
Physics Working Group

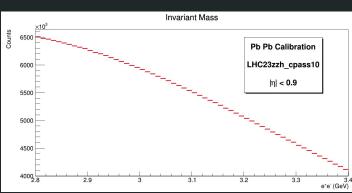
Dileptons and Quarkonia

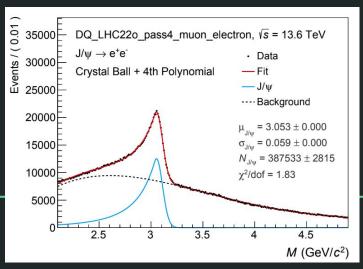
Personal Motivation - X(3872)

- 1. X(3872) decays to J/ψ (composed by a pair charm/anti-charm)
 - a. X(3872) → J/ψ π⁺π⁻
- 2. J/ ψ decays to a pair e⁺e⁻ or $\mu^{+}\mu^{-}$
- 3. We can use the framework to correctly reconstruct the J/ψ meson
 - a. Time Projection Chamber
 - i. Particle Identification
 - b. Inner Tracking System
 - i. Tracking
- 4. The Framework is based on Table Reduction
- LHC Data
 Table Maker + Filter pp
 Table Reader
 Same Event Pairing

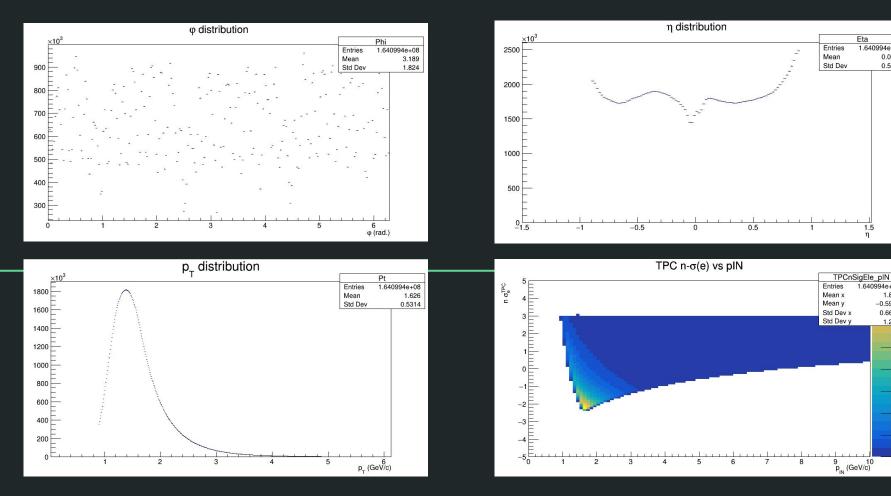
What I Have to Do

Service Work


- a. LHC DataSet (PB) > Filter pp > ~ 1 TB > New Cuts (< 1 TB)
- b. Optimize the Cuts and Propose/Use New Variables
- c. Analysis in the e^+e^- channel
- d. Filter pp = Software Trigger
- e. The Reduced Dataset will be available for all the Collaboration
- f. Hyperloop
 - i. Create wagons and trains to run tasks using GRID
 - ii. Graphical Interface


pT>1 GeV/c
-0.9 < η < 0.9
0 < TPCchi2 < 4
SPDany
70 < TPCchi2 < 161
-4 < TPCnσElectron< 4
TPCnσProton> 2.5
TPCnσPion> 2.5

cfgDileptonLowMass	2.8
cfgDileptonpTCut	0
cfgLeptonCuts	jpsiO2MCdebugCuts2
cfgMagField	9 🗑 5
cfgMixingDepth	5


Analysis

- 1. Proton-Proton at 13.6 TeV
- 2. Goal \implies Find J/ ψ and ψ (2S) peaks in the invariant mass spectrum
 - a. J/ψ (✔)
 - b. ψ(2S) (**X**)
- 3. PbPb at 5.36 TeV per nucleon pair
 - a. J/ψ (**X**)
 - b. ψ(2S) (**X**)
 - c. No problem, it's a calibration Run
 - i. Very low statistics
- Barrel Tracks
 a. |η| < 0.9

Some QA plots (PbPb)

5

Eta

1.5

1.640994e+08

1.888

-0.5973 0

1.242

- 1000

800

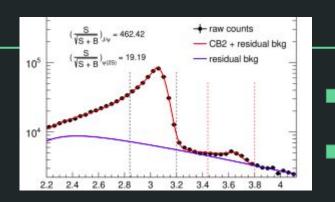
600

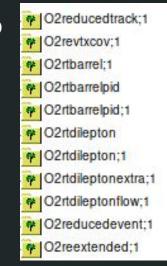
400

200

0.6614

η


1.640994e+08


0.0162

0.5343

Dilepton AOD

- 1. Tree with informations related to the tracks and PID
- 2. Strategy
 - a. Define variables
 - b. Train using MC
 - c. Apply to data
- 3. $\psi(2S)$ is difficult to visualize without M.L.

Yuan Zhang (workshop)

More statistics than me - LHC22 (m, o, r, t)

Plans and Perspectives

- 1. Analysis Run in the PbPb case
 - a. My task is to calculate the J/ ψ / ψ (2S) ratio
 - b. Some QA plots before vacation
- 2. Use Machine Learn
 - a. Decide which variables will be used in the train phase
 - i. Produce a Dilepton Tree
 - ii. Use TMVA or Python?
 - b. There is no MC production in PbPb until now
 - c. Use MC in pp to train and find the $\psi(2S)$ peak
 - d. Until now, the $\psi(2S)$ significance is small also in pp
- 3. Decide the variables and cuts for the service work (Cristiane will help me)
- 4. Use the TPC PID to associate the dilepton with pions
 - a. Reconstruct the J/ $\psi \pi^{+}\pi^{-}$
- 5. Study the ALICE experiment and the Theory of exotics
- 6. Be more involved in the Working and Analysis groups

THANK YOU