

Austrian Roadmap Round Table Meeting BSM searches at HL-LHC and beyond

Lisa Benato (HEPHY)

10 June 2024

BSM searches for long-lived particles @ CMS

- Long-lived particles (LLPs): most exciting searching frontier now!
- LLP searches are **challenging**
- But they give **unique opportunities** for R&D
- New ideas applied at **any level** (reconstruction, trigger, analysis techniques)
- Current activities: Run 2 + Run 3 LHC
- Mid-term activities: HL-LHC
- Long-term activities: Future colliders
- Synergies with other groups

Current

LLP searches: CMS current activities

Displaced dimuons

- Run 2 + first Run 3 search at CMS! <u>http://dx.doi.org/10.1007/JHEP05(2024)047</u>
- Significant improvements thanks to trigger expertise at HEPHY!
- Synergy with CMS groups (UCLA, Oviedo, IFCA Santander, BU, CIEMAT, Rice) and AT theory (Graz)
- Soft displaced vertices
 - Uncovered and challenging phase-space
 - Advanced machine-learning techniques (graph networks and transformers) to cluster soft tracks and tag displaced vertices
 - Working on Run 2 + Run 3 CMS data analysis
 - Synergy with US groups (Virginia, Cornell, Rutgers) and ML HEPHY (C. Krause)

LLP searches: CMS current activities

LLPs in the muon system ($c\tau > 1 m$)

- CMS muon gas chambers + passive material act as sampling calorimeter
- Signature: high multiplicity of hits, muon detector showers (MDS)
- Sensitive to hadronic showers (bb, dd, K⁺K⁻, K⁰K⁰, π⁺π⁻), EM (π⁰π⁰, γγ, e⁺e⁻), or both (τ⁺τ⁻)
- Sensitive to sub-GeV LLP masses
- Run 3 (2022): dedicated MDS trigger!
 - x20 efficiency w.r.t. Run 2 unspecific trigger approach
- Synergy with US-DE groups (Fermilab, Caltech, UCSD, Hamburg)

CMS

138 fb⁻¹ (13 TeV

Current

LLP searches: CMS current activities

Extend to displaced decays at radius ~ 1-3 m:

- ECAL crystals provide timing → measure delay wrt p-p collision
- HCAL provide time + segmentation → measure shower delay/depth

MDS, calorimeter and combinations:

- Probe models with rich phenomenologies not (fully) explored!
 - Heavy Neutrinos in B-L models
 - Dark showers in QCD-like dark sector

- Use case for advanced ML techniques (synergy with ML group C. Krause)
- Synergy with AT theory groups (already established with S. Kulkarni in Graz + HEPHY, TU and UVie)

Mid-term Current High Luminosity (HL) LHC project

https://home.cern/science/accelerators/high-luminosity-lhc

"HL-LHC aims to crank up the performance of the LHC to increase the potential for discoveries after 2029"

- Unprecedented luminosity up to $7.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (x7.5 wrt LHC)
- Expected 3000 fb⁻¹ proton-proton (p-p) collisions for CMS
- Unprecedented challenges due to simultaneous p-p collisions (pileup, PU):
 - Run 3 (2023): PU 52; HL-LHC: PU 200!
 - Higher occupancy, trigger rates, detector irradiation
- Existing detectors require upgrades to cope with HL-LHC! (CMS Phase-II)

https://cds.cern.ch/record/2231915

Mid-term Current

CMS Phase-II: tracker & BSM opportunities

- Complete exchange of Outer Tracker
 - Enhanced granularity, radiation tolerance
 - Combined with inner tracker: enhanced discovery potential!
 - $\circ \quad {\sf Extended \ coverage \ in \ endcaps}$
 - Reduced material budget
 - OT designed to be included in hardware level trigger
 - \rightarrow improved momentum/impact parameter resolution
 - \rightarrow impact on searches for LLPs!

HEPHY involvement:

- Concluded: development studies of the sensors; final design and wafer layout; procurement process
- Definition+supervision of Quality Assurance Campaign to produce ~29.000 sensors
- Sensor production ~95% (last shipments from HPK soon this summer)

Current

CMS Phase-II: HGCAL & BSM opportunities

https://cds.cern.ch/record/2311394

New Highly Granularity Calorimeter (HGCal) in endcaps

- 5D imaging calorimeter: position + energy + time (30 ps)
- Increased radiation tolerance, granularity
- Silicon modules ($600 \text{ m}^2 8$ " wafers) + scintillator tiles with SiPM

HEPHY involvement:

- Completed: development and prototyping of radiation hard silicon sensors
- Production at about 40%
- Participate in Quality Assurance campaign

HGCAL shower reconstruction:

- Challenging yet engaging task: heterogeneous detector, heterogeneous computing + machine learning
- Time resolution \rightarrow new opportunities in calorimeter-based LLP signatures! (forward calorimeters not used so far!)
- Synergy with detector group + ML group + Fermilab

CMS Phase-II: MTD & new ideas

https://cds.cern.ch/record/2667167

MIP Timing Detector in the barrel:

- LYSO:Ce crystals with SiPMs: time resolution 30 ps
- Primary vertex + decay vertex time \rightarrow particles time of flight (velocity) \rightarrow infer LLP mass!
- Improve sensitivity to delayed objects (jets/photons)

• MTD + HGCAL \rightarrow full coverage of barrel and endcaps!

LLPs @ HL-LHC: sensitivity projections

https://arxiv.org/abs/2304.06109

• Much to gain from extending MDS and SDV at HL-LHC!

Dark showers with MDS in endcaps

Long-term

LLPs @ future colliders

LLP priority list @ future colliders:

- Heavy neutral leptons
- Axion-like particles
- Exotic Higgs decays

We have the expertise to cover the entire phase-space:

- Displaced tracks and vertices
- Delayed objects with calorimeter timing
- Showers in the muon system, displaced muons

Synergies and perspectives:

- Reconstruction strategies \rightarrow CMS legacy
- FCC-ee detector design → stronger focus on tracking
 → benefit from e⁺e⁻ knowledge in Belle II group!
- Opportunity to expand searches in the Higgs sector (FCC-ee as Higgs factory) → AT theory groups (Graz, HEPHY, TU and UVie)

HNLs with displaced vertices!

ECFA report <u>https://arxiv.org/abs/2401.07564</u> LLP @ FCC-ee snowmass <u>https://arxiv.org/abs/2203.05502</u>

Backup

LLP decays in muon system

LB: <u>PRL.127.261804</u> (CSC only) <u>https://arxiv.org/abs/2402.01898</u> (subm. PRD)

- Neutral LLPs (ct > 1 m) hadronic decays: no tracks, no jets, but showers in muon system
- Passive material (iron/steel) + muon chambers: sampling calorimeter → a shower develops
- Signature: high multiplicity of hits

New reconstructed object: muon detector showers (MDS)

- Hits clustered with geometrical clustering algorithms: DBSCAN
- 1 cluster = MDS
- Hits are low-level information (RAW data format, non standard) → challenging to access!

Muon detector shower

LLP decays in the calorimeters

Displaced decays at radius ~ 1-3 m:

- PBWO4 ECAL crystals provide timing → measure delay wrt p-p collision
- HCAL provide time + segmentation → measure shower delay/depth

BSM discovery potential

Several exciting BSM not (fully) explored!

Inelastic dark matter

- Small mass splitting $\Delta m(\chi 1, \chi 2)$, dark photon mediator A' Soft final state visible particles collimated to missing energy
- Only muons + missing energy probed at CMS so far

Axion-Like Particles (ALPs)

- Much phase-space to explore in $h \rightarrow aa$, $h \rightarrow Za$, $Z \rightarrow a\gamma$ decays
- $a \rightarrow \gamma \gamma$, charged leptons and hadrons; below 1 GeV $a \rightarrow \pi \pi \pi$
 - Not possible in inner detector at CMS!
- ALPs produced in exotic top decays \rightarrow can be LL if $m_a \sim$ few GeV

BSM discovery potential

Heavy Neutrinos (HNs) in B-L models

- $U(1)_{B-L}$: 3 HNs coupling to heavy Z' and heavy B-L charged Higgs X
- HNs produced from Z', X and SM H \rightarrow m_{HN} up to > 100 GeV
- Rich phenomenology, interesting signatures in calorimeters

Dark showers

- QCD-like dark sector
- Dark partons ψ through decay of massive mediator $X \to \psi \bar{\psi} \psi$ X: new scalar/vector, Higgs boson, W/Z
- ψ hadronizes to dark mesons, that decay back to SM and can be LL
- Compelling signature explored at CMS as emerging jets (displaced tracks)
- Much unexplored phase-space accessible with MDS, calorimeter based methods and combinations

https://arxiv.org/abs/2202.07310

Dark showers

CMS Phase-II: MTD & new ideas

MIP Timing Detector:

- LYSO:Ce crystals with SiPMs: time resolution 30 ps
- Primary vertex + decay vertex time → particles time of flight (velocity) → infer LLP mass!

https://cds.cern.ch/record/2667167

Improve sensitivity to delayed objects (jets/photons)

- MTD + HGCAL \rightarrow full coverage of barrel and endcaps!
- Synergy with Fermilab

MDS trigger in the barrel:

- Currently only in forward muon system
- Electronics replacement: x2 acceptance Correlated CMS-MATHUSLA analysis
 - MATHUSLA can supply triggers to CMS
 - Light particles/longer lifetimes

Run3 LLP new result: displaced dimuons

First Run3 CMS search!

- Displaced dimuons (EXO-23-014)
 - New L1T algo to assign p_T to μ from displaced vertex
 - Improved HLT algos:
 - Recovers efficiency for tracker μ, x2 better @ cτ = 1 cm
 - Discard prompt $\mu \rightarrow$ improves at larger displacement, x3 efficiency @ ct = 1 m

Run3 LLP new result: displaced dimuons

Displaced dimuons reconstruction:

- As global µ (with tracker): better at lower displacement
- As standalone μ (muon system only): better at higher displacement

CMS Simulation Preliminary Acceptance × Signal Efficiency Run 2 (2018) Run 3 (2022) m(H) = 125 GeV $m(Z_p) = 20 \text{ GeV}$ - STA-STA 10 STA-STA ---- TMS-TMS - TMS-TMS ---· Combined - Combined 10-1 10-2 10^{-3} Combined (2022) Combined (2018) 10-2 10^{-1} 10^{2} 10^{3} 10⁴ 10 CT [Cm]

First CMS search with Run3 data!

 Achieved similar sensitivity to Run 2 data with only ¹/₃ of the luminosity in Run 3 (2022)

