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This talk
• My motivation: With the LHC there is an increased interest in

the treatment of color structure for processes with many colored

partons

• This is applicable to fixed order calculations as well as parton

showers and resummation

• Color structure of SU(N), in particular multiplet bases

(transition operators of Heribert Weigert) – a pedagogical intro

• Calculating using basic group invariants, Wigner 6js (also known

as 6j coefficients, 6j symbols, Racah coefficients, Racah W

coefficients) and Wigner 3js

• I will talk about QCD (SU(Nc)), but similar methods can be

applied more generally

• Chirality flow – flowing the Lorentz structure su(2)L su(2)R
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The QCD Lagrangian

The QCD Lagrangian

L = ψ(i/∂ −m)ψ − 1

4
(∂µA

a
ν − ∂νAaµ)2 + gAaµψγ

µtaψ

−gfabc(∂µAaν)AµbAνc −
1

4
g2(feabAaµA

b
ν)(f

ecdAµcAνd)

contains:

• quark-gluon vertex, ji

µa

= (ta)ij
Here (ta)ij are SU(3) generators and I take the graph to

represent the color structure alone, no igγµ
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• triple-gluon vertex,

a, α

c, γb, β

pa

pc

pb = ifabc

Here we use the convention of reading the indices counter

clockwise in the SU(3) structure constants fabc, and again I

only mean the color structure, no −ig(gαβ(pa − pb)γ + cyclic)

• four-gluon vertex, here color and kinematic factors are correlated

(so I cannot draw the color structure alone)

= + +

×ig2s(gαδgβγ − gαγgβδ)

a, α b, β

c, γ d, δ
×ig2s(gαδgβγ − gαβgγδ)

= ifaeb if cde + +
×ig2s(gαβgγδ − gαγgβδ)

iface if bed ifaed if cbe

×ig2s(gαδgβγ − gαγgβδ) ×ig2s(gαδgβγ − gαβgγδ)

×ig2s(gαβgγδ − gαγgβδ)

but the color structure is just a linear combination of

triple-gluon vertices
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Dealing with color space

Due to confinement we never observe individual colors

• We average over incoming colors

• We sum over outgoing colors

• → we sum over the colors of all external partons

• As always in quantum mechanics we also sum over all degrees of

freedom that can interfere with each other → we sum over the

colors of all internal particles

• → We sum over all colors of all particles
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So, if we for example consider

qq → qq
a

b

c

dg
,

(let’s pretend we have different flavors so we only have one Feynman

diagram) we need the color sum

1

3

3∑

a=1

1

3

3∑

b=1

3∑

c=1

3∑

d=1

∣
∣
∣
∣
∣

8∑

g=1

(tg)ab(t
g)cd

∣
∣
∣
∣
∣

2

One way of dealing with this sum is to pick a particular representation

of the generators, and sum over 34 ∗ 8 = 648 terms. Luckily there are

better ways...
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Example: If A = (tg)a b(t
g)f c(t

e)d f =
a

b

c

dg

ee
f

, then

〈A|A〉 =
∑

a,b,c,d,e,f,g,h,i

[
(th)a b(t

h)i c(t
e)d i

]∗
(tg)a b(t

g)f c(t
e)d f

=
∑

a,b,c,d,e,f,g,h,i

(th)b a(t
h)c i(t

e)i d(t
g)a b(t

g)f c(t
e)d f

=

amplitudeconjugated amplitude

The first equality holds since the generators are Hermitian, and the

last holds since we always sum over the color of internal lines
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As seen above we can represent the squared amplitude with a

picture. We can also calculate with graphs! To do so we need just a

few rules

• There are Nc possible quark colors

a
= Nc

Nc∑

a=1

δaa = Nc

• There are Ng = N2
c − 1 possible gluon colors

g

= N2
c − 1

N2

c−1
∑

g=1

δgg = N2
c − 1
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• The generators are traceless

a g
= 0

Nc∑

a=1

(tg)aa = 0

• Generator normalization

ba
= TR ba Tr[tatb] = TRδ

ab
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• The algebra relation [ta, tb] = ifabctc ⇒

a

b c

=
1

TR








a

b c

−
a

b c

a







ifabc =
1

TR

[
Tr[tatbtc]− Tr[tbtatc]

]

• The Fierz identity (the completeness relation)

a

b

c

d
g

= TR







a

b

c

d

− 1

Nc

a

b

c

d







(tg)ac(t
g)bd = TR

[

δadδ
b
c −

1

Nc
δacδ

b
d

]

Malin Sjödahl 10



Let’s apply the rules to our example

= TR

To further simplify the color structure we note using Fierz

= TR

(

− 1

Nc

)

= TR

(

Nc −
1

Nc

)

= TR
N2
c − 1

Nc
≡ CF

Giving, for the squared amplitude

= TRC
2
F = TRC

2
FNc
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• In this way we can square any color amplitude and calculate any

interference term. In general we have interference terms

between different Feynman diagrams/color structures, but these

are treated in precisely the same way.

• I have written a Mathematica package, ColorMath,

(Eur. Phys. J. C 73:2310 (2013), 1211.2099)

• One way of dealing with color space is to just square the

amplitudes one by one as one encounters them

• Alternatively, we may use any basis (spanning set)
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Trace bases
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2s(gαδgβγ − gαγgβδ)

a, α b, β

c, γ d, δ
×ig2s(gαδgβγ − gαβgγδ) ×ig2s(gαβgγδ − gαγgβδ)

• Every 3g vertex can be replaced using:

a

b c

=
1

TR






a

b c

−
a

b c

a





• After this every internal gluon can be removed using Fierz:

a

b

c

d
g

= TR





a

b

c

d
− 1

Nc

a

b

c

d




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• This can be applied to any QCD amplitude, tree level or beyond

• In general an amplitude can be written as linear combination of

different color structures, like

A B+ + . . .

• For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)

• The above type of color structure can be used as a spanning set,

a trace basis
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These bases have some nice properties

• Conceptual simplicity

• Taking the leading Nc limit is trivial → a flow of colors and

orthogonal basis vectors

• The effect of gluon emission and exchange is easily described

There are also drawbacks with trace bases

• Not orthogonal

→ When squaring amplitudes almost all cross terms have to be

taken into account → N2
basis terms

• Overcomplete, for Ng +Nqq > Nc the bases are also

overcomplete. The size of the vector space asymptotically grows

as an exponential in the number of gluons/qq-pairs for finite Nc
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Example: Number of spanning vectors for Ng gluons (without

imposing charge conjugation invariance). These numbers are

representative also for Ng gluons plus qq-pairs.

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

4 8 9 3!=6

5 32 44 4!=24

6 145 265 120

7 702 1 854 720

8 3 598 14 833 5 040

9 19 280 133 496 40 320

10 107 160 1 334 961 362 880

11 614 000 14 684 570 3 628 800

12 3 609 760 176 214 841 39 916 800

(Y. Du, M.S. & J. Thorén, JHEP 1505 (2015) 119, 1503.00530)
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Color flow bases
• One way out is to give up exact treatment of color structure and

run a Monte Carlo over colors

• This is particularly efficient in the color flow basis

• Here the adjoint representation indices are rewritten in terms of

fundamental representation indices and new color flow Feynman

rules are derived (Maltoni, Stelzer, Paul, Willenbrock, Phys.Rev.

D67 (2003), hep-ph/0209271)

• Explicit colors (r, g, or b) are then assigned to the lines, and one

may run a Monte Carlo sum over colors to sample color space

• This is not exact but the color structure treatment is much

quicker ( Comix, T. Gleisberg, S. Hoeche, JHEP 0812 (2008)

039, 0808.3674; S. Plätzer, Eur.Phys.J. C74 (2014) 6, 2907,

1312.2448; S. Prestel and J. Isaacson 1806.10102)
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• quark-gluon vertex,

ji

µa

= igsγ
µ(ta)ij→ igsγ

µδia2δ
a1
j = ji

µ
a2 a1

• triple-gluon vertex,

a, α

c, γb, β

pa

pc

pb = ifabc(−igs(gαβ(pa − pb)γ + cyclic))

→ 1

TR







a1

b2

a2

b1 c2

c1

−

a1 a2

b1
b2

c2
c1







(−igs(gαβ(pa − pb)γ + cyclic))

can easily be written in completely symmetric form...
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• four-gluon vertex

= + +

×ig2s(gαδgβγ − gαγgβδ)

a, α b, β

c, γ d, δ
×ig2s(gαδgβγ − gαβgγδ)

= ifaeb if cde + +
×ig2s(gαβgγδ − gαγgβδ)

iface if bed ifaed if cbe

×ig2s(gαδgβγ − gαγgβδ) ×ig2s(gαδgβγ − gαβgγδ)

×ig2s(gαβgγδ − gαγgβδ)

→

ig2s
(
2gαδgβγ − gαγgβδ − gαβgγδ

) 1

TR







a2 b1

c1
c2

a1

d2
d1

b2

+

a2 b1

c1
c2

a1

d2
d1

b2







+[c↔ d] + [b↔ d]
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• Color structure of propagator

∆ab = ba

→
b1

b2

a2

a1 = TR

(

b1

b2

a2

a1 − 1

Nc b1

b2

a2

a1

)

• Similarly the qq-pairs corresponding to external gluons have to

be forced to be in octets when squaring amplitudes

(Conventions differ from those in hep-ph/0209271)

• ... but these bases are not orthogonal
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Wanted: Orthogonal bases
How can we construct an orthogonal basis? Symmetrize!

Here the birdtrack notation is used. These color tensors are

orthogonal both when seen as qq-projectors, and when seen as basis

vectors on the 4-parton space
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Orthogonal multiplet bases
In collaboration with Stefan Keppeler and Johan Thorén

• The color space may be decomposed into irreducible

representations, enumerated using Young tableaux multiplication

• For quarks we can construct orthogonal projectors and basis

vectors using Young tableaux ...at least from the Hermitian

quark projectors (S.K. and MS, 1307.6147, J.Math.Phys.)

• In fact the qq → qq color space is the same as for qq → qq,

⊗ = • ⊕

and we could as well have used the basis:

V
1 = δa bδ

c
d =

a
c

b d

, V
8 = (tg)a b(t

g)c d =
a

b

c

d

• In general we may “comb” the involved particles as incoming

and outgoing as we wish
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The simplest gluon example, gg → gg

• In QCD we have quarks, anti-quarks and gluons

→ No obvious way to construct projectors

• Basis vectors can be enumerated using Young tableaux
multiplication

⊗ =
• ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 0

1 8 8 10 10 27 0

• As color is conserved an incoming multiplet of a certain kind can

only go to an outgoing multiplet of the same kind,

1→ 1, 8→ 8...

Charge conjugation implies that some vectors only occur

together... (MacFarlane, Sudbery, and Weisz 1968, Butera,

Cicuta and Enriotti 1979, Cvitanović 1984, Dokshitzer and

Marchesini 2006)
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• For two gluons, there are two octet projectors, one singlet

projector, and 4 new projectors, 10, 10, 27, and for general Nc,

“0”

• It turns out that the new projectors can be seen as corresponding

to different symmetries w.r.t. quark and anti-quark units, for

example the decuplet can be seen as corresponding to

− (singlet) and octet(s)

1 2

1

2

− (singlet) and octet(s)

=

Similarly the anti-decuplet corresponds to 1

2
⊗ 1 2 , the 27-plet

corresponds to 1 2 ⊗ 1 2 and the 0-plet to 1

2
⊗

1

2
. (MacFarlane,

Sudbery, and Weisz 1968, Butera, Cicuta and Enriotti 1979,

Cvitanović 1984, Dokshitzer and Marchesini 2006)

Malin Sjödahl 24



P
1 =

1

N2
c − 1

, P8s =
Nc

2TR(N2
c − 4)

, P8a =
1

2NcTR

,

P
10 =

1

2
+

1

2T 2
R

− 1

2
P

8a

P
10 =

1

2
− 1

2T 2
R

− 1

2
P

8a

P
27 =

1

2
+

1

2T 2
R

− Nc − 2

2Nc

P
8s − Nc − 1

2Nc

P
1

P
0 =

1

2
− 1

2T 2
R

− Nc + 2

2Nc

P
8s − Nc + 1

2Nc

P
1
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Idea: Could this work in general?

g1 ⊗ g2 ⊗ ....⊗ gn ⊆ (q1 ⊗ q̄1)⊗ (q2 ⊗ q̄2)⊗ ...⊗ (qn ⊗ q̄n)

• Construct the tensors which will give rise to “new” projectors

T
10,35 ∝ P10P10

1 2 3

1 3
2

P
10,35 ∝ T

10,35 −
∑

m⊆10⊗8

P
m
T

10,35

• From projectors construct basis vectors (S. Keppeler and M.S.

1207.0609 (JHEP))

• Care to find all multiplets, care with going from general Nc to

Nc = 3, issues with multiple occurrence
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Multiplet bases
• QCD is based on SU(3) → the color space may be decomposed

into irreducible representations

• Orthogonal basis vectors corresponding to irreducible

representations may be constructed, in may different ways...

α1 α3α2
α1 α3α2 α4

α1

α3

α2

α4

• The construction of the corresponding basis vectors is

non-trivial, and a general strategy was presented relatively

recently, (S. Keppeler and M.S. JHEP09(2012)124, 1207.0609

generalized by MS and J.Thorén in 1809.05002)

• These vectors are orthogonal by construction → can potentially

speed up squaring of color structure very significantly
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Decomposing color structure in
multiplet bases

• But before squaring, amplitudes must be decomposed in

multiplet bases

• One way of decomposing color structure into multiplet bases

would be to simply evaluate the scalar product between each

possible Feynman diagram and each possible vector as we have

seen in the first half of this talk.

• The problem is that this scales badly, a factorial from the

number of diagrams, an exponential from the number of basis

vectors and another (growing) factor from each single scalar

product evaluation

• → We need a better strategy
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Group invariants!

• Fortunately there is one: Any group invariant quantity can be

evaluated using Wigner 3j and 6j coefficients

=TR(N
2
c − 1) =2T 2

RN
2
c (N

2
c − 1)

(using standard normalization of vertices)

α

β

γ
α

β
γ

δ

ζη

• Using the multiplet basis we can calculate the needed 3j and 6j

coefficients for higher representations
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• Furthermore, only a small number of such coefficients are

needed, up to NLO

Ng 4 6 8 10 12

Nc = 3 29 120 272 476 733

Nc ≥ Ng 44 389 2 023 8 077 27 631

and they can be evaluated once and for all

(Numbers could be slightly reduced by additional symmetries,

and smart choices of vertices)
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Decomposing color with
6j and 3j coefficients

As an example consider the color structure of the Feynman diagram:

=
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The scalar product between the color structure and a basis vector is

given by:

A(α1, α2, α3) =

α1 α2 α3

=

=
α3 α1

α2
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To fully contract any color structure we need four simple rules:

• Dimension relation

α = dα

• Two vertex loops give just a constant

δα
γ

β

=

γ

δ

β

dα α δ
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• The vertex correction relation

α

β

γ
δ

ǫ

ζ =
∑

a instances of γ

in α⊗ β

ǫ

γ

α

δ

ζ

βa

γ
α

β

aa

γ

β

α

a

• The completeness relation

µ

ν
=
∑

α

dα

ν

α

µ

µ

ν

µ

ν

α

Malin Sjödahl 34



In our color structure we note that we have a vertex correction:

A(α1, α2, α3) =
α3 α1

α2

In our case the vertex correction is:

α3

α2
=
∑

a

α3

α2
a

α2
a a

α2

a

Where the sum runs over vertices a connecting the three representa-

tions α2, α3 and 8. For α2 6= α3 there is only one such vertex, and

for α2 = α3, there can be up to Nc − 1 = 2.
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Using the vertex correction results in:

A(α1, α2, α3) =
α3 α1

α2

=
∑

a

α3

α2
a

α2
a a

α1

α2

a

Malin Sjödahl 36



Now there is no trivial color structure, but we can pick any loop...

A(α1, α2, α3) =
∑

a

α3

α2
a

α2
a a

α1

α2

a

and use the completeness relation

µ

ν
=
∑

α

dα

ν

α

µ

µ

ν

µ

ν

α

to remove it
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Applying the completeness relation and removing vertex corrections:

α2

α1

−

−
−

−

a
=
∑

ψ1

dψ1

ψ1

α2

α2

α1

−

− −

−ψ1

α2
a

=
∑

ψ1

dψ1

ψ1

α2

∑

b

ψ1

α2
−

−

b

a

ψ1b
b

∑

c

α1
ψ1

−
−

α2

c

ψ1c
c

ψ1

b c
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Removing the 4-vertex loop we get:

A(α1, α2, α3) =
∑

a

α3

α2
a

α2
a a

α1

α2

a

=
∑

a

α3

α2
a

α2
a a

∑

ψ1,b,c

dψ1

ψ1

α2

ψ1

α2
−

−

b

a

ψ1b
b

α1
ψ1

−
−

α2

c

ψ1c
c ψ1
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The final expression is:

A(α1, α2, α3) =
∑

ψ1,a,b,c

dψ1

α3

α2
a

α2
a a

ψ1

α2
−

−

b

a

α1
ψ1

−
−

α2

c

ψ1
−

ψ1b
b

ψ1c
c

ψ1

α2

• This only has to be done once for each Feynman diagram, and

the scalar product with most basis vectors vanishes

• We only need to care about non-zero scalar products, we could

list the non-zero 6j-coefficients

• Each sum over representations contains at most 8 terms for

SU(3), at most N2
c − 1 for SU(Nc)

• Knowing the 3j and 6j Wigner coefficients we can

immediately write down any scalar product!
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All you need is

• In the above example we saw that we could decompose the color

structure fully using only dα, ,

• We can normalize =1, so we really only need

• Question: If we can get all the color structure as a function of

6js can we then also get the 6js as a function of 6js?

• Can we calculate 6js (recursively)?

=

(

other , dα

)

?
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• For QCD, where every representation is 8, 3 or 3, it turns out

that we only need 6js of form

γ

δ

β

α α

β

γ

γ

δ

β

α

γ

δ

β

α α

β

γ α

β

γ

• Wigner 6j and 3j coefficients and their values can be calculated

once and for all (M.S. & J. Thorén, 1507.03814 (JHEP),

1809.05002 (JHEP))

... but this still builds on constructing bases which builds on

symmetrizers and anti-symmetrizers
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Consider first

M ij

Mi

M
j

α
, say α = ,

⊗ ⊗

⊗ ⊗

α =

M2 = = M3

M23
=
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By repeated use of the completeness relation and the vertex

correction relation (giving 6js), we can constrain the 6js. Consider

for example

α Mi M ij
=

∑

b

db

α

Mb

α
Mb

α Mi M ij

=
∑

b

db

α

Mb

Mb

M ij M ij

Mi

M
b

α

α Mb M ij
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Now apply this to

α Mi M ij Mi α
=

=
∑

b

db

α

Mb

Mb

M ij M ij

Mi

M
b

α

α Mb M ij Mi α

⇒ Mi

M ij

di

α

Mi

=
∑

b

db

α

Mb

Mb

M ij M ij

Mi

M
b

α

M ij

Mb

M
i

α

︸ ︷︷ ︸

S
ij

i,b
S

ij

b,i
=(Sij

i,b
)2

⇒ 1 = di
∑

b

db(S
ij
i,b)

2 (as 3js are 1)
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By similar methods we find a set of equations, for Nc = 3

1. For a given representation M ij , we obtain

1 = (di)
2(Siji,i)

2 + didj(S
ij
i,j)

2 0 = diS
ij
i,iS

ij
i,j + djS

ij
i,jS

ij
j,j

2. For two given representations Mi and Mj , we obtain

1

dα
=
∑

Mab

dab(S
ab
i,j)

2 ,

where dab is the dimension of the representation Mab.

3. For a given representation Mi, we have

1 =
∑

b

dibS
ib
i,i .
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• This equation system can be solved giving

M ii

Mi

M
i

α =
1

di
,

M ij

Mi

M
j

α = ± 1
√
dαdij

di

M ij

Mi

M
i

α

M ij

Mi

M
i

α = ±
√

1− didj
dαdij

= dj

M ij

Mj

M
j

α

(Judith Alcock-Zeilinger, Stefan Keppeler, Simon Plätzer and

MS, 2209.15013 (J. Math. Phy.))

• Also need the 6js with gluons

α

β

γ

γ

δ

β

α

γ

δ

β

α α

β

γ α

β

γ
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• Idea: split gluon into qq-pair, for example we have

γ

δ

β

α

b

a

=
a∑

j=1

b∑

k=1

Cβαaj C
δγ
bk

γ

δ

β

α

λj

µk

=

a∑

j=1

b∑

k=1

Cβαaj C
δγ
bk

N2 − 1









γ

δ

β

α

λj

µk

− 1

N

γ

δ

β

α

λj

µk









=
a∑

j=1

b∑

k=1

Cβαaj C
δγ
bk

N2 − 1






µk

δ

λj

α

γ

µk

β

λj − δαβ δγδ
Ndα dγ





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• By similar methods the other 6js with gluons are derived

2312.16688 (submitted to JHEP), Stefan Keppeler, Simon

Plätzer and MS

• Not more complicated to calculate 6js for high representations

• Multiple occurrence is an issue... but can be addressed

• → We in principle have all the ingredients for using

representation based orthogonal bases for QCD also for very

high multiplicities
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Lorentz structure using chirality flow

• At the (complexified) algebra level, the Lorentz group consists of

two copies of su(2), so(3, 1) ∼= su(2)⊕ su(2) → Can we treat

the Lorentz structure similarly?

• The Dirac spinor structure transforms under the direct sum

representation (
1

2
, 0)

︸ ︷︷ ︸

left

⊕(0, 1
2
)

︸ ︷︷ ︸

right

in the chiral/Weyl basis




uL

uR



→




e−iθ̄·

σ̄
2
+η̄· σ̄

2 0

0 e−iθ̄·
σ̄
2
−η̄· σ̄

2








uL

uR





i.e. actually two copies of SL(2,C), generated by the

complexified su(2) algebra
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• Consider massless particles: (mass just gives a linear

combination)

uR(pj) =




0

|pj〉



 =
j

uL(pj) =




|pj ]
0



 =
j

ūL(pi) =
(

[pi| 0
)

= i ūR(pj) =
(

0 〈pj |
)

=
j

• Polarization vectors

ǫL
µ(p, r)→ |r〉[p|〈rp〉 =

1

〈rp〉
p

r ǫR
µ(p, r)→ |r]〈p|

[pr]
=

1

[pr]
p
r

where ǫL is for incoming negative helicity or outgoing positive

helicity and ǫR is for incoming positive helicity or outgoing

negative helicity
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• Amplitudes built up from Lorentz invariant inner products

• Lorentz inner products formed using the only SL(2,C)

invariant object ǫαβ , ǫ12 = −ǫ21 = ǫ21 = −ǫ12

ǫαβ |i〉β
︸ ︷︷ ︸

≡〈i|α

|j〉α = 〈i|α|j〉α = 〈ij〉, ǫα̇β̇ |i]β̇
︸ ︷︷ ︸

≡[i|α̇

|j]α̇ = [i|α̇|j]α̇ = [ij] ,

• → Amplitudes are built up of contractions of form

〈ij〉, [ij] ∼ √sij
• In the flow picture, the “flow” must contract dotted and

undotted indices separately
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Feynman Flow

R

L
µ

ie
√
2

p
←− i

p2

∑

i pi
or i

p2

∑

i pi

p
−→µ ν − i

p2
or − i

p2

Here /p ≡ pµσα̇β
µ =

p
, /̄p ≡ pµσ̄

µ

αβ̇
=

p

with p =
∑

pi , p2i = 0 , /p =

∑

i pi
=

∑

i

|i]〈i| etc.

(A. Lifson, C. Reuschle and MS 2003.05877 (EPJC), full SM: J. Alnefjord,

A. Lifson, C. Reuschle and MS 2011.10075 (EPJC))
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Example: Lorentz structure using
chirality flow

1L

6R5L

4R3L2R

7R

8R rL8 rR9 9L

10L

−p1 − p2 − p5

p3 + p4 + p6

p9 + p10

p8 + p9 + p10

5L

rR9 9LrR9 9L

p9 + p10

• Stitch together such that ar-

row direction match.

• Here all particles crossed to

outgoing, and consistent ar-

row directions are picked

= (
√
2ei)8

︸ ︷︷ ︸

vertices

(−i)3

s1 2 s3 4 s8 9 10
︸ ︷︷ ︸

photon propagators

(i)4

s1 2 5 s3 4 6 s8 9 10 s9 10
︸ ︷︷ ︸

fermion propagators

1

[8r8]〈r99〉
︸ ︷︷ ︸

polarization vectors

[15]〈64〉[10 9]

× (〈r99〉[9r8] + 〈r910〉[10r8])( [33]
︸︷︷︸

0

〈37〉+ [34]〈47〉+ [36]〈67〉)

× (−〈89〉[91]〈12〉 − 〈89〉[95]〈52〉 − 〈8 10〉[10 1]〈12〉 − 〈8 10〉[10 5]〈52〉)

Malin Sjödahl 54



Conclusion and outlook

Color:

• In this presentation, I have shown how the color structure can be

dealt with using 6j coefficients

• We only need a limited number of 6js which we know how to

calculate efficiently

• Looking forward to applying them for heavy QCD calculations

• Still... one might benefit from more general 6js, with arbitrary

representations everywhere. Can one find them similarly?

Chirality flow:

• We can flow the Lorentz structure as well ... which often makes

it trivial to write down the value of Feynman diagrams!
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