ATLAS HGTD status and studies of UFSD for X-ray Synchrotron applications

IV Reunião Geral Projeto Temático FAPESP WG 5-2

> Guilherme Saito 4 Oct 2023

FSC

0

In this Presentation

- → ATLAS HGTD Status
 - ♦ Activities at CERN
 - ♦ São Paulo setup
- → Studies of UFSD for X-ray Synchrotron applications
 - Recent results

ATLAS HGTD Status

HGTD LGAD Quality Control

HGTD is buying ~16000 LGAD

• 15x15 arrays

Various acceptance criteria:

- # of good pads / sensor
- # of good sensors / wafer
- Performance of individual sensors
- Quality of wafer fabrication process

How to qualify the wafer?

Measure test structures and sensors

Qualification Procedure

On ATLAS Clean Room - ISO7:

- MPI TS2000 Probe Station
- Keithley 2470 Electrometer
- Keithley 6487 Picoammeter/VSource
- Agilent 4263B LCR

Similar to our setup

Software developed by USP, deployed in person

Setup commissioning by CERN, USP and USTC

Test Structure needles contact

HGTD Sensors QC Data Acquisition system

Python-based scripting control of all test structures measurements and data keeping

Already deployed and used at CERN, JSI (Slovenia), IHEP (China), USTC (China) and USP

Drivers implemented

- Agilent 4263B LCR
- Keithley 2410, 2470 Sourcemeter
- Keithley 6482 Dual
 Picoammeter / VSource
- Keithley 6487 Picoammeter / V Source
- Keithley 6514, 6517 Electrometer
- Keysight 34461 DMM
- Keysight E4980 LCR
- R&S HM8118 LCR

Next :

- Keysight B2985B Electrometer/Vsource
- R&S LCX-200 LCR

Qualification Task

Write a data acquisition software for **assessing wafer quality**:

- Automatic procedure to measure the different devices
- Drivers for all instruments across the 5 sites
- Real-time plotting and parameter extraction
- Datakeeping on HGTD Production DB
- Tracking and report of wafer quality

HGTD Sensors Quality Control Data Acquisition System

ATLAS collaboration

Summary

Data acquisition software for ATLAS-HGTD sensor QC during preproduction and production will be developed. It will include different configurations of available equipment at the HGTD groups. The DAQ software should be written by use of standardized drivers, which would then be easily modified/added to include any possible new the equipment of the groups doing QC. The software should produce online plots, checks and reports. The software package must include the interface for sending measured data to the production database. A large part of the QT would be development of tools for visualisation, analysis and tracking of production quality from the data stored in the database using Grafana interface. The QT will include the complete QC report from preproduction using the developed tools. The tools should be well documented in the ATLAS note and regularly presented at the meetings.

ATLAS Doc: EDMS Id:	xxx-yyy-zzzz 123456			
Version:	0.1			
Last modified:	14:50 on 3 October 2023			
Prepared by:	Checked by:	Approved by:		
G. T. Saito				

3 October 2023

8

Technical Work at CERN

Ricardo and Marcel currently at CERN - 3 months during 2023

Infrastructure on ATLAS clean room

- Probe station commissioning and area for die manipulation
 - Needed to start sensor quality control
- HGTD Demonstrator bench
 - Needed for next phase production modules testing

USP Setup Commissioning

- Probe station, TM equipment, dry cabinet, microscope already arrived
 - Probe station installation by MPI (from USA)
- → Probe card holder still to arrive
- → Anti-static floor and area closing finished
- → Infrastructure finished after Ricardo & Marcel return from CERN
 - Complete services (power, dry air, access control) and ceiling
- → Air filtering system (ISO-7), bench with anti-static blower

USP Setup Commissioning

To perform a truly full automatic measurement and measure dozens of dies at the same time:

- Take advantage of semi-automatic probe station movement
- Fabricate a die holder to position them inside the probe station
- Assembly a switching matrix to allow multiple instruments at the same time no recabling

Testbeam at CERN

- Guilherme July 2023
 - Last CNM prototype production for HGTD
- Marco September 2023
 - First test with (pre-)production for HGTD

2 papers on previous testbeams just published:

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: June 22, 2023 ACCEPTED: June 26, 2023 PUBLISHED: July 14, 2023

Destructive breakdown studies of irradiated LGADs at beam tests for the ATLAS HGTD

L.A. Beresford,^{*a*} D.E. Boumediene,^{*b*,*} L. Castillo García,^{*c*} L.D. Corpe,^{*b*} M.J. Da Cunha Sargedas de Sousa,^{*d*} H. El Jarrari,^{*e*} A. Eshkevarvakili,^{*f*} C. Grieco,^{*c*,1} S. Grinstein,^{*c*,*n*} S. Guindon,^{*f*} A. Howard,^{*s*} G. Kramberger,^{*g*} O. Kurdysh,^{*h*} R. Mazini,^{*i*} M. Missio,^{*j*} M. Morenas,^{*k*} O. Perrin,^{*b*} V. Raskina,^{*l*} G. Saito^{*m*} and S. Trincaz-Duvoid^{*l*}

DOI 10.1088/1748-0221/18/07/P07030

inst

inst

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: June 16, 2023 ACCEPTED: July 27, 2023 PUBLISHED: August 21, 2023

Performance of a front-end prototype ASIC for the ATLAS High Granularity timing detector

C. Agapopoulou,^a L.A. Beresford,^b D.E. Boumediene,^c L. Castillo García,^d S. Conforti,^e C. de la Taille,^e L.D. Corpe,^b M.J. Da Cunha Sargedas de Sousa,^f P. Dinaucourt,^e A. Falou,^a V. Gautam,^e D. Gong,^g C. Grieco,^d S. Grinstein,^{d,h} S. Guindon,^b A. Howard,ⁱ O. Kurdysh,^a E. Kuwertz,^b C. Li,^f N. Makovec,^{a,*} B. Markovic,^f G. Martin-Chassal,^e R. Mazini,^k C. Milke,^f M. Morenas,^e O. Perrin,^c V. Raskina,^l C. Rizzi,^b L. Ruckman,^f A. Rummler,^b S. Sacerdoti,^a G. Saito,^m N. Seguin-Moreau,^e L. Serin,^a X. Yang,^f J. Ye^g and W. Zhou^g 3

DOI 10.1088/1748-0221/18/08/P08019

UFSD on X-Ray Synchrotrons

Inception

LGAD originally developed for 4D tracking of MIPs on LHC:

- Very good time resolution for charged particles:
 - Can we maintain this for X-ray detection?
- Intrinsic gain -> Improves S/N
 - Can we use this to probe even lower energy X-rays?
- Future collider trackers will need thinner segmentation:
 - Can we use these new LGAD geometries in very fast "X-ray cameras"?

SLAC SSRL Beam Test

Testbeam at Stanford SLAC SSRL together with UC Santa Cruz in November 2022

- Monochromatic beam from 5 to 35 keV (70 w/ harmonics)
- Broad 12.6mm x 2.14mm spot
- Multiple sensors w/ different geometries

First comprehensive testing of LGAD in X-Ray synchrotrons

Performance of LGAD on X-ray Synchrotron

- Easily discriminate 5 keV X-ray:
 SNR > 7
- Easily resolves 2ns:
 - 70ps resolution
- Energy resolution as good as Si allows:
 ~6%

For 35 keV X-ray:

	HPK PIN	HP	K3.1	HP	K3.2	BNL	20um
Bias V	$200\mathrm{V}$	$150\mathrm{V}$	$230\mathrm{V}$	$80\mathrm{V}$	$130\mathrm{V}$	$50\mathrm{V}$	$100\mathrm{V}$
Energy Resolution	14%	6%	17%	10%	20%	6%	16%
Energy Response	$19\mathrm{mV}$	$75\mathrm{mV}$	$185\mathrm{mV}$	$68\mathrm{mV}$	$211\mathrm{mV}$	$66\mathrm{mV}$	$147\mathrm{mV}$
$\sigma_t \operatorname{CFD}$	$78\mathrm{ps}$	$141\mathrm{ps}$	$123\mathrm{ps}$	$371\mathrm{ps}$	$171\mathrm{ps}$	$69\mathrm{ps}$	$65\mathrm{ps}$

Work published

1st paper accepted by JINST:

Work in collaboration with University of California Santa Cruz

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALA		
RECEIVED: July 13, 2023		

RECEIVED: July 13, 2023 ACCEPTED: September 27, 2023 PUBLISHED: ???, 2023

000

S

L

 \geq

Synchrotron light source X-ray detection with Low-Gain Avalanche Diodes

S.M. Mazza, ^{a,*} G. Saito, ^b Y. Zhao, ^a T. Kirkes, ^a N. Yoho, ^a D. Yerdea, ^a N. Nagel, ^a J. Ott, ^a M. Nizam, ^a M. Leite, ^b M. Moralles, ^d H.FW. Sadrozinski, ^a A. Seiden, ^a B. Schumm, ^a F. McKinney-Martinez, ^a G. Giacomini ^c and W. Chen ^c
^a SCIPP, University of California Santa Cruz,
1156 High Street, Santa Cruz, CA, U.S.A.
^b Universidade de São Paulo,
São Paulo, SP, Brazil
^c Brookhaven National Laboratory,
Upton, NY, U.S.A.
dIPEN-CNEN,
São Paulo, SP, Brazil

https://arxiv.org/abs/2306.15798

At least 1 more to come

Talk presented on the 13th International Conference on Position Sensitive Detectors

Oxford University, Sep 6 2023

Synchrotron light source X-ray detection with Low-Gain Avalanche 🔗 🖻 🗃 Diodes						
 Sep 6, 2023, 5:30 AM 20m St Catherine's Bernard Sunley Building (Oxford) 	Talk Setectors for Synchr	Detectors for FELS, Sy				
Speaker						
L Guilherme Tomio Saito (Universidade de Sa						

Proceedings to be published on NIM A

https://indico.cern.ch/event/1230837/ contributions/5518011/

SIRIUS Testbeam

• End of the November

- Tarumã beam line (2keV 17 keV, .1um to few mm beam size, max intensity ~10¹² photons/s, 10ps timing signal for trigger)
- Will test a HPK device from HGTD LGAD prototype run
 - Try to confirm results from SSRL
 - Add some measurements to understand
 X-ray gain and signal formation
- Developing a new amplification chain readout
 - Optimized to probe low energies
 - Very fast electronics

Beam pipe

Tarumã beamline:

Remarks

→ HGTD

- Ramp up of activities
 - O(100) devices to be tested at USP on next months
- Continue supporting Sensor QC software for the foreseeable future
- Next year:
 - Full demonstrator activities
 - Start HGTD assembly
- → Synchrotron applications
 - Testbeam at Sirius
 - Start research on sensor readout