AI/ML in EF Tracking

Haider Abidi (for EF Tracking) AI/ML Coordinator Feb 25th, 2024

Introduction

- EF Tracking Review Committee: Recommendation that "ATLAS" commit to a commercial solution for EF Tracking at HL-LHC,"
 - Heterogeneous devices (e.g., GPUs and FPGAs) allow the CPU to offload specialized tasks, and may provide power saving and/or throughput increase
- Within this context, use of AI/ML doesn't just stop at pushing performance
 - Computing & throughput requirements are just as critical and necessary
- Use of AI/ML stands within the context of the criteria/constraints • of the full project
- For CPUs/GPUs, a lot of work is performed and hosted in other • ATLAS groups
 - Slight bias towards FPGA based solution in this talk

EF Tracking: Philosophy & Schedule

- 1st Demonstrator: (Completed) Encouraged "bubbling up" of standalone algorithms
 - Various ideas (including AI/ML) were tested to understand the efficacy and base performance
 - Highly synergistic collaboration across various communities within ATLAS
- 2nd Demonstrator: (Current) Integrate algorithms into tracking pipelines on each technology
 - Promising ideas have been picked, including AI/ML ones
- AI/ML solutions in this presentation are those being integrated for the 2nd demonstrator cycle

EF Tracking Schedule

Al/ML Idea: Graph Neural Networks

- Close collaboration with offline Significant overlap of personnel
- Ongoing studies to update to latest geometry
 - Comparable performance to offline results
- Sparse random data access for messaging passing step is a challenging on accelerators
 - Optimization being performed to reduce inference time and leverage GPU technology to increase throughput
 - Dedicated effort for implementing GNNs on FPGAs

ML Enabling Classical Algorithms on Accelerators

- Conformal (Hough) transform is a relative simple/cheap pattern recognition algorithm
 - Fixed data access pattern is significantly more efficient •
 - Cost: Lot of fake hit combinations & No figure of merit on fit quality
- Need to preform a preliminary "Ambiguity resolution" without using the time consuming fit for each track
 - Leverage the performance of ML to predict this figure of merit? •
- Classify a vector of x/y/z position coordinates as coming from a 'true or fake track' •
 - Established during TDR addendum process Link
 - Being incorporated into ACTS for seed filtering Link

Al/ML Idea: Fake Removal

Fake rejection algorithm

AI/ML Idea: Path Finder

- Kalman filter/extrapolation algorithm is the standard for reconstructing/fitting the track
 - Precision algorithm that requires magnetic field and detector description
- Train a NN to encode this information and predict the trajectory •
 - Given a tracklet, can the NN predict the next hit?
- Reduce expensive computation to matrix multiplication that can be accelerated on FPGA/GPUs

Assume Seeds of three hits are available

- 1. Input 3 hits into the NN
- 2. Predict (extrapolate) the location of the 4th hit
- 3. Look for hits in the detector nearby the predicted location
- 4. Append all compatible hits to the track seed
- 5. Repeat until the edge of the detector is reached or no compatible hits are found

Full Track Reconstruction

- NN is able to learn the trajectory of the particle in our complex detector/magnetic field
- Implement the NN in a standalone track finding algorithm
 - Comparably high reconstruction efficiency
- Being implemented in Athena with ACTS for large scale testing

NN learns the detector geometry

Tracking efficiency in a HL-LHC environment

AI/ML Idea: Coarse Parameter Prediction

- All accelerator based algorithms (including GNNs) envision a CPU based track fit using the ACTS Kalman Fitter
 - Identified the need for a simple for a coarse parameter estimation
- Use a vector of x/y/z position coordinates to predict pT/eta/phi/d0/z0 as starting guesses for Kalman Fitter
 - Being integrated into ACTS/Athena for larger scale testing

AI/ML Pipelines

- Requires conversion of AI/ML (python based) to C++ based algorithms
 - Significant effort into developing the tools on incorporate AI/ML into pipelines
 - Successfully demonstrated over the two development cycles

ML algorithms for major tracking sub-algorithms

Pathfinder **GNNs**

GPUS (ACORN pipeline)

Overlap Resolution Parameter Prediction

CPU	
GPU	

FPGA	
CPU	

ONNX & HLS4ML

- For CPUs/GPUs, ONNX is the goto standard
 - Leveraging Core software development for FTAG/Calo/JetEtMiss NN inference
- Established HLS4ML as goto tool for ATLAS
 - Work performed in first cycle lead to a common understanding
 - Understanding limitation, creating implementation, validating inference calls •
 - Establishing pruning/quantization strategies for efficient implementation

Impact of pruning for GNNs

Tools for customizing quantization

Link - Athena interface for GPU NN inference

11

AI/ML on accelerators

- For CPUs/GPUs, single inference calls are very inefficient
 - Studies ongoing to batch inference calls around NN
- For FPGAs, the Vitis kernel flow has been established & validated for NNs
 - Matrix multiplication is perfectly pipelined •
 - For N evaluations, total latency is O(N + constant), not O(constant*N)

Optimization of batch evaluation for NN on GPUs/FPGAs

Validation of NN on FPGA

12

Scaling restriction

- Reasonably priced accelerator cards tend to have small memory, with FPGAs having comparatively smaller compared to GPUs
 - AI/ML algorithms are not immune to the combinatorial growth of tracking
- GNN Graph building requires huge memory
 - Work ongoing to fit this algorithms on FPGA though segmenting the detector in eta/phi slices
 - Some degradation in performance, retraining recovers the losses

Impact of detector segmentation on GNNs memory requirement

Regions in Phi- Eta	1x1 (Full Detector)	1x2 w/ 0.1 0 verlap	2x1 w/ 0.1 Overlap	2x2 w/ 0.1x0.1 Overlap	4x4 w/ 0.1x0.1 Overlap	8x8 w/ 0.1x0 Overlap
Num Graphs	1000	2000	2000	4000	16000	64000
Avg Nodes	~310k	~156k	~158k	~80k	~22k	~7k
Avg Edges	~1.9m	~929k	~951k	~475k	~129k	~35k
Avg Size (MB)	~108 MB	~54 MB	~55 MB	~28 MB	~8 MB	~2 MB

-2

-1

Integration in ACTS/Athena

- Pipelines are required to start/end in Athena
 - All algorithms (including AI/ML) need 'plumbing' to make this happen
- Accelerators require complex data transfer and EDM management
 - GPUs/FPGAs communication have been established and validated in Athena
 - Spacepoint FPGA kernel has successfully been integrated with Athena
 - Working to establish quantization requirements required feedback for NN training
- Interface to ACTS based KF fitter has established and merged into Athena
 - Developed this interface in collaboration with Tracking CP/ACTS developers
 - Provides the conversion to xAOD Track EDM objects for analysis and connection to • common monitoring tools

KF interface for EF pipelines

/// @brief small non-persistent data class to wrap the output /// of the EF-tracking development pattern finding placeholder You, 6 days ago | 1 author (You) namespace ActsTrk{ You, 6 days ago | 1 author (You) struct ActsEFProtoTrack{ 15 /// set of measurements assigned to the same pattern 16 std::vector<ActsTrk::ATLASUncalibSourceLink> measurements = {}; /// estimate of initial track parameters for this pattern 18 std::unique_ptr<Acts::BoundTrackParameters> parameters = nullptr; 19 20 };

Data Transfer pattern and latency

Conclusions

- AI/ML algorithms are integral components of the EF tracking pipelines
 Many pioneering efforts, but also collaborating with and adapting other
 - Many pioneering efforts, but also collaboration ongoing efforts
 - Both novel new solution and enabling of classical algorithms for accelerators
- First development cycle identified various promising AI/ML algorithms
 - Focus to integrate these into the large scale simulation and hardware chains
 - NNs are never the full chain and require plumbing
 - Once connections are defined, well defined opportunities for newer AI/ ML ideas to be incorporated

nising AI/ML algorithms simulation and hardware

Without Machine Learning

With Machine Learning

15