Spinography

A D Kennedy




Apology

Je nari fait celle-ci plus longue gue parce gue je
nar pas eu le loisir de la faire plus courte
Blaise Pascal (1657)




Verb. Sap. SANE

e 50(4;C) is not simple

- s0(4; C) = su(2; C) & su(2; C)

— Look at the Dynkin (Coxeter) diagram
 The real forms are

- 50(4,0; R) = su(2,R) @ su(2, R)

- s0(3,1; R) = sl(2; C)
* This does not work for general n

— Needed for dimensional regularization
R CHOEETCH®
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Periodicity,

Spin, and Pin
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Introduction

Let VV be a d dimensional real
vector space with a metric
g,v of signature (m, n)

The abstract Clifford algebra
C(m, n) associated with this
space is generated by
vectors {e4, ..., €;} that satisfy
the anticommutation relations

{ew €y } = 20,y
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Introduction

- Asavector space C(m,n) is spanned by ¢, ...e, with

k=0,..,dand yu; < p, < -+ < U, and thus has 2¢
dimensions

* By the Skolem—Noether theorem the complexified
Clifford algebra C(m,n;C) = C(m,n; R) Q Cford = 2p is
isomorphic to the algebra M,»(C) of 2P X 2P matrices

— We shall write this as the representation p: C(m, n; C) » M,»(C),
P(eu) = Vu
— Remember that the y,, are matrices, so we can do things like

taking their trace, whereas the ¢, are elements of an abstract
algebra
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Representations of
Clifford Algebras




Pauli Matrices TN):

* Let’s consider some low-dimensional examples:

— For d =2 consider the familiar Pauli matrices

=1 o)=( 9)o=( 5)

Which satisfy gjo, = gjirloy, o; =1, and 0,0,0; =il

» These clearly provide a representation of the
complex Clifford algebra C(2; C)

 Itisilluminating to consider the representation
they provide for the real algebras C(2,0; R),
C(1,1;R), and C(0,2; R)
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Pauli Matrices

e C(2,0;R)
— We need two generators whose square is 1, so we may choose
g, and o3. Since 0;0; = io, we find that C(2,0; R) = M, (R)
consists of all real 2 X 2 matrices

e C(1,1;R)
— We need one generator whose square is 1 and one whose
square is —1, so we may choose o0y and io,. Since ¢4i0, = —03

we again find that C(1,1; R) = M, (R) consists of all real 2 X 2
matrices

e C(0,2;R)

— We need two generators whose square is —1, so we may
choose io; and io,. Since io,io, = —io; we find that ¢(0,2; R) =
H consists of quaternions (with real coefficients)
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The Matrix y* AN

 The generalizationof yc isy™ = Y1y, *** ¥4
» This satisfies {y*,y,} = 0ifd = 2p is even
 Its square is )/*2 = (—)P*]

— Note that d = d(dz_l) =p(2p —1) = p (mod 2),

hence

Y2 = ¥2 - Ya) VaYa - Ya)
d(d 1)

= (=) Vivs o vg = ()P

Tuesday, 27 February 2024 A D Kennedy / Birdtracks 2024 10




Higher Dimensions

« We may build representations of even
dimensional Clifford algebras recursively by
taking tensor products

— Start with Pauli matrices

* Suppose we have constructed y matrices for
C(n,m; R) and y' matrices for C(n',m’; R)

e Consider the d + d' generators

Ve QLY Qv

whereu=1,..,dandv=1,..,d
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Higher Dimensions

 These clearly anticommute, and moreover
(®I) =12 ®1%=_g,A1)
'MW =r?Qn" =Py, IR
* The algebra generated by these i1s therefore
Cm+m',n+n";R)orC(m+n',n+m';R)
depending on (—)P*"
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Periodicity Modulo 8

— Using the previous result and noting thatp + n =1 +
2 = 3 is odd for €(0,2; R) we have

Cim+80;R)=2=C(m+6,0;R) ® C(0,2; R)
=~ C(m+4,0:R) ® C(0,2; R)®?

~ ¢(m,0; R) ® C(0,2; R)®*
= C(m, 0; R) @ H®*

— The result follows since H @ H = M, (R)
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Periodicity Modulo 8

e For m > n we have

Cim,n:R) = C(1,1; R)®" ® C(m —n, 0; R)

= M,n(R) @& C(m — n,0; R)
— Notingthatp+n=1+4+1 = 2isevenfor C(1,1; R) we
have
Cim,n:R) = c(1,1: R)®" ® ¢(n — n, 0; R)

=~ M,(R)®" ® C(m —n, 0; R)
= M,n(R) ® C(m —n,0; R)
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Real Clifford Algebras IS

 We list the structure of the real Clifford vector spaces for all
dimensions
- C(p,p;R) = Myp(R) ® C(0,0; R) = Myp(R)
- Clpp-LR) = sz_%(IR’\) ® C(1,0; R) = sz_%(ﬂ%) D sz_%(lR’x)
- C(p+1,p—1L;R) = Mup-1(R) ® C(2,0; R) = Myp(R)
- Clp+1,p—-2R) = sz_%(]R) ® C(3,0; R) = M 1O

- C(p+2,p—2R) = Mp—2(R) @ C(4,0; R) = M,p-1(H)
- Co+2p-3R =M sSRIQCEER) =M s(H) @M , 5(H)
~ C(p+3,p—3;R) = Mp-s3(R) ® C(6,0; R) = Mp-1 (H)
- Cp+3p-4R) =M S(R)QCTOR) =M 4(C)

e This structure is closely related to the Bott periodicity of the stable
homotopy groups of the orthogonal groups
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Groups
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Groups Acting on C(m, n; R)

» The Clifford group I'(n, m) consists of all
elements A € C(m, n; R) which are invertible
and satisfy AvA™! = v forv,v' € V, i.e., for v,v' €
span(y,)

— For odd dimensions there is also the twisted Clifford

group for which a(A)vA~! = v where a(A) = +A
depending on the grading of A




Pinor Group Pin(m, n)

« The pinor group Pin(m, n) is the subgroup of the
Clifford group where |det A| = 1

e Pin(m,n) is the double cover of O(m, n)
— The name is fortuitous, except for Francophones




Pinor Group Pin(m, n)

e It includes discrete operations as well as
orthogonal transformations
— In even dimensions y*y, gives the reflection
(V*)’v)_l)/u (v*vv) = (1 — 26,,)v,, which has odd parity
— In even dimensions A = y* gives the inversion
Y VY = W

— In odd dimensions y* « I




Spinor Group Spin(m, n)

» The spinor group Spin(m,n) is the subgroup of
Pin(m,n) where detA =1

[t is the double cover of SO(m,n)

A (s)pinor is an element of the linear space
carrying the representation of C(m, n)

— Under A € Pin(m, n) it transforms as Yy - Ay
— So the bilinear Yy, = YA 'y, AY = L, Yy,
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Chiral Symmetry Vs

e In even dimensions there is also another

continuous group, chiral symmetry A = e'®"

— This may or may not be a symmetry of the action
— There is no chiral symmetry in odd dimensions
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Real Spinors

« We may define a real form of a (s)pinor just as
we define the real form of a complex Lie
algebra; namely as the eigenvectors of an
involutive automorphism

— That is a morphism *: £ —» £ such that **= I

— For the operation of complex conjugation (also

called charge conjugation) the the real (s)pinors are
Majorana s(pinors)

— For the operation of y* conjugation the real (s)pinors
are Wevyl s(pinors)
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Real Forms

e Such real forms do not exist in every dimension

d 4 5 6 7 38 o 10 11
Dirac c* Cc* C® C® ct* cle 32 3
Weyl cc /J ¢+ J C8 /  ECi0|/

Majorana R* / [/ / / / R332 R3

Both /[ / / / / [/ R 7
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Birdtracks
for Spinors
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(Ant1)symmetrizers

e Symmetrizer

1 (
5 (

* Antisymmetrizer

{224
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S
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Definitions

e Definitions

g'= K
1 = a
ab
(V,)ab: a
tril =
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Products of y matrices

 From Clifford algebra

15— In

i - i

=

 Examples

Il -t U - - U - WU
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Antisymmetric Basis WANIS

0 - —
- 1 = —qI;]_ |

u
(1) _ B ]
L= % = = =
u v
@) N ~ B

(©)
I/‘JVU —Y[Myv‘Yo] = | ‘ = | B

Tuesday, 27 February 2024 A D Kennedy / Birdtracks 2024 29




Basis Element k N

© . 5 . B 2 } ;
ity =YY,y = = —
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Traces

31




Trace Identity for p even

« Anticommuting the leftmost leg to the right

e W)= 9 - § e WP

e Thus, for p even

o
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Trace Identity for p odd

foom M om

moo i m

P

n

:2p

123 p

= (n—p) =
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Trace 1dentity for p odd

* Forn odd and p = n we have

ﬁ«i#

o y* = gh1kn Vi, 1s the generalization of y;

Vi
 Inodd d.1men51ons y* commutes with y,

— by Schur’s lemma y* « I and is not traceless

Tuesday, 27 February 2024 A D Kennedy / Birdtracks 2024 34




Trace Reduction

 From the trace identity we see that the trace of
an even number of y matrices is a sum of all
(p — 1)!! ways of pairing the p legs
-p=2

= —

l
kS
N~

ii- s ><}
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Trace Reduction

-p=6

\./ {
/\

sign = (_)#crossings
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Wignerism
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Basis Trace Reduction

 Trace of two basis elements

{2 dh= a4

* Trace of three basis elements

) . b+c—a
— Unique connection: s = > Jt

— Proportional to SO(n) vertex for antisymmetric irreps
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3j Coefficients

* The spinor 3j coefficients are thus

a = qa! = q! (n)
a

« and the SO(n) antisymmetric 3j coefficient are

A N

— I

[
N\ sltlul(n—s—t—u)!

0f
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Completeness Relation NS

* The basis elements I‘lff) u, Span the Clifford algebra
C(n) over C
— They have elements have (Z) components, sodimC(n) =
n n — ZTl

e (c) B

« We therefore have the completeness relation

n
o i, -
a=0 Qa

- M e C(n) ® C(n), but this is complete if C(n) is

Richard Brauer and Hermann Weyl, Spinors in n dimensions,
Am. J. Math., 57, 425-449 (1935)
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Completeness Relation

 For even n the Clifford algebra C(n) over C is
represented faithfully and irreducibly by 2™/2 x
2"/2 matrices

 For odd n recall that we showed that y* lies in
the centre Z = span(ll, y™)

— So this representation may be reduced onto the two
eigenspaces of y*
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Wigner—Eckart

B - -iw -

ﬂ :B:szb! :Mbblz
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Spinor 6j Coefficients ’,_j

IN®Y

 As usual, we can use the completeness relation
to derive a recoupling relation

b! b

— This is the Fierz transformation

— The 6] coefficients are known as Fierz coefficients
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Fierz Coefficients Evaluation

* Flerz coefficients may be expressed in terms of
SO(n) 3j coefficients
— Using completeness in the second step

<L
M=
||
]

o< _g:o ( _ )St+tu+LlS

o
=

Tuesday, 27 February 2024 A D Kennedy / Birdtracks 2024 44




y Simplificiation
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y Matrix Simplification

« We may use the recoupling relation to simplify y matrix
expressions

— The results can be expressed as sums of products of 0j, 3/, and
6] coefficients

— As we have seen, the spinorial 6; (Fierz) coefficients can be
expressed in terms of known SO(n) 3j coefficients

— This is much more efficient than using brute-force trace
reduction
* The calculations can be doneinn = 2(w + ¢)
dimensions

— This is necessary in dimensional regularization as the O(¢)
terms lead to finite contributions when multiplied by pole terms
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SO(n) 6j Coefficients

» For sufficiently complicated graphs more
complicated SO(n) 6j coefficients arise

— All purely antisymmetric irrep 6j are known in
closed form
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SO(n) 6j Coefficients

 This can be evaluated because it has four “mini
tours™ and three “grand tours”™

n t! 12 g1 : >
() —— with t=)/_,t;

7
i=1 ti'llj=q aj
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Conclusions,

Outstanding Problems,
and Future Work




Unsolved Problems BN

« Even more complicated graphs can require SO(n) 6
coefficients involving irreps labelled by Young
diagrams with more than one column

— While these may be evaluated by “brute force” it would be
nice to have a more efficient algorithm

— Perhaps making use of representations of Brauer algebras?
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Unsolved Problems

* In general, all irreps other than spinor ones can be
projected from tensor powers V®¥of the n-dimensional
defining matrix irrep V

 These are still uniquely labelled by Young diagrams

— Some Young diagrams do not correspond to irreps

— E.g., those whose first two columns are longer than n

* ‘Traceless Young projectors are necessary
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