Particle Physics Landscape and the Motivation for future Experiments

Jochen Schieck Institute of High Energy Physics Austrian Academy of Sciences <u>https://www.oeaw.ac.at/en/hephy/staff/jochen-schieck/</u>

The very big Question

- How to describe nature in one theory:
 - **General Relativity** the theory describing the nature at large scales (incl. Cosmology)
 - Quantum Field Theory relativistic description of quantum mechanics for small scales (incl. Standard Model of Particle Physics)
- ➡ Something must happen at the Planck Scale ~10¹⁹ GeV

The very big Question

- Theoretical studies trying to approach this fundamental problem
 - String Theory, Loop Quantum Gravity,...
 - "Theory of Everything"
- Beyond every experimental (currently) accessible energy Scale
- Search for new Physical phenomena "at the edge" of the existing theoretical description

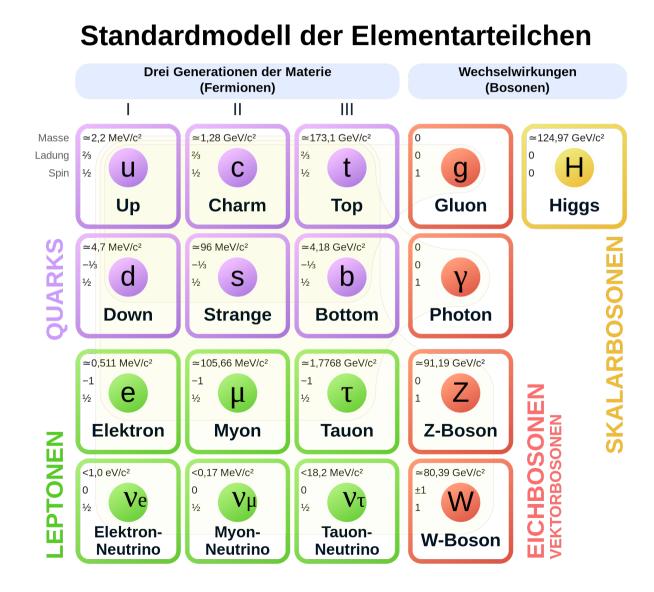


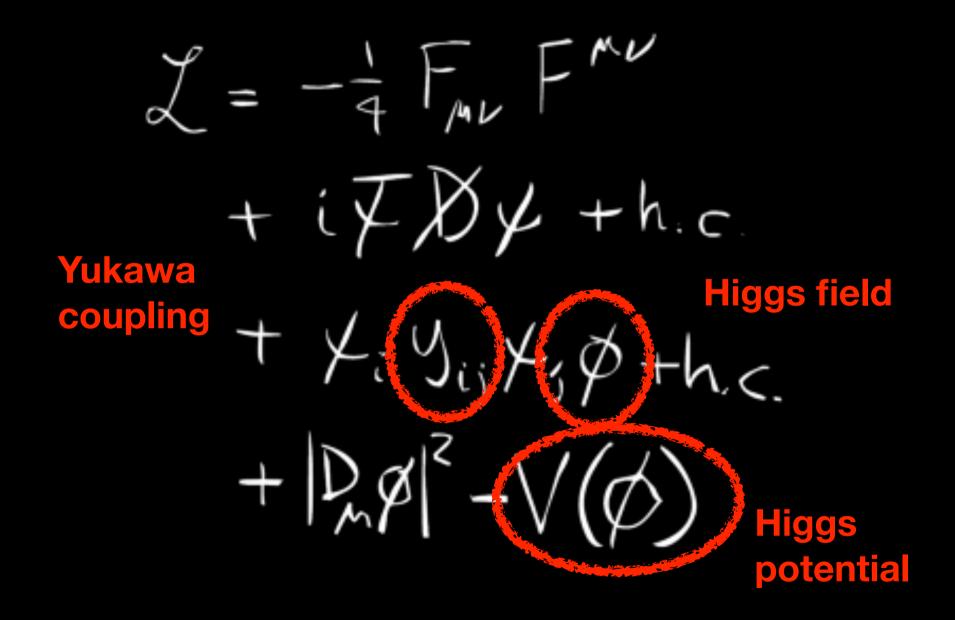
Image Credit: Quanta Magazine

Image Credit: Quanta Magazine

The Standard Model of Particle Physics

- The Standard Model of Particle Physics is a success story
- Development took decades of hard experimental and theoretical work
- Key features of the Standard Model were not immediately accepted as truth

The Standard Model of Particle Physics

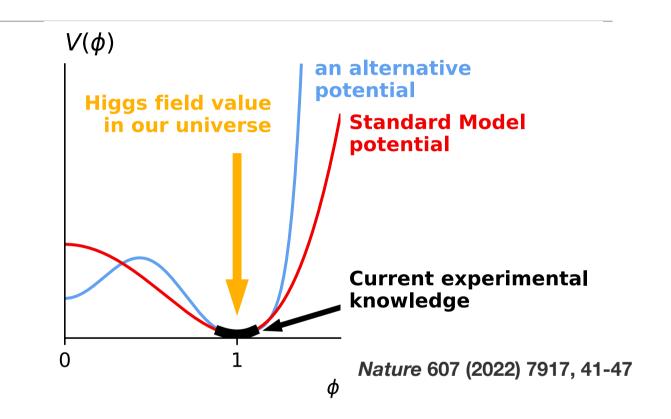

- Free parameters in the Standard Model
 - The "original" Standard Model has 18 free parameters:
 - 3 lepton masses (e,μ,τ)
 - 6 quark masses (u,d,c,s,t,b)
 - 4 CKM-matrix (three mixing angles and one CP-violating phase)
 - 3 coupling constants (U(1), SU(2), SU(3))
 - 2 Higgs parameter (Higgs mass and vacuum expectation value)
 - These parameters are reasonably well measured

The Standard Model of Particle Physics

- Experimental observations towards physics beyond the standard model (Neutrino oscillations)
 - 3 mass terms for neutrino masses
 - 4 PNMS-matrix (three mixing angles and one CP-violating phase)
- more possible extensions of the Standard Model
 - 2 Majorana phases in the neutrino sector
 - 1 strong CP phase (plus axion field to set it to cancel it)
- 25 to 28 (maybe or more) free parameters

Observations

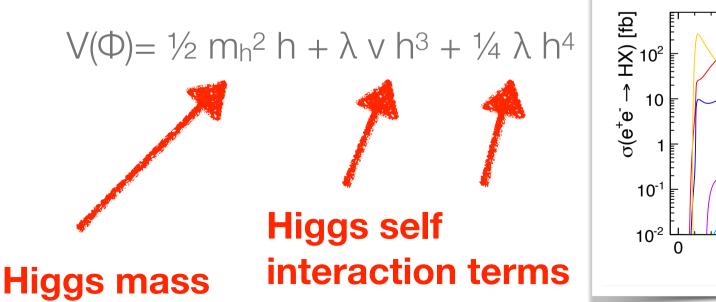
- 15 out 18 parameters of the "original" Standard Model are related to the Higgs mechanism
 - 9 parameters for the fermion masses generated via coupling to the Higgs field

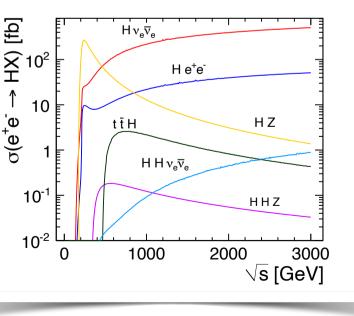


Observations

- 15 out 18 parameters of the "original" Standard Model are related to the Higgs mechanism
 - 9 parameters for the fermion masses generated via coupling to the Higgs field
 - 4 parameters for the CKM Matrix three angles and one phase
 - 2 parameters related to the Higgs boson itself
- Higgs boson plays a significant role in the Standard Model
- Interactions are different to know gauge field interactions

The Higgs Boson

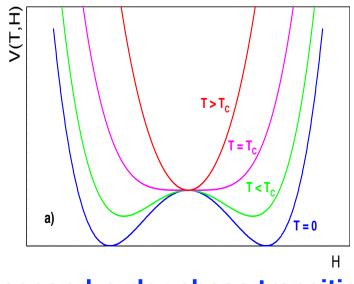

- Higgs boson was only **discovered** recently
- All measurements are consistent with the expectations
 from the Standard
 Model Higgs
 Boson



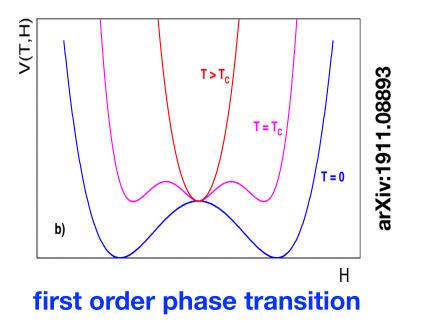
 The current knowledge of the Higgs potential is limited and leaves room for new physics

The Higgs Boson

- 2 out of the 15 parameters of the Higgs boson are directly related to the Higgs Potential:
 - $V(\Phi) = \frac{1}{2} \mu \Phi^{\dagger} \Phi + \frac{1}{4} \lambda (\Phi^{\dagger} \Phi)^{2}$. with $\pm v = \pm \sqrt{(-\mu^2 / \lambda)}$ being being the vev and $m_h = \sqrt{-2\mu^2}$


The Higgs Boson

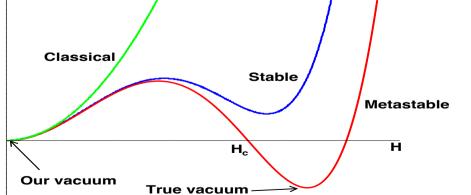
Further fundamental questions related to the Higgs Boson


Naturalness problem:

$$m_H^2 = m^2 + \frac{3\Lambda^2}{8\pi^2 v^2} [m_Z^2 + 2m_W^2 + m^2 - 4m_t^2] + O(\ln\frac{\Lambda}{m})$$

• Which order is the electroweak phase transition

second-order phase transition

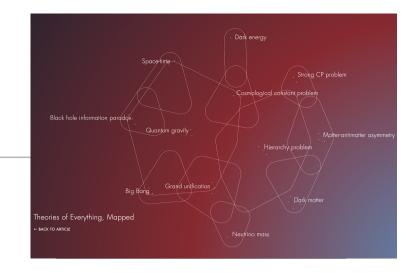

arXiv:1911.08893

The Higgs Boson

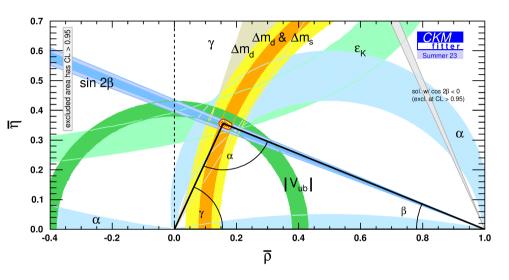
Further fundamental questions related to the Higgs Boson

V(H)

- The Higgs Potential and the relation to the Cosmological Constant: V= V_{Higgs}+V₀ V_{Higgs} ~ $\frac{1}{4} \lambda v^4$ ~ 1.2 x 10⁸ GeV⁴ ~ 10⁴⁴ eV⁴ V_{CC}~ (0.003)⁴ eV⁴ ~ 10⁻¹⁰ eV⁴
- Is the vacuum stable?
- Is the Higgs boson related to the Inflaton?


The Higgs Boson - take home messages

- The discovery of the Higgs boson is not the end of the story
- The Higgs boson is the only fundamental scalar particle
- Studying the Higgs boson in more detail precision measurements to understand its nature has the highest priority
- Construction of a Higgs-factory
- Which parameters can be measured?
- Every deviation from expectation is a clear hint of new Physics
- What can we learn from studying a fundamental scalar


Neutrino Physics

- The neutrino sector of the Standard Model is the least well-measured part of the Standard Model
- 3 masses 4 entries in the PNMS matrix maybe 2 Majorana phases
 - We know the neutrino has a mass
 - No absolute value (only upper limit) and ambiguity of the ordering of masses
 - Measurement of mixing values ongoing, including CP-violating phase
 - The neutrino is the only fundamental particle that can be its antiparticle
 - A possible explanation for small mass scale (seesaw mechanism)
 - Heavy right-handed neutrinos as dark matter candidates?

The CKM Matrix and Flavour Physics

- Phase in CKM Matrix is currently the only source for CP violation in the Standard Model
 - CP violation is a crucial ingredient to reaching a matter-antimatter asymmetry
 - CP violation in CKM is not enough to reach the observed asymmetry
 - additional sources needed

- flavor precision measurements (B, K) offer a unique window for BSM physics
- sensitivity to several O(10⁴)
 TeV via indirect measurements

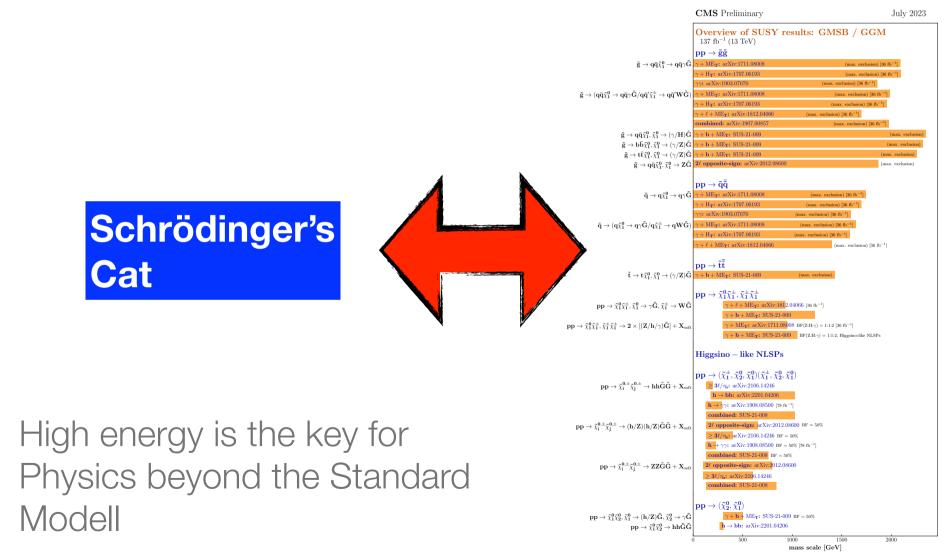
The strong CP problem - search for ALPs

- The strong sector of the Standard Model offers an option for CP-violation
 - Additional term in Lagrangian provides CP violating

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}+ hetarac{g^2}{32\pi^2}F_{\mu
u} ilde{F}^{\mu
u}+ ar{\psi}(i\gamma^\mu D_\mu-me^{i heta'\gamma_5})\psi$$

- CP in strong sector experimentally not observed
 - Why are Θ and Θ' equal to zero, or are the terms in the Standard Model allowed but not realized?
 - Dynamical solution with an additional axion field provides an elegant solution
- Axion and generic axion-like particles (ALPS) are also a valid dark matter candidate
- Generic ALPS searches at accelerators possible

My favourite - search for dark matter


 Undisputed observation of Dark Matter at a large range of astrophysical scales Dark Matter Standard Model Particles

Dark Matter Production

- Observation based on gravitational interaction only
- Hypothesis for unobserved dark matter particles is well-justified
- Requires interaction stronger than gravitational interaction
- Searches with orthogonal approaches and different strengths
 - Convincing dark matter claim requires observation with orthogonal approaches
- Astrophysics

Physik beyond the Standard Model - SUSY

•

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP raint we ΔM , respectively, unless indicated between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated between ΔM .

My personal summary

- It's good to have a science-based discussion
- The discovery of the Higgs completes the Standard Model
 - The Higgs sector offers a broad range of open questions (and possible solutions)
- The neutrino sector is the least well-measured part of the SM
- The interplay between direct and indirect searches is crucial to move the field forward
 - "I only believe it when it's on the mass shell"
- More ideas than resources \rightarrow Priority setting