$$\vec{m}(n) = \mathbf{H}(n)\vec{x}(n) + \vec{\epsilon}(n)$$

$$\begin{array}{ll}n & \text{layer (surface) index}\\ \vec{m}(n) & \text{measure vector (x,y,z)}\\ \mathbf{H}(n) & \text{projection matrix (x to m)}\\ \hline \vec{x}(n) & \text{state vector} & \mathbf{\nabla} & \mathbf{Value to be estimated}\\ \hline \vec{\epsilon}(n) & \text{measurement error, white gaussian noise}\\ \hline \mathbf{define a system equation} \end{array}$$

• As we know the system dynamics, we can also define a system equation

$$\vec{x}(n) = \mathbf{F}(n-1)\vec{x}(n-1) + \vec{\omega}(n-1)$$

 $\mathbf{F}(n-1)$ transport state vector from (n-1) to (n)

*extrapolation achievable by numeric integration

 $ec{\omega}(n)$ system error, white gaussian noise

is independent of the measurement error

• These two equations define our state space

Innovation process and estimative update

- If we have a prior estimative of the state vector (before observing the actual measurement) is possible to define a metric that measures the information gain that the new measurement offers
- The innovation is achievable with the following equations:

$$\begin{split} \vec{\alpha}(n) &= \vec{m}(n) - \hat{m}(n) \\ \vec{\alpha}(n) &= \vec{m}(n) - \mathbf{H}(n)\hat{x}(n|\mathbf{m}_{n-1}) \end{split} \qquad \hat{m}(n) = \mathbb{E}[\vec{m}(n)] = \mathbf{H}(n)\vec{x}(n) \\ \hat{x}(n|\mathbf{m}_{n-1}) &= \hat{x}(n|\mathbf{m}_{n-1}) \end{aligned}$$

• The innovation can be used to adjust the prior estimative:

$$\hat{x}(n|\mathfrak{m}_n) = \hat{x}(n|\mathfrak{m}_{n-1}) + \mathbf{K}(n)\vec{\alpha}(n)$$

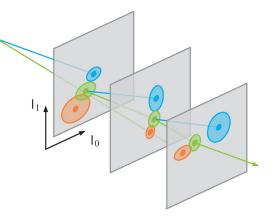
• Where $\mathbf{K}(n)$ is the Kalman gain, which is chosen to minimize the mean-square value of the estimation error

$$\varepsilon(n|n) = \vec{x}(n) - \hat{x}(n|\mathbf{m}_n)$$
$$\mathbb{J} = \mathbb{E}\{||\varepsilon(n|n)||^2\}$$

Filtering Estimatives

 Iteration between prediction (prior) and filtered estimative (posteriori)

$$\vec{x}(n|\mathbf{m}_n) = \vec{x}(n|\mathbf{m}_{n-1}) + \mathbf{K}(n)\vec{\alpha}(n)$$
$$\vec{x}(n+1|\mathbf{m}_n) = \mathbf{F}(n)\vec{x}(n|\mathbf{m}_n)$$



• After all measures are available, it is also possible to smooth the estimates.

Figure 4: Illustration of KF estimative iteration. Measurement represented in orange, (prior) estimative in blue and filtered (posteriori) estimative in green [4].

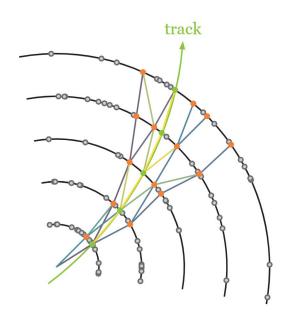
Track scoring

• We can define a residual between the posteriori estimate and the measure

$$\vec{r}(n) = \vec{m}(n) - \mathbf{H}(n)\hat{x}(n|\mathbf{m}_n)$$

• This value contributes to a quality factor of the reconstructed track

$$\chi_{+}^{2} = \vec{r}^{T}(n) [(\mathbf{1} - \mathbf{H}(n)\mathbf{K}(n))\mathbf{V}(n)]^{-1}\vec{r}(n)$$



• The algorithm iterates over all possible tracks and uses the global quality parameter χ^2 (also depends on other track attributes*) to filter the best estimate tracks

Combinational Kalman Filter Drawbacks and Limitations

- The main drawback of the CKF is the execution time that will not be acceptable in a scenario of high luminosity
 - Execution time is $O(N^2)$, being N the number of points to be fitted
 - As it is implemented today, the iterative adjustments are optimized for CPU processing
- As the Inner Detector (ID) has no timing information, and therefore the reconstruction is done in 3 dimensions
 - With the timing information provided by the HGTD the reconstruction can be made in 4 dimensions (geometrical position + time)

ACTS first steps

ACTS - A Common Tracking Software

- "ACTS is an experiment-independent toolkit for (charged) particle track reconstruction in (high energy) physics experiments implemented in modern C++"[4]
- Originated from Athena (ATLAS simulation framework) as a standalone version of its tracking reconstruction
- Key features:

FPIC

- A tracking geometry description, which can be constructed manually or from TGeo and DD4hep input.
- Simple event data model.
- Implementations of common algorithms
 - for track propagation and fitting.
 - basic seed finding.
 - vertexing.

Documentation website

Runs smoothly in the SAMPA cluster 😎

Simulating events with particle guns

- ACTS offers a series of examples of Python bindings that can be used to simulate basic scenarios
 - The use of these bindings in "production" is encouraged
- We are going to simulate the reconstruction done by the Combinational Kalman Filter
- The Setup will be
 - ODD detector structure
 - Particle gun of 100 muons distributed uniformly between η -3 and 3
 - Using "standard" seeding algorithms
 - Using CKF to reconstruct the tracks

State vector and analysis

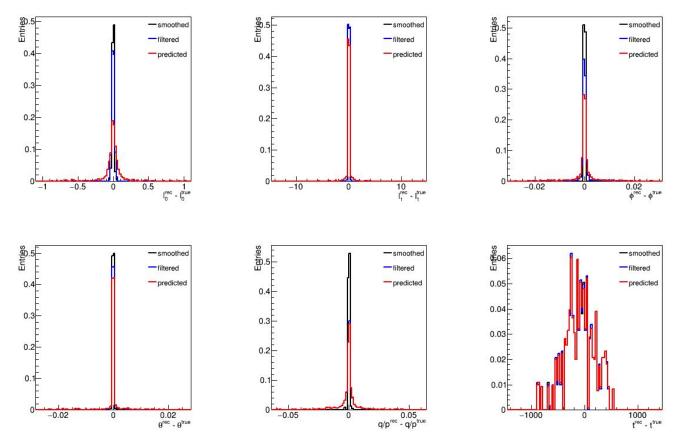
- The simulation outputs ROOT files that can be analysed for performance evaluation.
 - We will use ACTS analysis application to generate the performance plots
 - Can do our analysis in the future
- As we know the real particle paths is possible to extract residual metrics
- The state vector is defined as:

$$\vec{x} = (l_0, l_1, \phi, \theta, q/p, t)^T$$

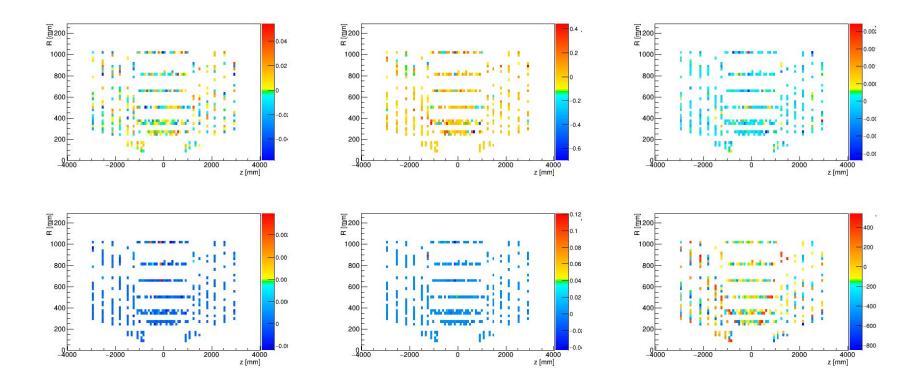
$$(a) \text{ strip} (b) \text{ pixel} (b) \text{ pixel} (c)$$

 π

Kalman Filter performance (muons) - Residual plots



Kalman Filter performance (muons) - Regional residual plots



New methods proposal

Proposal of new reconstruction techniques

Adaptative Filter techniques

Track fitting

- Substitute Kalman for RLS algorithms (less accurate but faster)
 - Suggested on Haykin's book [1]
 - <u>Combination of Adaptative Filters</u>

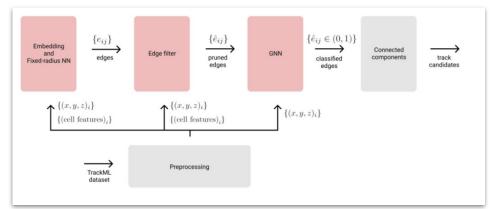
Track finding

- Include HGTD hits in the cumulative score
 - Use additional time information in the decision process

Conservative expansion of the expected baseline performance

Machine Learning Techniques

- Study the usage of Graph Neural Networks (GNNs) for track reconstruction
 - First proposed in the TrackML challenge
 - Study how to adapt it to 4D reconstruction



Pipeline of the exa.trk algorithm proposed at the TrakML challenge. Red stages represent stages where the model can be trained [6].

Next steps

Explore the ACTS track reconstruction framework (on going)

- Simulation of collision events
 - Done, but need validation
- Study the implementation of the CKF and GSF in the core library
- Get the ITk and HGTD geometry to work in the ACTS

Follow HGTD ACTS integration campaign

• Contribute with the Simulation and Performance team

Study more about Machine Learning based reconstruction

- GNNs
- Physics Informed Machine Learning

Thank you for your attention!

Questions?

References

[1] Simon Haykin. Adaptive filter theory. Prentice Hall, Upper Saddle River, NJ, 4th edition, 2002.

[2] Paul Gessinger-Befurt. *Development and improvement of track reconstruction software and search for disappearing tracks with the ATLAS experiment*, 2021. Presented 30 Apr 2021.

[3] Maria D. Miranda. *PTC5890: Adaptive Filters*. Graduation course at Poli-USP

[4] ATLAS Collaboration. *ACTS documentation.* Available at: <u>https://acts.readthedocs.io/en/latest/index.html</u>

[5] Kolanoski, Hermann, and Norbert Wermes, *Particle Detectors: Fundamentals and Applications* (Oxford, 2020; online edn, Oxford Academic, 17 Sept. 2020), <u>https://doi.org/10.1093/oso/9780198858362.001.0001</u>, accessed 19 Feb. 2024.

[6] JU, X. et al. *Performance of a geometric deep learning pipeline for HL-LHC particle tracking*. The European Physical Journal C, v. 81, n. 10, p. 876, out. 2021. ISSN 1434-6052. DOI: 10.1140/epjc/s10052-021-09675-8. Available at <u>https://doi.org/10.1140/epjc/s10052-021-09675-8</u>.

Detector layout and working principle

- The track reconstruction is realized by a highly segmented detector formed by semiconductor sensors
- Electromagnetic particles ionizes the sensors and the charges are guided through an electrode and read by a readout chain

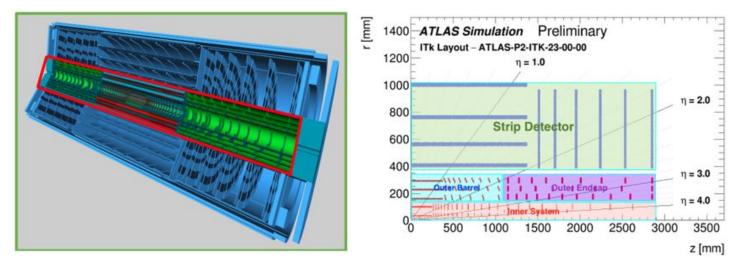


Figure 3: ATLAS Inner Tracker (ITk) layout

Finding the Kalman gain

• Defining the following correlation matrixes

 $\mathbf{P}(n|n) = \mathbb{E}\{\varepsilon(n|n)\varepsilon^T(n|n)\}$

$$\mathbf{S}(n) = \mathbb{E}\{\vec{\alpha}(n)\vec{\alpha}^T(n)\}$$

• We can express our error metric in function of P

$$\mathbb{J} = \mathbb{E}\{||\varepsilon(n|n)||^2\} = \operatorname{tr}[\mathbf{P}(n|n)]$$

• Then we just need to find the argument K that minimizes the metric

 $\mathbb{J}(\mathbf{K}(n)) = \operatorname{tr}[\mathbf{P}(n|n-1)] - 2\operatorname{tr}[\mathbf{K}(n)\mathbf{H}(n)\mathbf{P}(n|n-1)] + \operatorname{tr}[\mathbf{K}(n)\mathbf{S}(n)\mathbf{K}^{T}(n)]$

 $\mathbf{K}^{o}(n) = \mathbf{P}(n|n-1)\mathbf{H}^{T}(n)\mathbf{S}^{-1}(n)$

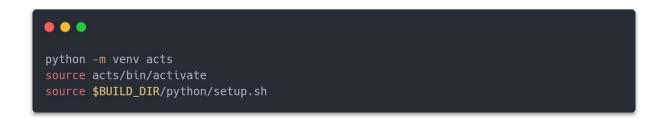
ACTS w/ Particle Guns

ACTS Setup

- Using a machine running CVMFS (CernVM File System) all dependencies can be easily satisfied via a LCG release. For this case, a setup file is provided.
 - As SAMPA (IFUSP cluster) runs CVMFS, we will use it

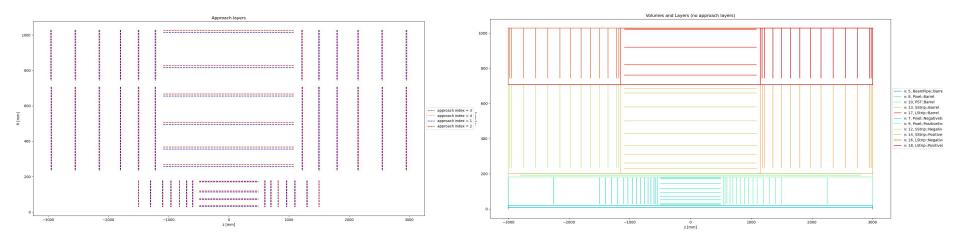
🦲 🦲 🦲 git clone https://github.com/acts-project/acts <source> cd <source> source CI/setup_cvmfs_lcg.sh cmake -B build -S . -DACTS_BUILD_FATRAS=on -DACTS_BUILD_EXAMPLES_PYTHON_BINDINGS=ON cmake --build build

• To use Python bindings, it is also necessary to setup a Python env



Geometry visualization

- ACTS is independent of detector geometry, so the user can choose what geometry to use
- Open Data Detector (ODD) that provides a generic tracking detector is used as base in the ACTS if no geometry is provided
 - Geometry file can be generated with the script <source>/Examples/Scripts/Python/geometry.py
 - And printed with the script <source>/Examples/Scripts/MaterialMapping/GeometryVisualisationAndMaterialHandling.py



• Next steps: get ITk + HGTD geometry files

They're not fully implemented but some examples already use this geometry

Particle gun setting

•••

```
s = s or acts.examples.Sequencer(
    events=100, numThreads=-1, logLevel=acts.logging.INF0
for d in decorators:
    s.addContextDecorator(d)
rnd = acts.examples.RandomNumbers(seed=42)
outputDir = Path(outputDir)
if inputParticlePath is None:
    addParticleGun(
        ParticleConfig(num=1,
                       pdg=acts.PdgParticle.eMuon,
                       randomizeCharge=True
        EtaConfig(-3.0, 3.0, uniform=True),
       MomentumConfig(1.0 * u.GeV,
                       100.0 * u.GeV,
                       transverse=True
                      ),
        PhiConfig(0.0, 360.0 * u.degree),
        vtxGen=acts.examples.GaussianVertexGenerator(
            mean=acts.Vector4(0, 0, 0, 0),
            stddev=acts.Vector4(0, 0, 0, 0),
        multiplicity=1,
        rnd=rnd,
```

• The sequencer defines the processing chain, so we plug steps into it. The first step being the particle gun

particle_id	4503599644147712
particle_type	13
process	0
vx	0
vy	0
vz	0
vt	0
рх	375.925.779
ру	560.662.365
pz	299.960.766
m	105.658.367
q	-1

Example of particle gun output

FATRAS Propagation

- Produce the hits on our detector
- FATRAS uses parametrized equations that describe the interaction of particles with matter (detector layers)
 - Bethe-Bloch and Bethe-Heitler
 - <u>Description in the documentation</u>
- Using Geant4 is also possible

particle_id	geometry_id	tx	ty	tz	tt	tpx	tpy	tpz	te	deltapx	deltapy	deltapz	deltae	index
450359964414	7 5764608897424	17.6435509	26.3971519	141.092026	0.482404649	3.74247098	5.61727953	29.9951477	30.7454052	-0.00012434988	-0.00011105436	-0.00017800545	-0.00020908787	0
450359964414	7 5764610271814	1 39.398716	59. 1 917572	315.947205	1.08025253	3.72160625	5.63174248	29.9916401	30.7420959	-0.0015875214	-0.00108358543	0.000240411115	-0.00015608617	1
450359964414	7 5764610271814	40.486618	60.8387337	324.719391	1.11024511	3.7190311	5.63131142	29.9918804	30.7419395	0.00132368144	0.00286062085	-0.00088070239	-0.00017489859	2
450359964414	7 6485184837803	3 74.7456436	113.032188	602	2.05831456	3.68934417	5.6548562	29.9871826	30.7381039	7.51150219e-05	-0.00016811005	-0.00011313620	-0.00013228319	3
450359964414	7 6485186212192	2 87.0301437	131.90155	702	2.40023136	3.67800283	5.66169071	29.9866791	30.7375088	0.000437328505	-0.00033966929	-6.51633745e-0	-7.38019371e-0	4
450359964414	7 1008806453969	9 149.506027	229.198639	1215.5	4.15598202	3.61827326	5.70087671	29.9836063	30.7346668	0.00020459173	0.00011170045	-0.00010522620	-5.78490362e-0!	5
450359964414	7 1008806591408	3 183.202545	282.533051	1495.5	5.11338043	3.59212995	5.72083426	29.9808102	30.7325802	-0.00044944352	0.00035500666	-9.88422253e-0	-8.28674238e-0!	6
450359964414	7 1008806728847	7 220.028687	341.603912	1804.5	6.16992998	3.5551486	5.74233389	29.9792233	30.7307415	-0.00139961659	0.00037222864	2.14714364e-05	-7.13826084e-0	7
450359964414	7 1008806866286	6 261.282684	408.792969	2154.5	7.36666679	3.51257873	5.76569653	29.9784126	30.7294292	-4.11071269e-0	0.00012626210	-0.00020031817	-0.00017643056	8
450359964414	7 100880700372	5 306.801514	484.173828	2545.5	8.70357704	3.46734047	5.79311514	29.9782124	30.7292538	0.000675019168	3.89658308e-05	-0.00016233704	-7.48498787e-0!	9
450359964414	7 1008807141164	352.749023	561.686523	2945.5	10.0712767	3.4201479	5.82276011	29.9769821	30.7283688	1.92528096e-05	0.00021961586	-0.00017930175	-0.00013115815	10

Digitization

•••

addDigitization(
s,
trackingGeometry,
field,
addFatras(
s,
trackingGeometry,
field,
rnd=rnd,
enableInteractions=Tru

- Simulate the measure by the pixels of the detector layers
- Clustering already included (?)
 - Assuming this as we have var_local0 and var_local1

measurement_id	geometry_id	local_key	local0	local1	phi	theta	time	var	_local0	var_local1	var_phi	var_theta	var_time
1	0 5764608897424		-12.594.698	-339.011.307		0	0	0	208.333.338	208.333.338	0	(j
	1 576461027 <mark>1</mark> 814		715.210.676	918.191.373		0	0	0	208.333.338	208.333.338	0	(J
	2 5764610271814		-709.059.334	972.053.432		0	0	0	208.333.338	208.333.338	0	(j
	3 6485184837803		-221.331.811	-451.492.071		0	0	0	208.333.338	208.333.338	0	. (j
,	4 6485186212192		-273.950.982	180.044.041		0	0	0	208.333.338	208.333.338	0	(j
	5 1008806453969		-101.005.602	-445.343.361		0	0	0	533.333.339	119.999.997	0	(j
	6 1008806591408		-223.774.886	18.994.276		0	0	0	533.333.339	119.999.997	0	(j
	7 1008806728847		-182.034.855	-642.108.154		0	0	0	533.333.339	119.999.997	0	(J
	8 1008806866286		-234.517.422	141.149.931		0	0	0	533.333.339	119.999.997	0	(j
	9 1008807003725		-640.522.623	-489.026.489		0	0	0	533.333.339	119.999.997	0	. (J
1	0 1008807141164		-100.600.576	40.876.564		0	0	0	533.333.339	119.999.997	0	(j

Seeding

•••

```
addSeeding(
    s,
    trackingGeometry,
    field,
    rnd=rnd,
    inputParticles="particles_input",
    seedingAlgorithm=SeedingAlgorithm.TruthSmeared,
    particleHypothesis=acts.ParticleHypothesis.muon,
    truthSeedRanges=TruthSeedRanges(
        pt=(1 * u.GeV, None),
        nHits=(7, None),
    ),
}
```

- Implement the Seeding step
- Highly customizable
- Return the tracks to be evaluated by the fitter and the finder

Could not turn on debug options to see the generated data :(

Fitting and Finding

•••

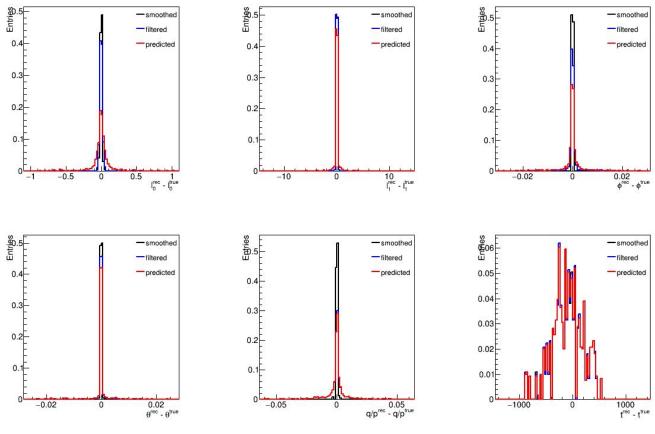
addKalmanTracks(

```
s,
trackingGeometry,
field,
directNavigation,
reverseFilteringMomThreshold,
```

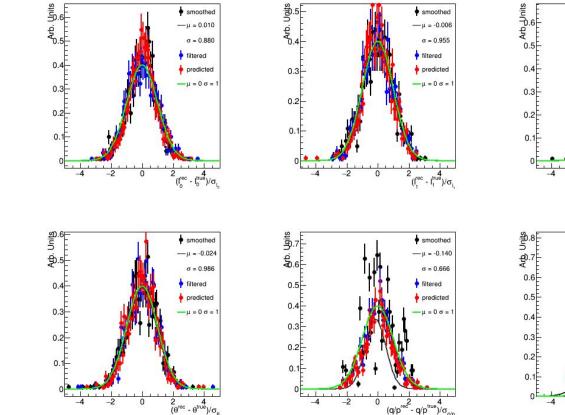
```
s.addAlgorithm(
    acts.examples.TrackSelectorAlgorithm(
        level=acts.logging.INF0,
        inputTracks="tracks",
        outputTracks="selected-tracks",
        selectorConfig=acts.TrackSelector.Config(
            minMeasurements=7,
        ),
    )
```

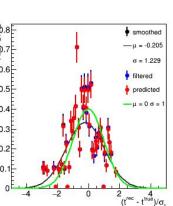
- In this example the reconstruction is done in two steps but can be merged if the function addCKFTracks() is used
 - Results in the next slides
 - Output ROOT files that compare truth tracks with reconstructed ones

Kalman Filter performance (muons) - Residual plots



Kalman Filter performance (muons) - Pull plots





0

-2

smoothed

----μ = -0.029

 $\sigma = 0.907$

filtered

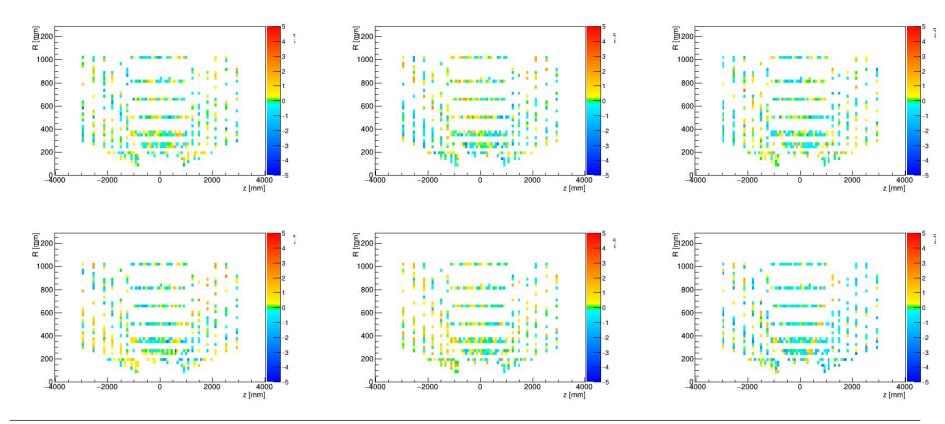
predicted

-μ=0σ=

 $\frac{2}{(\phi^{rec} - \phi^{true})}/\sigma_a$

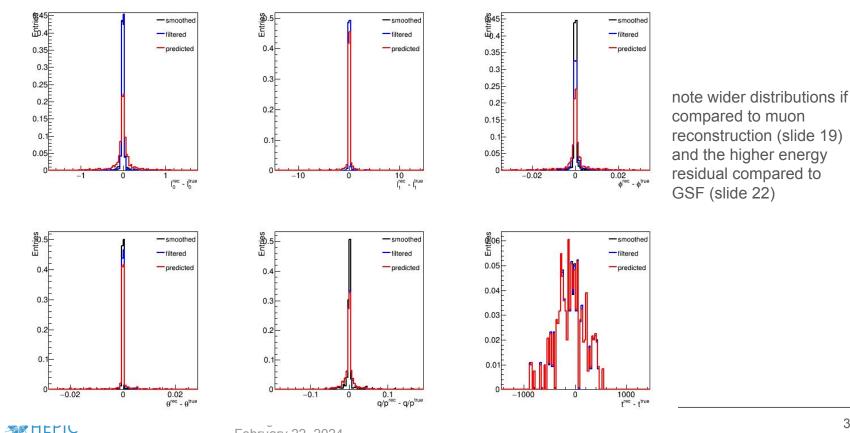
February 22, 2024

Kalman Filter Performance (muons) - Regional pull plots

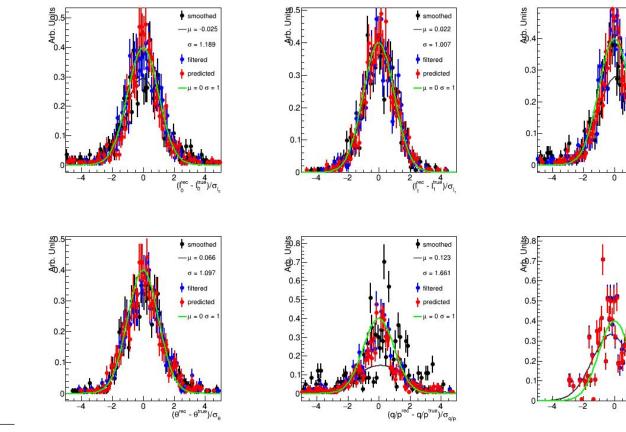


CKF Performance (electrons) - Residual plots

Using particle gun with the same setup shown in the main presentation



CKF Performance (electrons) - Pull Plots



February 22, 2024

smoothed

----μ = 0.168

filtered

predicted

 $-\mu = 0 \sigma =$

 $\frac{2}{(\phi^{rec}} - \phi^{true})/\sigma_a$

smoothed

---μ = -0.212

filtered

predicted

- μ = 0 σ =

 $\frac{2}{(t^{rec} - t^{true})/\sigma}$

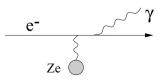
 $\sigma = 1.225$

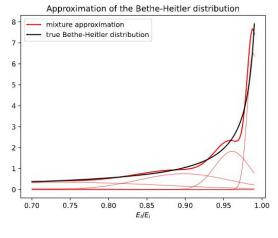
 $\sigma = 1.247$

Bremsstrahlung and the Gaussian Sum Filter

- Charged particles can lose energy by radiating electromagnetic quanta, predominantly in the Coulomb field of the nucleus.
- "The characteristic E/m2 dependence is the reason that for energies below some 100 GeV energy loss through bremsstrahlung is only significant for electrons and positrons."[5]
- To handle the non-Gaussian errors introduced by this effect, the Gaussian Sum Filter is used
- GSF is an extension of the Kalman Filter where the track state is modelled by a Gaussian mixture

$$p(\vec{x}) = \sum_{i} w_i \varphi(\vec{x}; \mu_i, \Sigma_i), \quad \sum_{i} w_i = 1$$

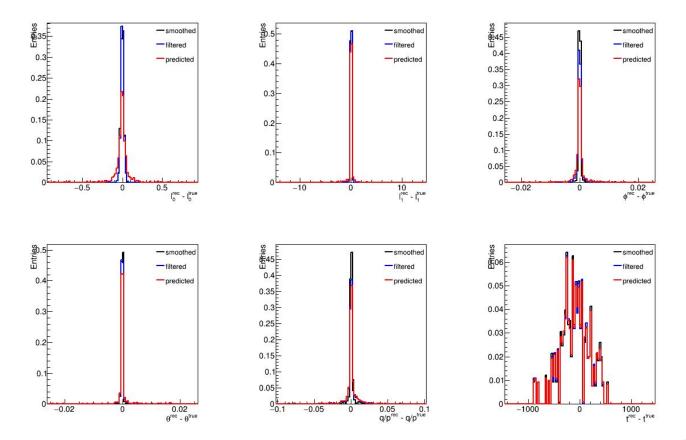




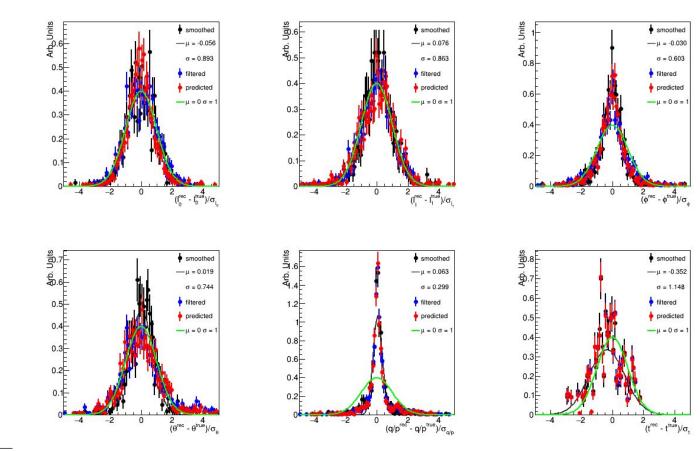
$$f(z) = \frac{(-\ln z)^{c-1}}{\Gamma(c)}, \quad c = t/\ln 2$$

[4][5]

Gaussian Sum Filter performance (electrons) - Residual plots



GSF Performance (electrons) - Pull Plots



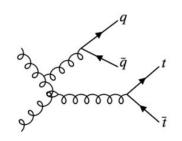
Rodrigo Estevam de Paula February 22, 2024

Simulating collision events

Rodrigo Estevam de Paula February 22, 2024

Simulating collision events

- Using Pythia8 we can generate Monte Carlo collision events with customizable conditions
 - Pythia documentation
 - List of hard process that can be generated
- For now simulating Top: qq'->tt'
- Are there any better events to simulate?



```
addPythia8(
    s,
    hardProcess=["Top:qqbar2ttbar=on"],
    npileup=200,
    vtxGen=acts.examples.GaussianVertexGenerator(
        mean=acts.Vector4(0, 0, 0, 0),
        stddev=acts.Vector4(0.0125 * u.mm, 0.0125 * u.mm, 55.5 * u.mm, 5.0 * u.ns),
    ),
    rnd=rnd,
    outputDirRoot=outputDir,
)
```


Sequencer Setup - Simulation

•••

```
addFatras(
    s,
    trackingGeometry,
    field,
    preSelectParticles=ParticleSelectorConfig(
        rho=(0.0, 24 * u.mm),
        absZ=(0.0, 1.0 * u.m),
        eta=(-3.0, 3.0),
        pt=(150 * u.MeV, None),
        removeNeutral=True,
    ),
    rnd=rnd,
```

addDigitization(

```
s,
trackingGeometry,
field,
digiConfigFile=digiConfigFile,
rnd=rnd,
```

enableInteractions=True,

• Same as before just preselecting which particles to propagate

Sequencer Setup - Reconstruction

•••

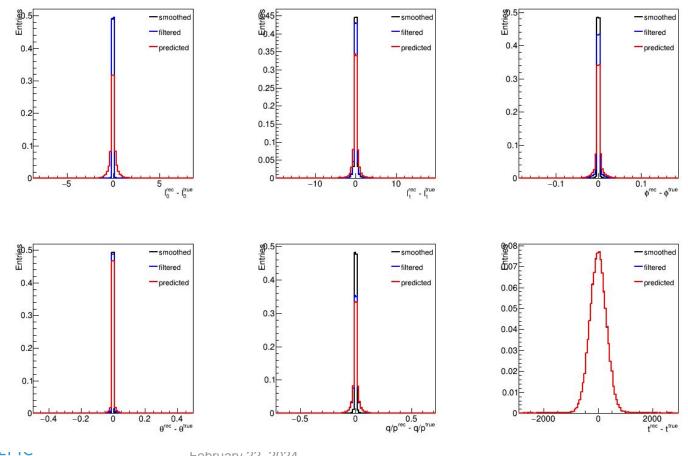
```
addSeeding(
    S,
    trackingGeometry,
    field,
    rnd=rnd,
    inputParticles="particles_input",
    seedingAlgorithm=SeedingAlgorithm.TruthSmeared,
    truthSeedRanges=TruthSeedRanges(
        pt=(1 * u.GeV, None),
        eta=(-3.0, 3.0),
        nHits=(9, None),
    ),
    outputDirCsv= str(outputDir / "Seeding")
)
```

addCKFTracks(

```
s,
trackingGeometry,
field,
TrackSelectorConfig(
    pt=(1.0 * u.GeV,None),
    absEta=(None, 3.0),
    loc0=(-4.0 * u.mm, 4.0 * u.mm),
    nMeasurementsMin=7,
),
outputDirRoot=outputDir,
writeCovMat=True,
outputDirCsv=outputDir,
```

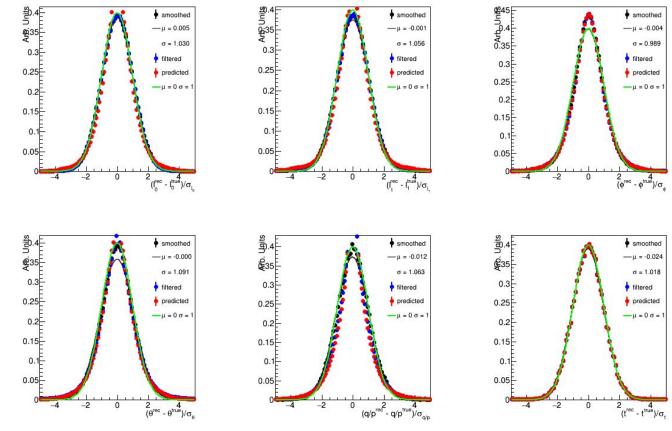
- Now in the seeding we also select the range of truth seeding in order to make a fair performance evaluation
- *CKFTracks()* is both the fitter and the finder, here we also define some criteria to the selector

Performance in collision event - Residual plots



February 22, 2024

Performance in collision event - Pull plots



February 22, 2024

Performance in collision event - Regional pull plots

