Semiconductor sensors development and applications WG-5.2

Status Report

FAPESP Thematic 2020/04867-2

May 25th 2023

HFPIC

centro universitário

WG-5.2.1 & WG-5.2.2 : Recap

- WG-5.2.1 : ATLAS High Granularity Timing Detector (HGTD)
- WG-5.2.2 : Low Gain Avalanche Detectors (LGADs) for low energy applications

Details on August <u>kick-off meeting</u> and More details on <u>March WG 5.2 Workshop</u>

WG 5.2.1: People and Action Items (Recap)

- 1. Current Team
 - 1.1. M. Leite (Physicist)
 - 1.2. G. Saito (MS,PhD)
 - 1.3. R. Menegasso (TS)
 - 1.4. M. Kuriyama (TS)
 - 1.5. DD (Dedicated)
 - 1.6. DD (Sharing with PA)
 - 1.7. PD (Sharing with PA)
 - 1.8. IC (TT-2?)
 - 1.9. TT-4

DD-4: Ultra-fast semiconductor sensors and associated instrumentation for radiation detection

- 1. Action items
 - 1.1. Equipment availability (importation)
 - 1.2. Preparing civil infrastructure for Lab
 - 1.3. Lab installation
 - 1.4. PD, DD, TT hiring
 - 1.5. Start testing sensors
 - **1.6.** Significant work to commission local infrastructure (EMU FAPESP)
 - 1.7. Significant commitment of people on @CERN activities

- 1. Deliverables
 - 1.1. LGAD Characterization Lab.
 - 1.2. Characterization of LGAD sensors (on-going)
 - 1.3. Performance studies on irradiated arrays (on-going)
 - 1.4. PEB test stand system
 - 1.5. Participation in HGTD assembly facility construction @ CERN (on-going)
 - 1.6. Demonstrator construction @ CERN (on-going)
 - 1.7. HGTD installation
 - 1.8. HGTD commissioning

Almost zero float on these items !

WG 5.2.1 : ATLAS HGTD - Infrastructure @CERN

- **R. Menegasso & M. Kuriyama** @ CERN (3 Months)
 - Clean room and metrology setup for HGTD assembly @ B180
 - Demonstrator construction and thermal test system support
 - 0
- Next campaign July-October 2023

On track (2023)

WG 5.2.1 : ATLAS HGTD - Sensor test and Database

- M. Leite, G. Saito collaboration in HGTD DB group
 - <u>Documentation (Sphinx, gitlab pages)</u>
 - Sensor database (MySQL)
 - Plot (Grafana)
- Concludes in 2023, updates after that

Sensor (N,CV, Teeing, Charge
 P is NT
 Simon (is NT
 O(L) is NT
 O(L) is NT
 Tring, is NT
 O(Lipp, is NT

On Track

Example of a grafana dashboard showing information about sensors

WG 5.2.1 : ATLAS HGTD - Sensor tests and Database

- M. Leite, G. Saito ongoing sensor testing
 - Sensor tests at USP and FEI (M. Pavanello)
 - New laser system in 2023 ...
- Part of the commitments for HGTD (forever ...)

On Track

WG 5.2.1 : ATLAS HGTD - Infrastrucutre @USP

- We need to be ready by March 2023 as soon as possible
- Importation in several advanced stages by FAPESP and/or acquired in local distrib. (but support for other equip. across institutes)
- Bias tee, low noise conexion boxes and matrix switch being assembled

WG 5.2.1 : ATLAS HGTD - hDAQ

- Integrated DAQ System for Sensor QC
- Unique system developed for CERN/IJS/IHEP/USP
- Sensor and control structures
- MySQL DB integration
- Part of the commitments for HGTD (forever ...)
- https://hdag.docs.cern.ch
- https://gitlab.cern.ch/ATLAS USP/HGTD/Sensors/QAQC/HDAQ

Reference Board

Done :

0

- PCB to wire bond a sensor or test structure die and SMD resistor/capacitor for calibration
- Handy to develop DAQ software Good to debug noise & connection (without Probe Station)

WG 5.2.1 : ATLAS HGTD - Test structures

- First tests done at USP
- Done @FEI with M. Pavanello

Test Structures	• NJ Contact Resistance					
 IHEP test structures: 3 Sheet Resistors 3 Contact Resistors 7 Capacitors 1 Diode 2 Gated Diodes 6 MOSFET Not the production design To get hands-on experience for the Sensors QC	 NJTE contact resistor N+ 			NJ	N+	NP
	 N++ contact resistor NP 	DMM 34461	Die 1	378 kΩ	13.0 Ω	11.5 Ω
	 N++/P+ layer contact resistor First tried with B1500, but no reliable measurement 		Die 2	386 kΩ	13.6 Ω	11.6 Ω
			Die 3	374 kΩ	12.9 Ω	10.9 Ω
	> Then used a DMM and LCR 4-wire Resistance	LCR HM8118	Die 1	65 kΩ	14.3 Ω	12.8 Ω
			Die 2	550 kΩ	14.0 Ω	12.6 Ω
			Die 3	549 kΩ	13.3 Ω	11.5 Ω
	a Las Las La	DMM 34461 Current Source: 1mA for $1k\Omega$; 5µA for $1M\Omega$				

LCR HM8118: 0.5V 20Hz

WG 5.2.2 : Low Energy Applications - G4 Simulations

- First G4 simulation framework from M. Moralles for AC-LGADs
- More info on March WG 5.2 Workshop (<u>https://indico.cern.ch/event/1251642/contributions/</u>)

WG 5.2.2 : Low Energy Applications - TCAD Simulations

- TCAD AC-LGAD example from UCSC run by R. Buhler & R. Giacomini
- More info on March WG 5.2 Workshop (<u>https://indico.cern.ch/event/1251642/contributions/</u>)

11

WG 5.2.2 : Low Energy Applications - TCAD Simulations

- LGAD TID tests (X-ray) @ FEI (M. Guazelli) bard with HPK 3.1 & 3.2 wire bonded
- More info on March WG 5.2 Workshop (<u>https://indico.cern.ch/event/1251642/contributions/</u>)

EXEMPLO DE TESTE QUE ACABA DE SER PLANEJADO E PREPARADO NA FEI

CI com 3 retangulares e 2 ELT

TID

Irradiado até 300 keV. Analisado antes, durante e após irradiação

SEE

Verificar sinal analógico do pico de corrente (SEE) em função do tempo. Número de SEE em função do tempo, para um determinado LET. Serão monitorados 1 Ret e 1 ELT ao mesmo tempo.

centro

WG 5.2.2 : SSRL LGAD and AC-LGAD Tests

LGADs/AC-LGADS for picosecond time-resolved X-ray testing

- 4. Radiation testing of *available* LGAD, AC-LGAD
 - 4.1. X-Ray testing
 - 4.2. Charged particle testing (electrons, protons, ions)
 - 4.3. Time Resolved X-Ray testing (M. Leite & UCSC)

Tested at Stanford SLAC SSRL test beam with UC Santa Cruz in November 2022 $\ensuremath{\mathsf{2022}}$

- Energies from 5keV to 53 keV (70 keV with harmonics)
- "Flat" beam (BL 11.2) : 12.6mm x 2.14mm
- Several intensities and bias voltages
- LGADs :
 - HPK 3.1 Single (1.3mm)
 - HPK 3.2 single (1.3mm)
 - HPK 3.2 5x5 (1.3mm)
 - BNL 20 μ m Single (1mm)
- AC-LGADs :
 - BNL strips

On Track

Compton Box (SiPM + LYSO)

Long range and continuous effort - also discussion with Sirius detector group

WG 5.2.2 : WBS and Deliverables

Part-I - LGADS for picosecond time resolved X-ray testing

On Track

Volume 4

SSRL BL 11-2

- Significant amount of work since Dec. 2022
- Analysis almost completed, paper in preparation (JINST) to be submitted next month or so

Energy resolution

Timing resolution

Figure 11: Simulation of primary charge transverse distribution (considering a point-like beam) in the LGAD BULK region for photons of 5(a), 10(b) and 30(c) keV

14

WG 5.2.x : Deliverables

Three papers about to be submitted

Performance of a front-end prototype ASIC for the ATLAS

High Granularity Timing Detector

4 E-mail: makovec@cern.ch

5 ABSTRACT: This paper presents the design and characterisation of a front-end prototype ASIC for 6 the ATLAS High Granularity Timing Detector, which is planned for the High-Luminosity phase 7 of the LHC. This prototype, called ALTIROC1, consists of a 5×5-pad matrix and contains the analog part of the single-channel readout (preamplifier, discriminator, two TDCs and SRAM). . Two preamplifier architectures (transimpedance and voltage) were implemented and tested. The ASIC was characterised both alone and when connected to a 5×5-pad array of LGAD sensors. In calibration measurements, the ASIC operating alone was found to satisfy the technical requirements ¹² for the project, with similar performances for both preamplifier types. In particular, the jitter was 13 found to be 15±1 ps (resp. 35±1 ps) for an injected charge of 10 fC (resp. 4 fC). A degradation in performance was observed when the ASIC was connected to the LGAD array. This is attributed 15 to digital couplings at the entrance of the preamplifiers. When the ASIC is connected to the 16 LGAD array, the lowest detectable charge increased from 1.5 fC to 3.4 fC. As a consequence, 17 the jitter increased for an injected charge of 4 fC. Despite this increase, ALTIROC1 still satisfies 18 the maximum jitter specification (below 65 ps) for the HGTD project. This coupling issue also 19 affects the time-over-threshold measurements and the time-walk correction can only be performed 20 with transimpedance preamplifiers. Beam test measurements with a pion beam at CERN were also 21 undertaken to evaluate the performance of the module with LGAD pulses. The best time resolution 22 obtained using only ALTIROC information was 46.3±0.7 ps for a restricted time-of-arrival range 28 where the coupling issue is minimized. The residual time-walk contribution is equal to 23 ps and

24 is the dominant electronic noise contribution to the time resolution at 15 fC.

Destructive breakdown studies of irradiated LGADs at
 beam tests for the ATLAS HGTD

L. A. Beresford," D. E. Boumediene,^{1,b} L. Castillo García,^{1c} L. D. Corpe,^b M. J. Da Cunha
 Sargedas de Sousa,⁴ H. El Jarrari," A. Eshkevarvakili,¹ C. Grieco², ^c S. Grinstein,^{c,n}
 S. Guindon,⁷ A. Howard,¹⁸ G. Kramberger,⁸ A. Kurdish,^h R. Mazzini,¹ M. Missio,¹
 M. Morenas,^k O. Perrin,^b V. Raskina,¹ G. Saito,^m L. Serin,^h

^aDeutsches Elektronen-Synchrotron (DESY), NotkestraSSe 85, 22607 Hamburg, Germany

- ^bLaboratoire de Physique de Clermont-Ferrand (LPC), Universite Clermont Auvergne, Campus Universitaire des Cézeaux, 4 Avenue Blaise Pascal, 63178 Aubière Cedex, France
- ^cInstitut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST),
- 12 Carrer Can Magrans s/n, Edifici Cn, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
- ¹³ ^d Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University
- of Science and Technology of China (USTC), 96 JinZhai Road Baohe District, Hefei, Anhui, 230026, China
- ^e Université Mohammed V de Rabat, Avenue des Nations Unies, Agdal, Rabat, Morocco
- ^f Conseil Européen pour la Recherche Nucléaire (CERN), Esplanade des Particules 1, CH-1211 Meyrin,
 Switzerland
- ⁸ Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana, Slovenia
- ^hLaboratoire de Physique des 2 Infinis Irène Joliot Curie (IJCLab), 15 Rue Georges Clemenceau, 91400 Orsay, France
- ²¹ ¹Academia Sinica, 128, Section 2, Academia Road, Nangang District, Taipei City, Taiwan 115
- ^jInstitute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen, P.O.
 Box 9010, 6500 GL Nijmegen, Netherlands
- 24 ^kOmega, Ecole Polytechniaue, Palaiseau, France
- 25 ¹Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université de
- 26 Paris, CNRS/IN2P3, Paris, France
- ²⁷ ^mInstituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
- ²⁸ ⁿInstitució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010
- 29 Barcelona, Spain

X-ray detection with Low-Gain Avalanche Diodes

S.M. Mazza¹ H. F.-W. Sadrozinski¹ A. Seiden¹ B. Schumm¹ Y. Zhao¹ N. Yoho¹ T. Kirkes¹ M. Nizam¹ D. Yirda¹ N. Nagel¹ J. Ott¹ M. Leite² G. Saito²

¹SCIPP, University of California Santa Cruz, 1156 high street, Santa Cruz (CA), US ²Universidade de São Paulo, São Paulo (SP), Brazil

E-mail: simazza@ucsc.edu

ABSTRACT: The response of Low Gain Avalanche Diodes (LGADs), which are a type of thin silicon detector with internal gain, to X-rays of energies between 6-70 KeV was characterized at the SLAC light source (SSRL). The utilized beamline at SSRL was 11-2, with a nominal beam size of 3 cm x 0.5 cm, repetition rate of 500 MHz, and exceptionally monochromatic. LGADs of different thicknesses and gain layer configurations were read out using fast amplification boards and digitized with a fast oscilloscope. Standard PiN devices were characterized as well. The devices' energy resolution and time resolution as a function of X-ray energy were measured. The charge collection and multiplication mechanism were simulated using TCAD Sentaurus, and the results were compared with the collected data.

KEYWORDS: fast silicon sensors; charge multiplication; thin tracking sensors; X-rays; time resolution

WG 5.2.1 & WG 5.2.2 : ACTION ITEMS FOR NEXT MONTHS

• Move ahead with USP infrastructure

- Most critical item
- Involves space, import and equipment purchase
- Needs to prepare lab infrastructure while space discussion is on-going
- DAQ development and DB integration @ USP (in sync with CERN/IHEP/USTC/JSI)
- Infrastructure (baby demo and mockup) @ CERN
- Build the laser system with motorized stages + position measurement
- Validate first functional TCAD and Geant4 simulation
- Add Ad-hoc simulation code for multiplication mechanism
- Analyze data from TB @SLAC, resume discussion with Sirius (more people involved...)
- Understand irradiation needs and prepare infrastructure/tests at local facilities
- Explore/Converge designs for fabrication (WG 5.2.3 see next presentation)
- **G. Saito** →**DD** (qualification tomorrow, "Ultra-Fast Silicon Detectors for Radiation Sensing") ; R. Mansano (Poli) + M. Leite (IFUSP)
- R. Estevam →DD (Start next month : "Métodos de aprendizado profundo e processamento de sinais aplicados à reconstrução de trajetórias em 4 dimensões para o HL-LHC";
 V.H. Nascimento (Poli) + M.Leite (IFUSP)
- ECFA Detector Roadmap : DRD3 R&D on Solid State Detectors (on-going)

ATLAS HGTD

New applications on track

critical

new

WG 5.2.1 & WG 5.2.2 : ACTION ITEMS FOR NEXT MONTHS

Graph based Neural Network approach for ATLAS HL-LHC (iTK+HGTD)

• Exa.trk: HEP advanced tracking algorithms at the Exascale

Characterization of Semiconductor sensor using TCT and TPA Laser techniques

- Conventional TCT:
 - Localized generation of e-h pairs on X-Y
- Two-photon absorption TCT:
 - Localized generation of e-h pairs on X-Y-Z

Photography: Ciceron Yanez, University of Central Florida

DRD-3 R&D on semiconductor sensors

