Geometric Generative Models

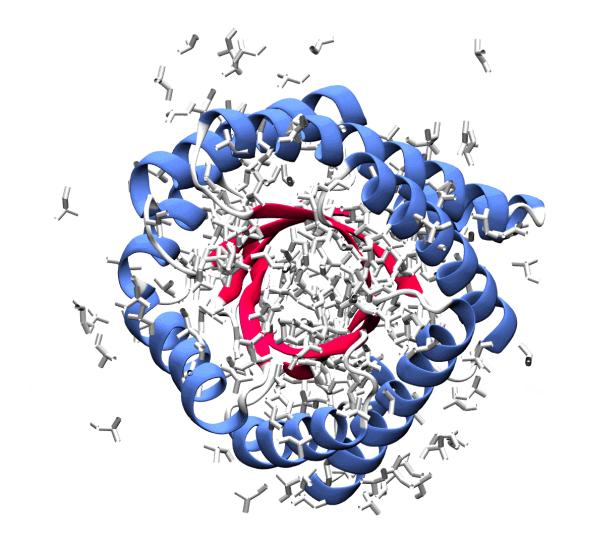
Joey Bose, Oscar Davis

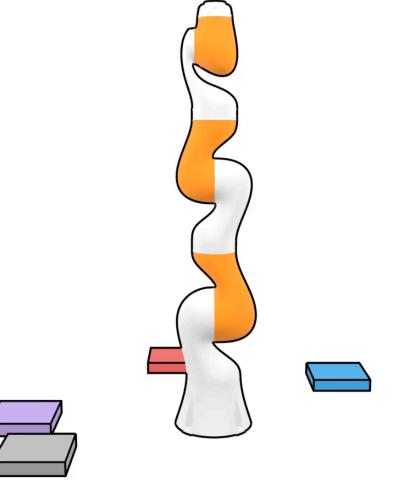
ÖAW AI Winter School 2025

Generative Models Beyond Images and Text

Scientific Data

Robotics

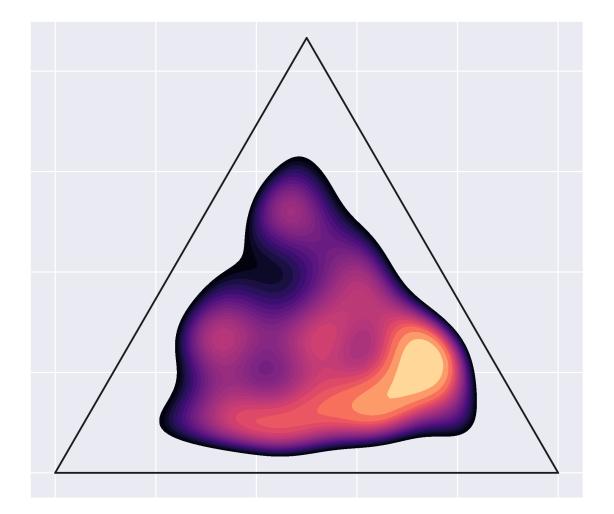




SE(3) invariant Protein structure generation

SO(2) invariant Block stacking Information Geometry

Climate Modeling





Fisher-Rao geometry On the probability Simplex

Spherical Geometry \mathbb{S}^2

Tutorial Outline ~3hrs:

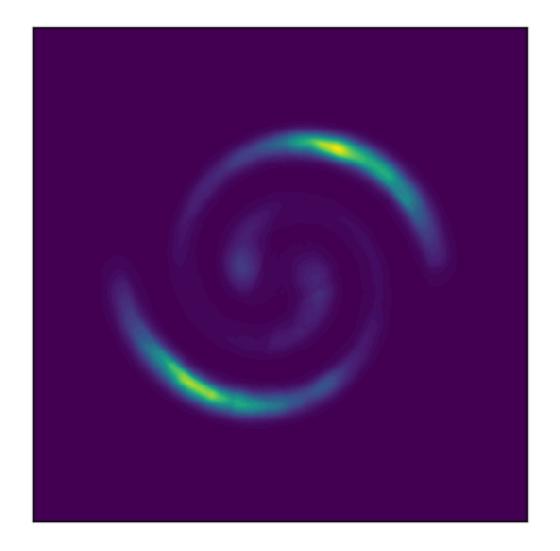
Part I: Primer on Simulation-Free Generative Models

Part II: Primer of Geometry for Machine Learning

Part III: Geometric Generative Models

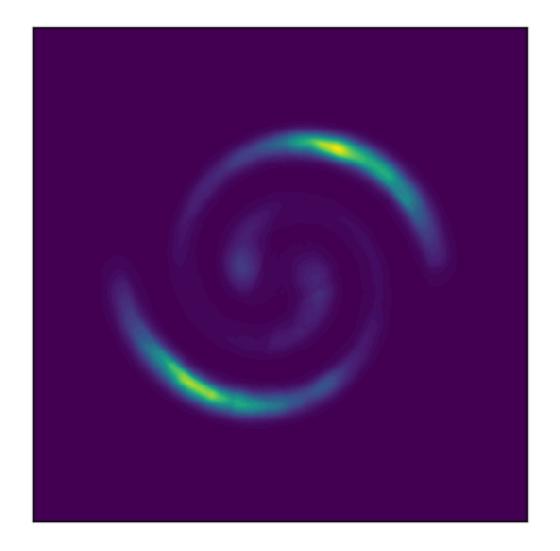
Part I: Simulation Free Generative Models

• Unknown: data distribution q



• Unknown: data distribution q

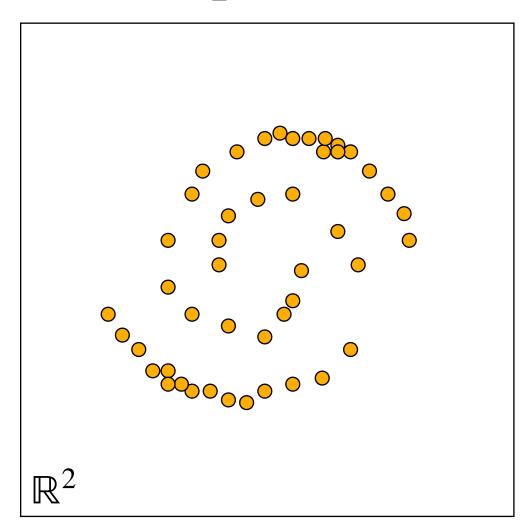
• Given: samples $x_1 \sim q$



• Unknown: data distribution q

• Given: samples $x_1 \sim q$

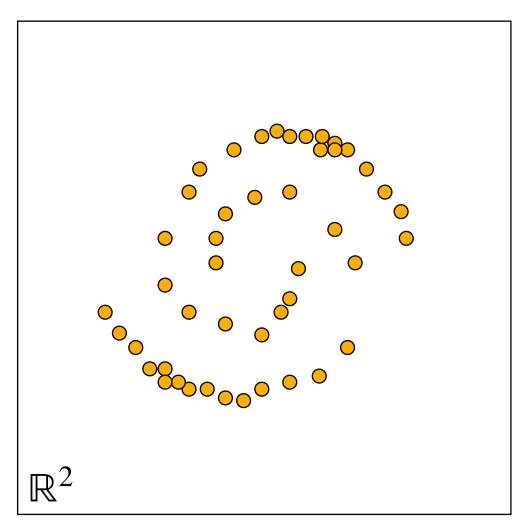
 $x_1 \sim q$



• Unknown: data distribution q

• Given: samples $x_1 \sim q$

 $x_1 \sim q$



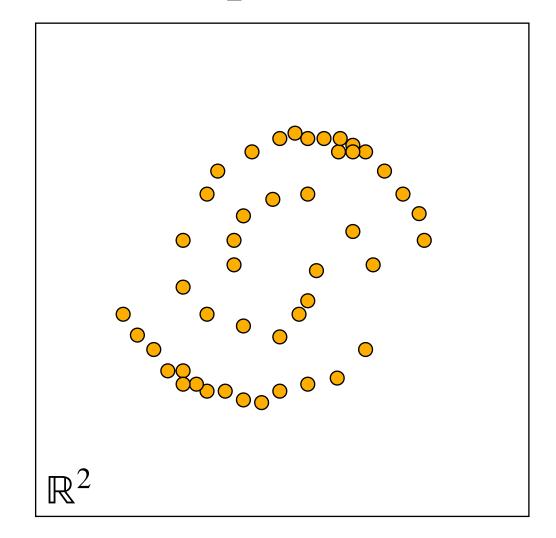
Goal: learn *a sampler* from the unknown *q*

Deep Generative Modeling

• Unknown: data distribution q

• Given: samples $x_1 \sim q$

 $x_1 \sim q$



• Unknown: data distribution q

• Given: samples $x_1 \sim q$

• Learn: neural network with parameters θ

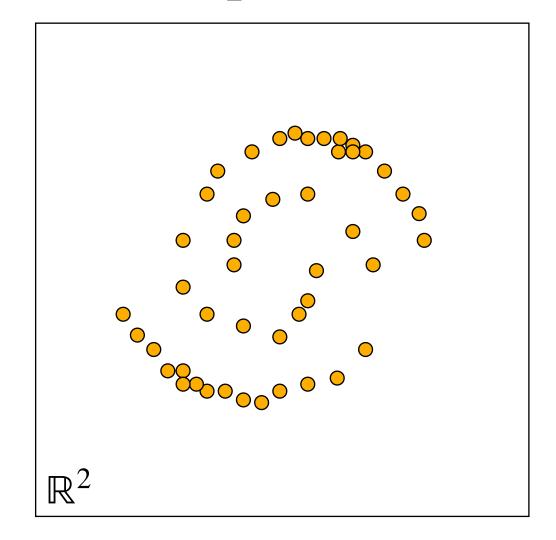
Generative Model $(\psi_{\theta}, p_{\theta})$

Generator

Underlying Density

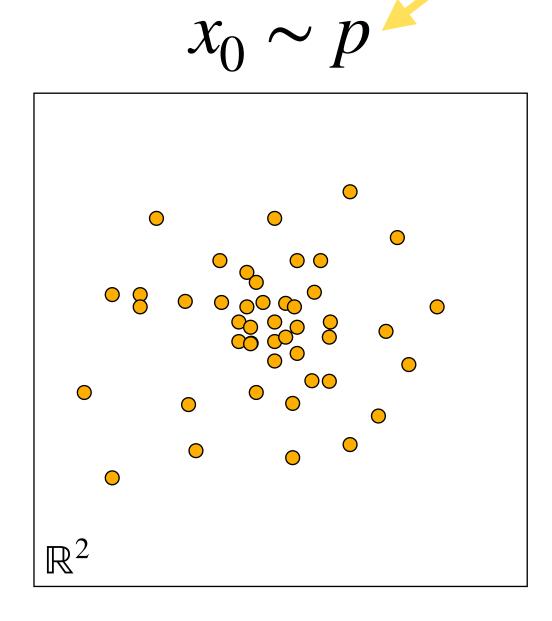
Deep Generative Modeling

 $x_1 \sim q$



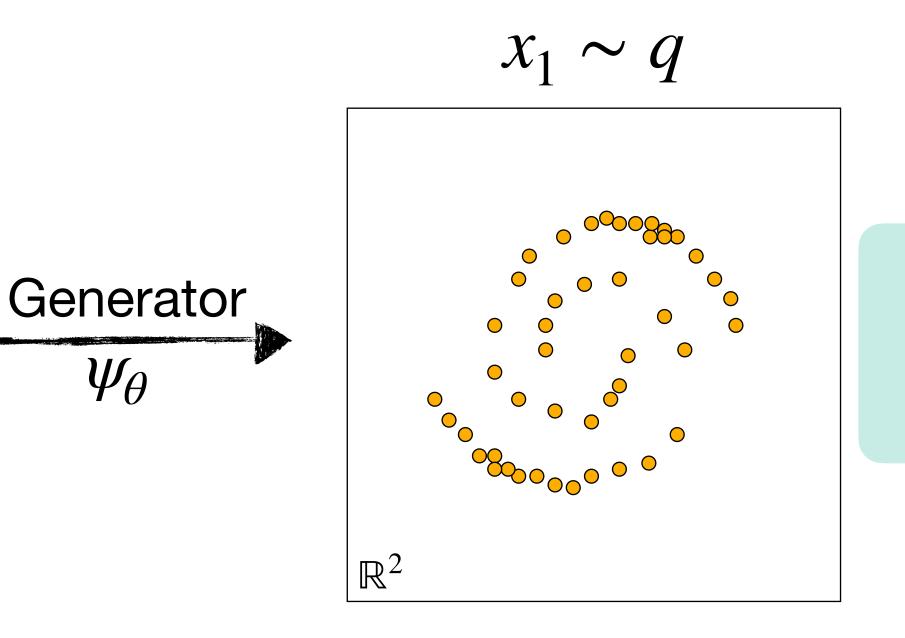
Goal: find parameters θ s.t. $p_{\theta} \approx q$

Easy to sample from



How to model ψ_{θ} ?

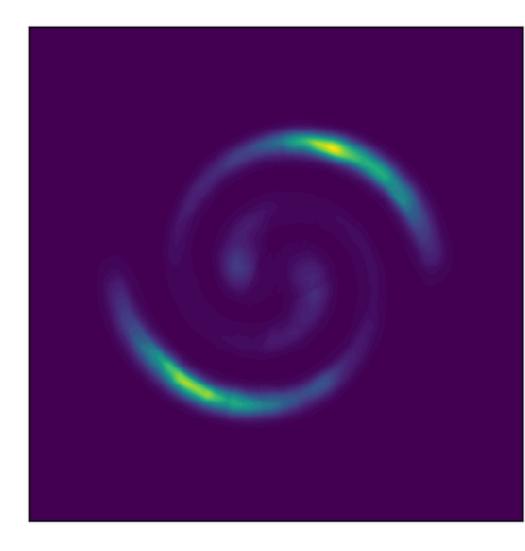
Deep Generative Modeling



Sampling

$$x_0 \sim p$$

 $\psi_{\theta}(x_0) \sim q$

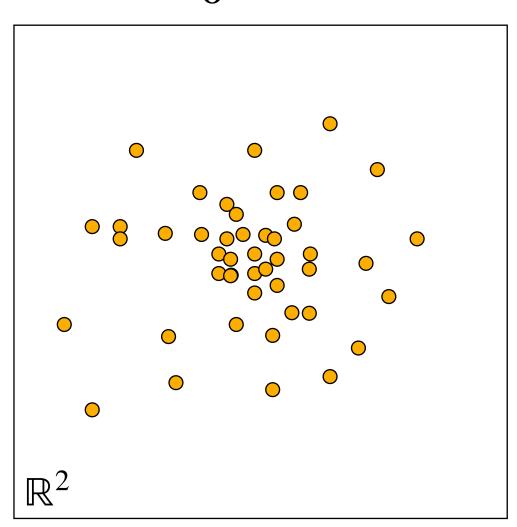


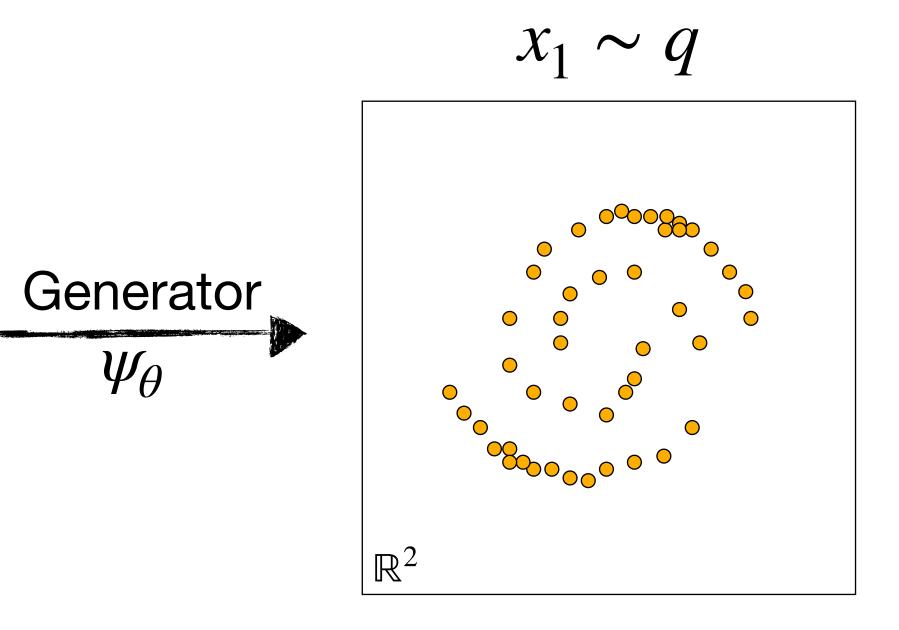
Density Estimation
$$p_{\theta} \approx q$$

ation

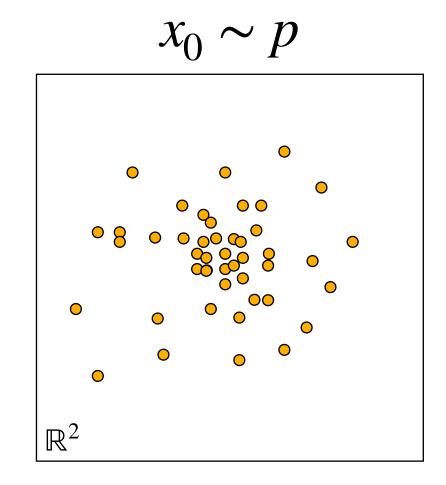
Focus: Dynamical Systems as Generative Models

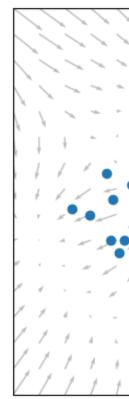
 $x_0 \sim p$





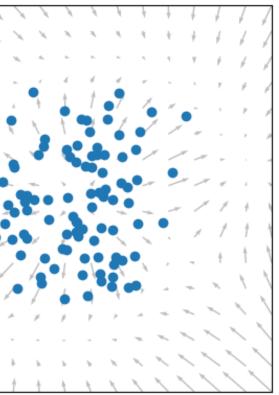
Focus: Dynamical Systems as Generative Models



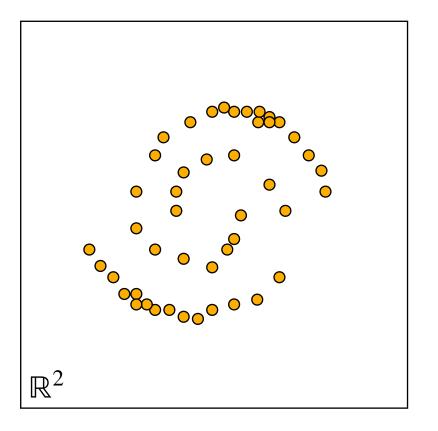


 ψ_t : [0,1

Time-Dependent Generator



 $x_1 \sim q$



$$] \times \mathbb{R}^2 \to \mathbb{R}^2$$

Sampling = Simulating

 $x_0 \sim p$ \longrightarrow simulate $(x_0, t) = \psi_t(x_0)$

Flows

 $dx_t = u_t(x_t)dt$

Velocity field

Diffusion

SDE $dx_t = f_t(x_t)dt + g_t dw_t$

Drift

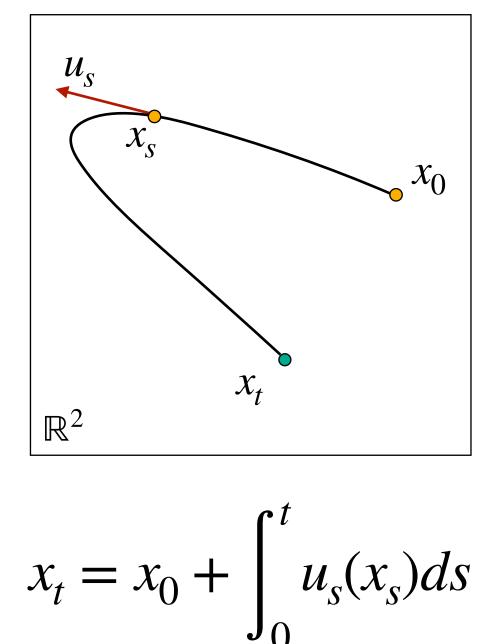
Diffusion Coefficient Brownian Motion

Flows

 $dx_t = u_t(x_t)dt$

Velocity field

Deterministic



Diffusion

SDE $dx_t = f_t(x_t)dt + g_t dw_t$

Drift

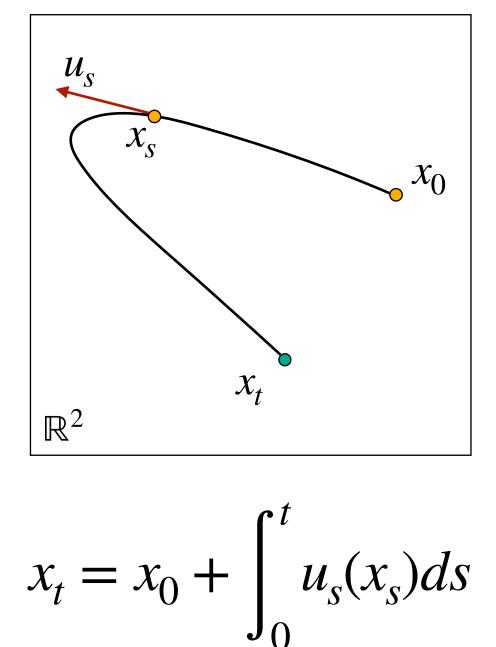
Diffusion Coefficient Brownian Motion

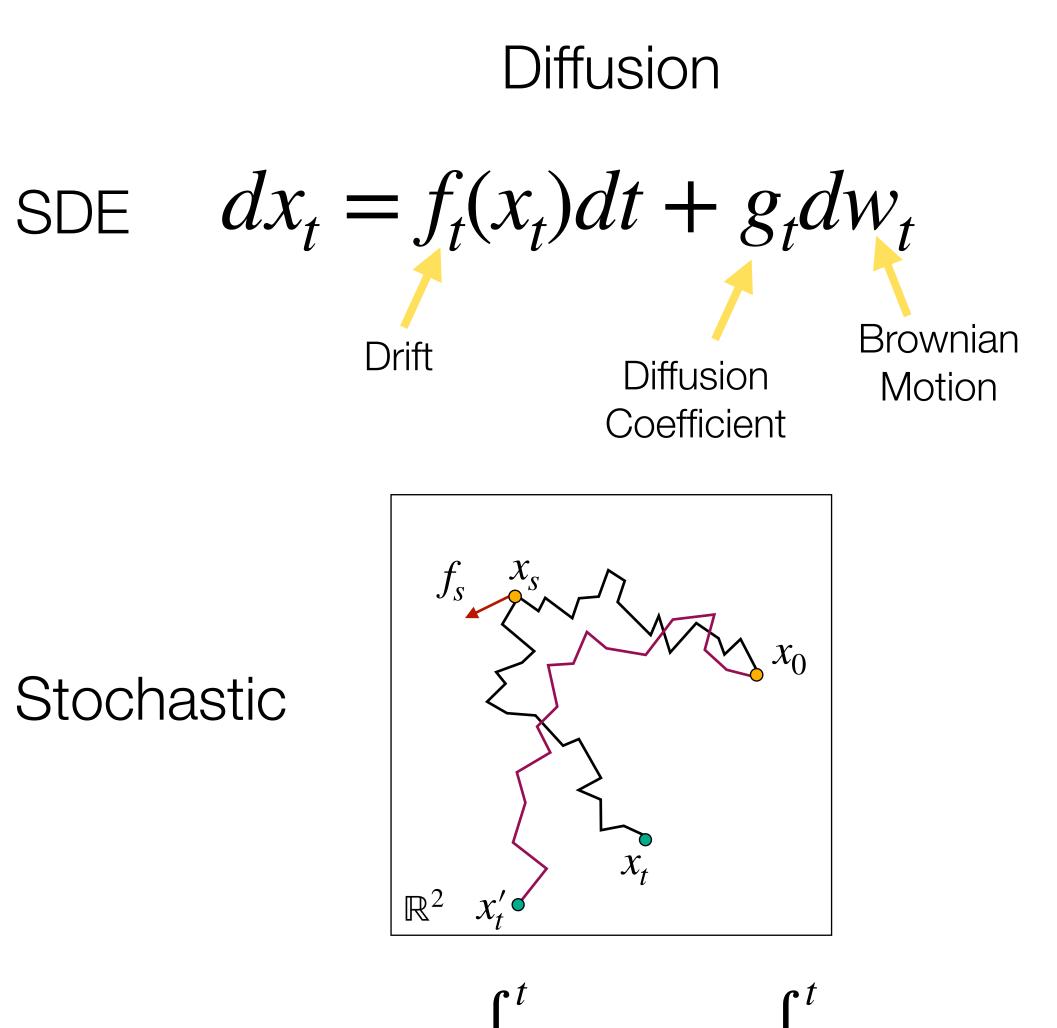
Flows

 $dx_t = u_t(x_t)dt$

Velocity field

Deterministic





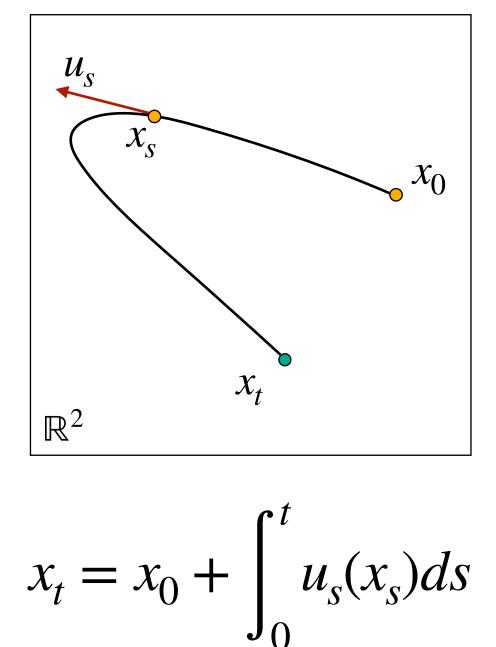
$$x_t = x_0 + \int_0^{\infty} f_s(x_s) ds + \int_0^{\infty} g_s dw_s$$

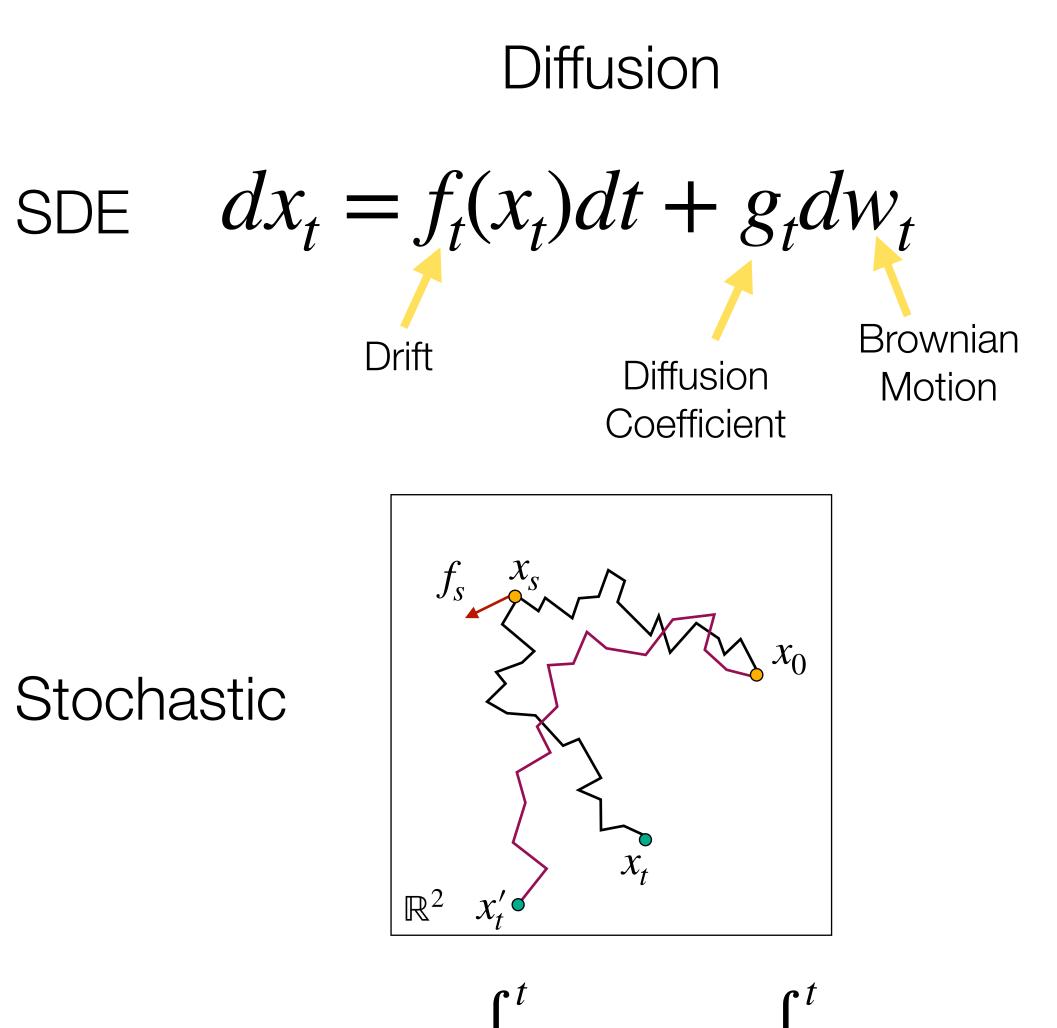
Flows

 $dx_t = u_t(x_t)dt$

Velocity field

Deterministic





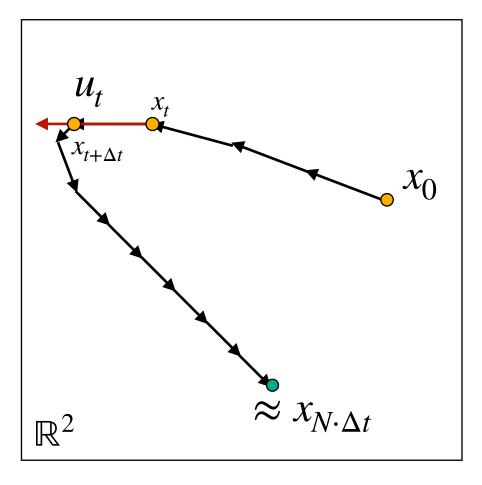
$$x_t = x_0 + \int_0^{\infty} f_s(x_s) ds + \int_0^{\infty} g_s dw_s$$

Flows

 $dx_t = u_t(x_t)dt$

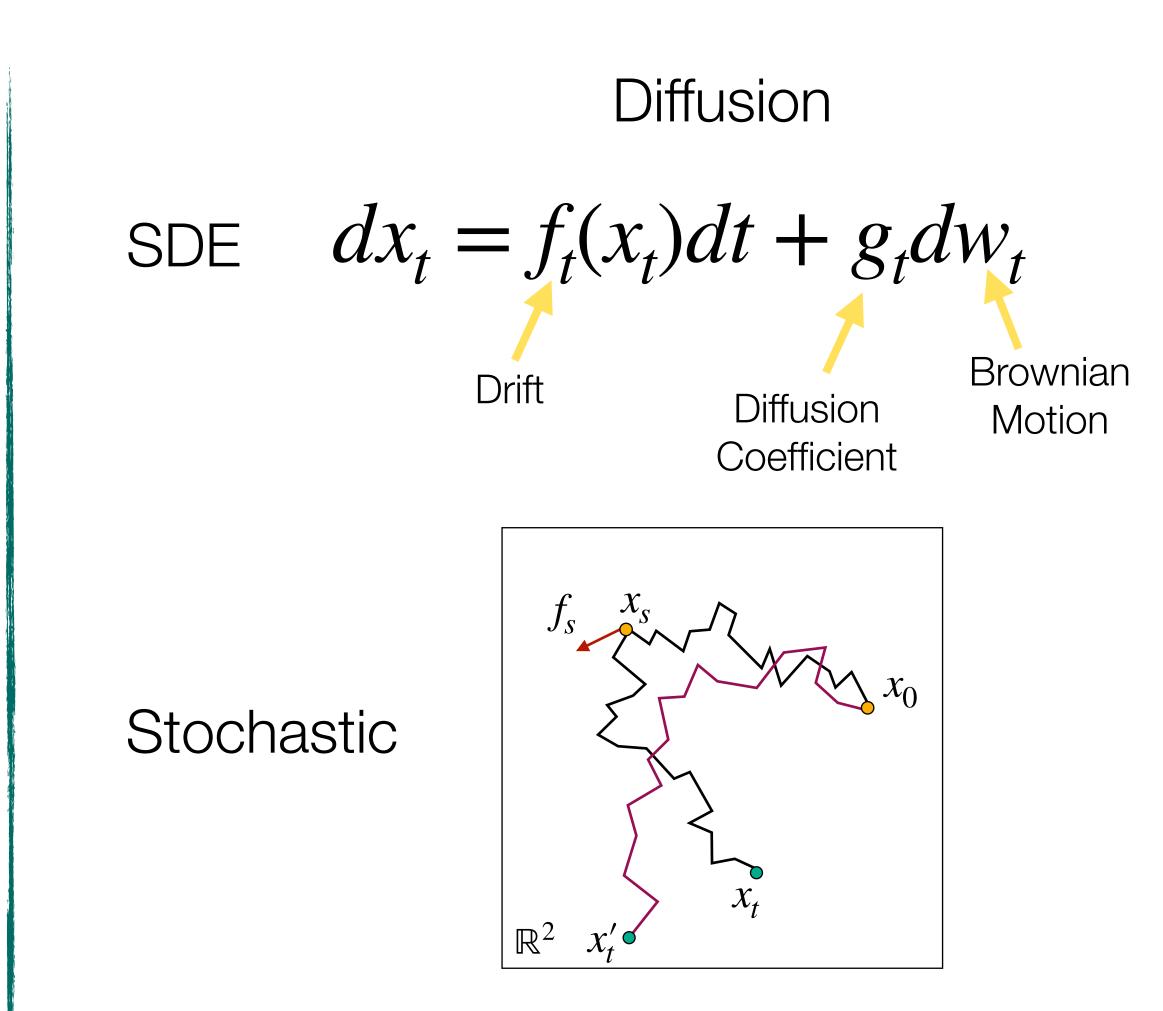
Velocity field

Deterministic



Euler:

 $x_{t+\Delta t} = x_t + \Delta t \cdot u_t(x_t)$



Euler-Maruyama:

 $z_t \sim N(0,1)$ $x_{t+\Delta t} = x_t + \Delta t \cdot f_t(x_t) + g_t \sqrt{|\Delta t| z_t}$

Flows

 $dx_t = u_t(x_t)dt$

Velocity field

The Continuity Equation

$$\partial_t p_t = -\operatorname{div}(p_t u_t)$$

SDE $dx_t = f_t(x_t)dt + g_t dw_t$

Drift

Diffusion Coefficient Brownian Motion

The Fokker-Planck Equation $\partial_t p_t = -\operatorname{div}(p_t f_t) + \frac{1}{2}g_t^2 \nabla^2 p_t$

Where are the probabilities? Diffusion SDE $dx_t = f_t(x_t)dt + g_t dw_t$ Brownian Drift Diffusion Motion Coefficient The Fokker-Planck Equation $\partial_t p_t = -\operatorname{div}(p_t f_t) + \frac{1}{2}g_t^2 \nabla^2 p_t$ Need one more thing...

Flows

 $dx_t = u_t(x_t)dt$

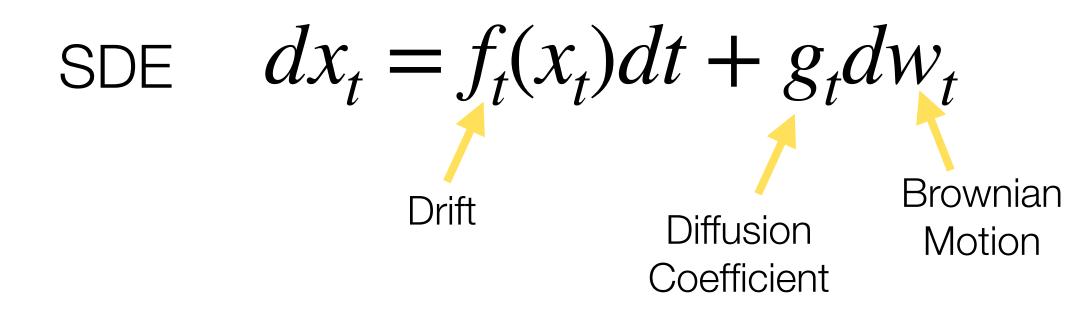
Velocity field

The Continuity Equation

$$\partial_t p_t = -\operatorname{div}(p_t \boldsymbol{u}_t)$$

Yes!

Can we build a generative model with these?



The Fokker-Planck Equation $\partial_t p_t = -\operatorname{div}(p_t f_t) + \frac{1}{2}g_t^2 \nabla^2 p_t$

Need one more thing...

Sohl-Dickstein et al., *Deep unsupervised learning using nonequilibrium thermodynamics.* (ICML 2015) Ho et at., *Denoising Diffusion Probabilistic Models.* (NeurIPS 2020) Song et al., *Score-Based Generative Modeling through Stochastic Differential Equations.* (ICLR 2021)

Forward $dx_t = f_t(x_t)dt + g_t dw_t$ SDE

The Fokker-Planck Equation $\partial_t p_t = -\operatorname{div}(p_t f_t) + \frac{1}{2}g_t^2 \nabla^2 p_t$

Need one more thing...

Sohl-Dickstein et al., *Deep unsupervised learning using nonequilibrium thermodynamics.* (ICML 2015) Ho et at., *Denoising Diffusion Probabilistic Models.* (NeurIPS 2020) Song et al., *Score-Based Generative Modeling through Stochastic Differential Equations.* (ICLR 2021)

$Data \rightarrow Noise$

Forward $dx_t = f_t(x_t)dt + g_t dw_t$ SDE

Reverse SDE $d\bar{x}_t = (f_t(x_t) - g_t^2 \nabla \log p_t) dt + g_t d\bar{w}_t$ Noise \rightarrow Data

The Fokker-Planck Equation

$$\partial_t p_t = -\operatorname{div}(p_t f_t) + \frac{1}{2}g_t^2 \nabla^2 p_t$$

Need one more thing... The Score!

Sohl-Dickstein et al., *Deep unsupervised learning using nonequilibrium thermodynamics*. (ICML 2015) Ho et at., *Denoising Diffusion Probabilistic Models*. (NeurIPS 2020) Song et al., *Score-Based Generative Modeling through Stochastic Differential Equations*. (ICLR 2021)

$Data \rightarrow Noise$

Forward $dx_t = f_t(x_t)dt + g_t dw_t$ SDE

Reverse $d\bar{x}_t = (f_t(x_t) - g_t^2 \nabla \log p_t)$

Learn the score by regressing to conditional scores:

 $\min_{\theta} \mathbb{E}_{p_{data}, p_t(x|x_{data})} \left[\| s_t^{\theta} \|_{s_t^{\theta}} \right]$

Simulation-free

$Data \rightarrow Noise$

$$dt + g_t d\bar{w}_t$$
 Noise \rightarrow Data

$$\theta_t(x) - \nabla \log p_t(x \,|\, x_{data}) \|^2]$$

Known SDEs: Variance Exploding Variance Preserving

Flows

 $dx_t = u_t(x_t)dt$

Velocity field

The Continuity Equation

$$\partial_t p_t = -\operatorname{div}(p_t \boldsymbol{u}_t)$$

Yes!

SDE $dx_t = f_t(x_t)dt + g_t dw_t$

Drift

Diffusion Coefficient Brownian Motion

The Fokker-Planck Equation $\partial_t p_t = -\operatorname{div}(p_t f_t) + \frac{1}{2}g_t^2 \nabla^2 p_t$

Learn: score $\nabla \log p_t$

- Only Gaussian source
- Solution asymptotically reaches source

Flows

 $dx_t = u_t(x_t)dt$

Velocity field

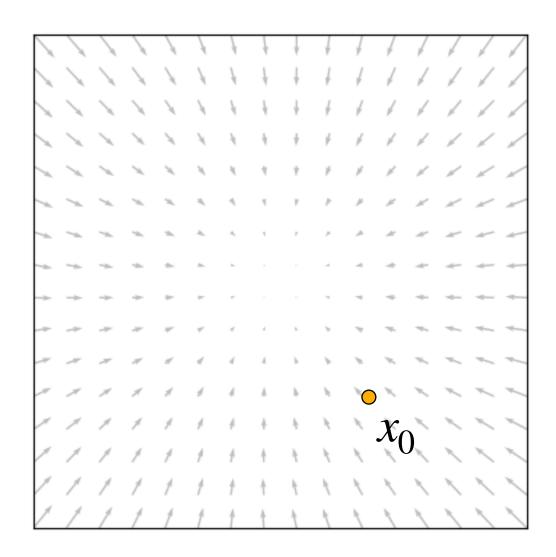
The Continuity Equation

$$\partial_t p_t = -\operatorname{div}(p_t \boldsymbol{u}_t)$$

Yes!

Flow ODE

 $\dot{\psi}_t(x_0) = u_t(\psi_t(x_0))$



 $\psi_t(x)$ is smooth with smooth **inverse** defined by $-u_t(x)$

Flow ODE

$$\dot{\psi}_t(x_0) = u_t(\psi_t(x_0))$$

The Continuity Equation

$$\partial_t p_t = -\operatorname{div}(p_t u_t)$$

Learn: velocity field u_t

- Universal transformation between densities
- Defined on finite time interval

SDE $dx_t = f_t(x_t)dt + g_t dw_t$

Drift

Diffusion Coefficient Brownian Motion

The Liouville Equation $\partial_t p_t = -\operatorname{div}(p_t(f_t - \frac{1}{2}g_t^2 \nabla \log p_t))$

Learn: score $\nabla \log p_t$

- Only Gaussian source
- Solution asymptotically reaches source

Flow ODE

$$\dot{\psi}_t(x_0) = u_t(\psi_t(x_0))$$

The Continuity Equation

$$\partial_t p_t = -\operatorname{div}(p_t u_t)$$

Learn: velocity field u_t

- Universal transformation between densities
- Defined on finite time interval

SDE $dx_t = f_t(x_t)dt + g_t dw_t$

Drift

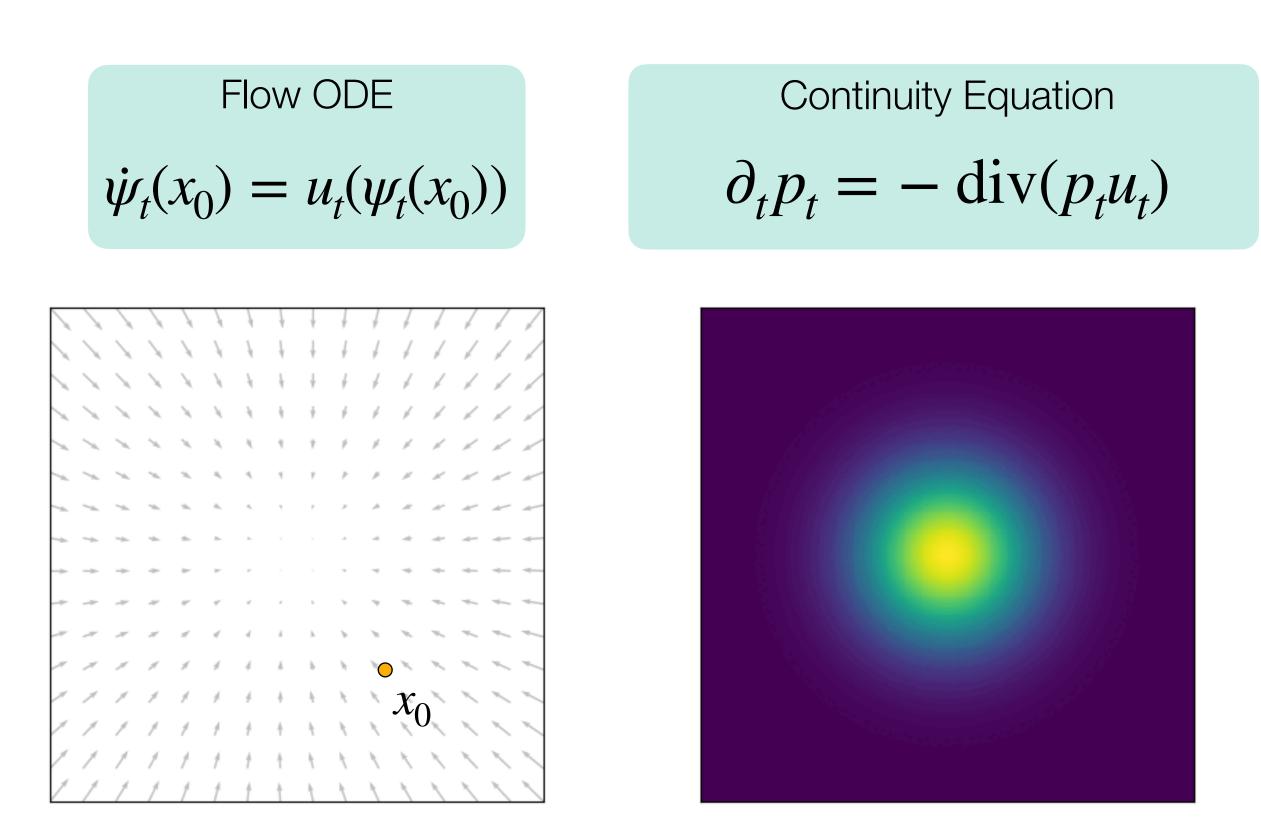
Diffusion Coefficient Brownian Motion

The Liouville Equation $\partial_t p_t = -\operatorname{div}(p_t(f_t - \frac{1}{2}g_t^2 \nabla \log p_t))$

Learn: score $\nabla \log p_t$

- Only Gaussian source
- Solution asymptotically reaches source

Flows as Generative Models

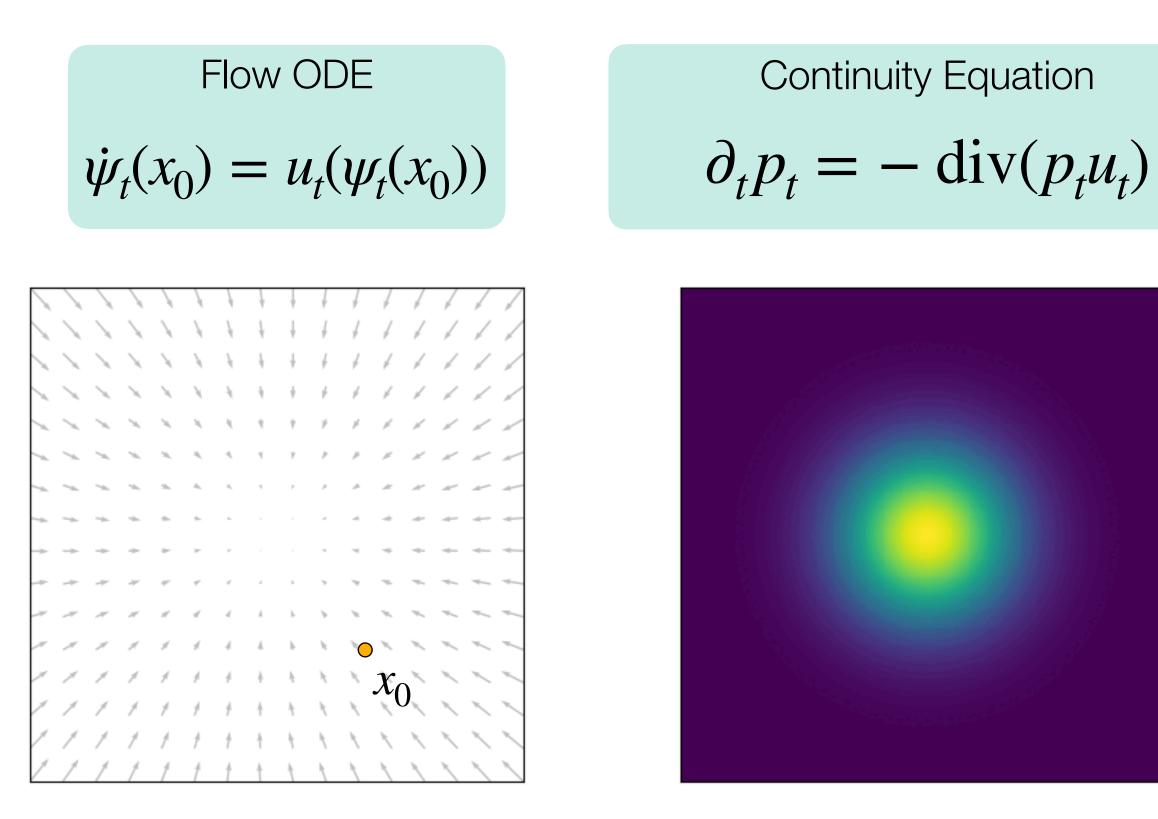


Learn: velocity field u_t

Goal: find velocity field u_t s.t. $p_1 \approx q$

Chen et al., Neural Ordinary Differential Equations. (NeurIPS 2018)

Training with Simulation



Requires:

- Simulating x_t
- Backprop through simulation
- (Unbiased) estimator of $\operatorname{div}(u_t)$
- Can compute $\log p(x)$

Log-likelihood computation

$$\log p_1(x_1) = \log p(x_0) + \int_1^0 \operatorname{div}(u_t(x_t))$$
$$x_t = x_1 + \int_1^t u_s(x_s) ds$$

Maximum Likelihood Objective

 $D_{\text{KL}}(q || p_1) = -\mathbb{E}_{x \sim q} \log p_1(x) + c$

Chen et al., Neural Ordinary Differential Equations. (NeurIPS 2018)

$L_{\text{FM}}(\theta) = \min \mathbb{E}_{t, p_t(x)} \| u_t^{\theta}(x) - u_t(x) \|^2$

Construct:

• Target probability path p_t s.t. $p_0 = p$, $p_1 \approx q$

• Generating velocity field u_t

Flow Matching

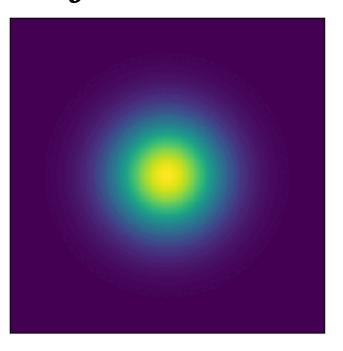
Core Principle:

 u_t generates p_t iff they satisfy the continuity equation

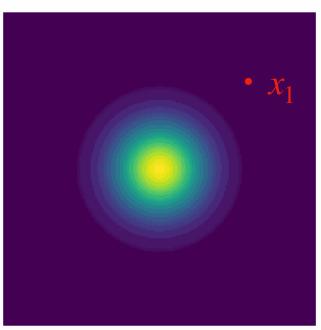
Conditional Probability Paths

Law of total probability

$$p_t(x) = \int p_t(x | x_1) q(x_1)$$



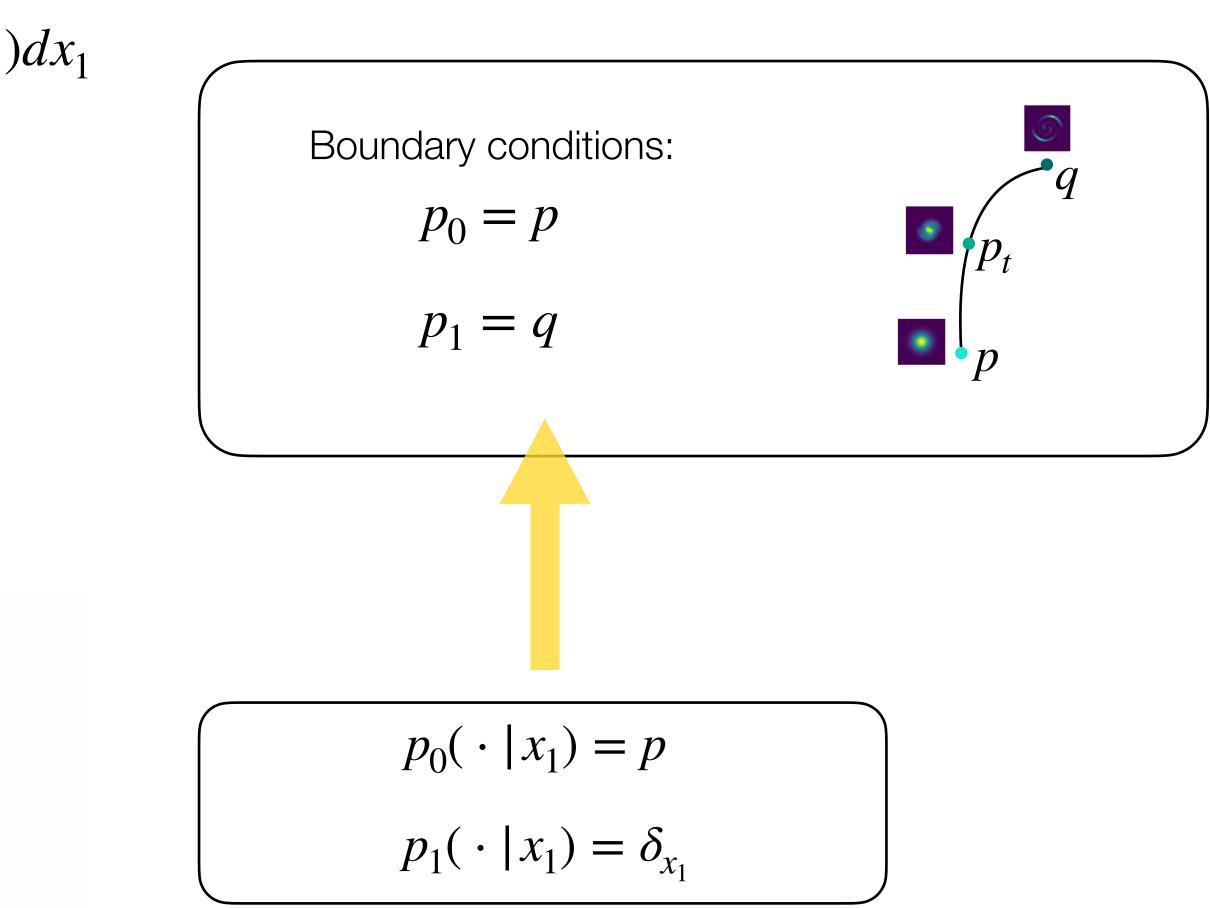
$$p_t(x \,|\, x_1)$$

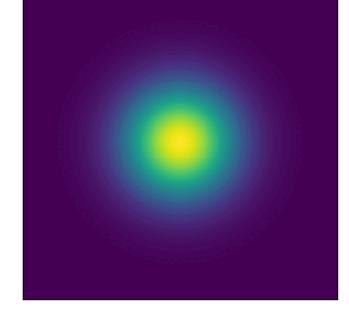


Marginal path

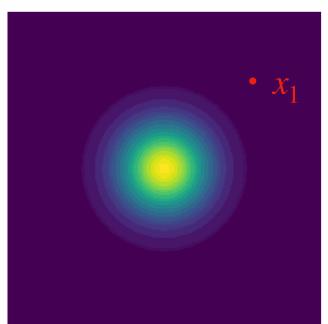
Conditional path

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)





 $p_t(x \mid x_1)$



Conditional path

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

The marginalization "trick"

 $p_t(x) = \int p_t(x \mid x_1) q(x_1) dx_1 \qquad u_t(x) = \int u_t(x \mid x_1) \frac{p_t(x \mid x_1) q(x_1)}{p_t(x)} dx_1$ $u_t(x \mid x_1)$

$L_{\text{FM}}(\theta) = \min \mathbb{E}_{t, p_t(x)} \| u_t^{\theta}(x) - u_t(x) \|^2$

$$u_t(x) = \int u_t(x \,|\, x_1) \frac{p_t(x \,|\, x_1)q(x_1)}{p_t(x)} dx_1$$

Construct:

• Target probability path p_t s.t. $p_0 = p$, $p_1 \approx q$

• Generating velocity field u_t

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

Flow Matching

$L_{\rm FM}(\theta) = \min \mathbb{E}_t$

$$u_t(x) = \int u_t(x \mid z) \frac{p_t(x \mid z)q(z)}{p_t(x)} dz$$
Useful examples:

$$z = (x_0, x_1) \rightarrow q(x_0, x_1)$$

$$z = x_0 \rightarrow p(x_0)$$

Construct:

• Target probability path p_t s.t. $p_0 = p$, $p_1 \approx q$

• Generating velocity field u_t

Pooladian*, Ben-Hamu*, Enrich* et al., Multisample Flow Matching: Straightening Flows with Minibatch Couplings. (ICML 2023) Tong et al., Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport. (TMLR)

Flow Matching

$$\|u_t^{\theta}(x) - u_t(x)\|^2$$

$$p_t(z \mid x) = \frac{p_t(x \mid z)q(z)}{p_t(x)}$$

$L_{\rm FM}(\theta) = \min \mathbb{E}_t$

z =z =

$$u_t(x) = \int u_t(x \mid z) p_t(z \mid x) dz$$

Construct:

• Target probability path p_t s.t. $p_0 = p$, $p_1 \approx q$

• Generating velocity field u_t

Pooladian*, Ben-Hamu*, Enrich* et al., Multisample Flow Matching: Straightening Flows with Minibatch Couplings. (ICML 2023) Tong et al., Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport. (TMLR)

Flow Matching

$$\|u_t^{\theta}(x) - u_t(x)\|^2$$

Useful examples:

$$= (x_0, x_1) \rightarrow q(x_0, x_1)$$
$$= x_0 \rightarrow p(x_0)$$

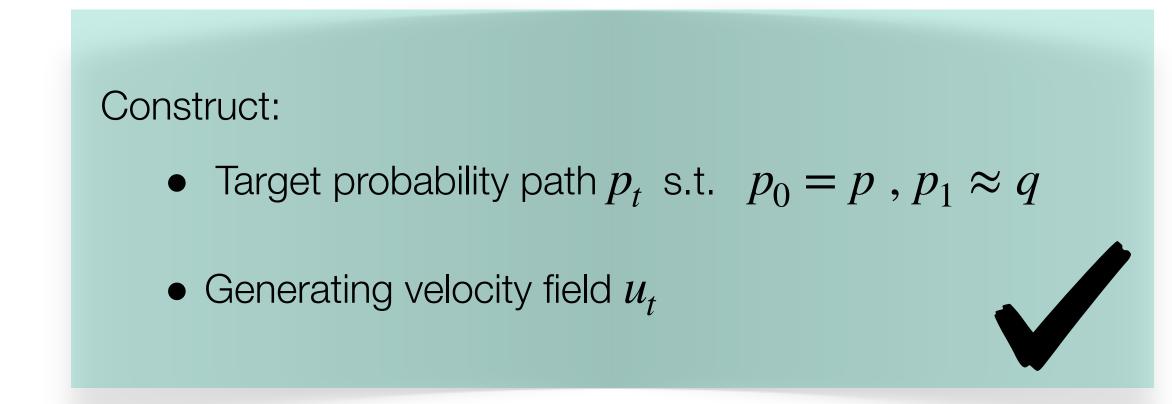
Conditional Flow Matching Loss

The gradients of losses coincide: $\nabla_{\theta} L_{\rm FM} = \nabla_{\theta} L_{\rm CFM}$

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

 $L_{\text{FM}}(\theta) = \min \mathbb{E}_{t, p_t(x)} \| u_t^{\theta}(x) - u_t(x) \|^2$

 $L_{\text{CFM}}(\theta) = \min \mathbb{E}_{t, q(z), p_t(x|z)} \|u_t^{\theta}(x) - u_t(x|z)\|^2$



Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

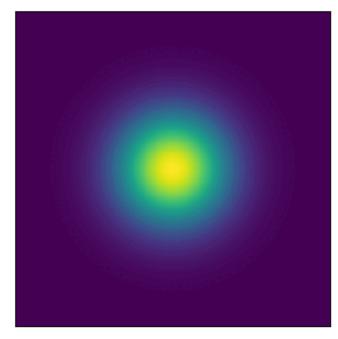
Flow Matching

 $L_{\text{FM}}(\theta) = \min \mathbb{E}_{t, p_t(x)} \| u_t^{\theta}(x) - u_t(x) \|^2$

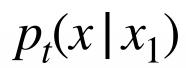
 $L_{\text{CFM}}(\theta) = \min \mathbb{E}_{t, q(z), p_t(x|z)} \|u_t^{\theta}(x) - u_t(x|z)\|^2$

Conditional Flows

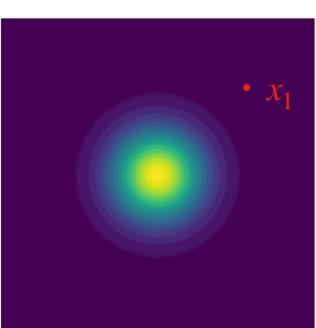
$$p_t(x) = \int p_t(x \,|\, x_1) q(x_1) dx_1 \quad t$$



Marginal path



Conditional path

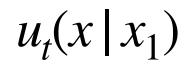


Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

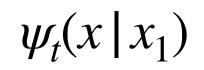
$u_t(x) = \int u_t(x \,|\, x_1) p_t(x_1 \,|\, x) dx_1$

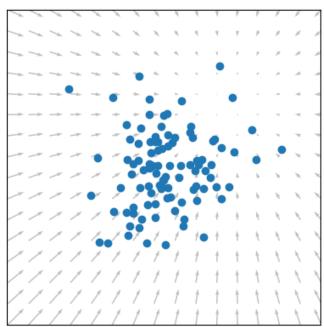
1	1	1	1	1	J.	ł	ł	÷	÷	÷	÷	1	1	1	1
	\searrow	\searrow	1	1	X	ł	ł	ł	÷	÷	¥	1	1	/	/
	\searrow	\searrow	$\$	X	X	ł	ł	÷	÷	¥	¢	¥	/	/	/
1	\sim	\sim	\sim	X	×	÷.	÷	ý	÷.	¥	¥	1	/	1	/
~	~	\sim	\sim	×	34	٩	4	Ŷ	P	×	×	1	1	1	~
~	~	~	~~	54,	4,	4	4	7	P	×	×	×	×	1	~
-	~~~	-	*8.	94	h.,	4	1	,	*		,tt	dt.	11	-	~
		->	-	÷.	h-					-1	-4	-	-	-	-
->-	->-	÷	-	÷	٣	v			~	-4	-4	-	-		-
-1-		-94	~	Ψ.	Ŧ	4	4	5	~	~	-	-		-	-
-7	-11	1	N	11	4	4	Å	h.	>	7	γ.	γ_{n}	~	~	-
17	π	1	1	1	\$	4	Å	h	h	×	Ν.	Υ.,	Υ.,	~	~
1	1	1	1	1	¢	4	÷	ł	×	$\mathbb{N}_{\mathbb{N}}$	\mathbb{N}	\mathbb{N}_{i}	\sim	~	~
1	1	1	1	1	1	ŧ	÷	ł	×	N	X	\mathbb{N}	\mathbb{N}	~	~
1	1	1	1	1	1	t	ţ	ł	×.	N	X	\mathbb{N}	1	1	
1	1	1	1	1	1	1	t	1	1	1	1	1	1	1	1

Construct a conditional flow s.t. $\psi_0(x \,|\, x_1) = x \ , \ \psi_1(x \,|\, x_1) = x_1$



	-	**	-	~	7%	ч.	3%	٩.	٩.	7	٩	т	٣	٣	P	1
1000 1000 1000	ng, ng,	n _{th}	nde-	*8.	чь.	чь.	<i>4</i> 1.	4	4	4	٩	1	7	Þ	p	
		-	-	-	-	÷.,	<u>h.</u>	*	6.	•	4		,	*	*	.4
			-9-	-	-	*	h.	h.	de-	^						-16
$\rightarrow \rightarrow \rightarrow$			-9-	-9-	-	-	p.	le.		-	·		-	-	-	~
$\rightarrow \rightarrow \rightarrow$		-	+	-	÷	٠	P	٣	~	7	,			*	Ψ	
		P	alt-	der	47	-	~	Ψ.	*	*	4				v	
	ar ar					4	47	4	4	4	4	4		h	ъ	\sim
~~~~~	~ ~		æ	ø	11	#	11	1	4	4	4	4	6	Þ	ъ	$\mathbf{v}$
~ ~ ~	1 1	1	N	ø	1	1	1	\$	4	4	A.	*	h	<b>b</b>	5	$\mathcal{H}$
///	/ /	N	1	×	1	1	\$	1	4	4	4	4	4	b.	ŀ	$\mathcal{H}$
///	/ /	1	1	1	ø	1	#	\$	\$	4	4	4	4	÷.	h.	$\mathcal{H}$
///	/ /	1	1	ø	1	1	\$	1	\$	\$	4	÷	÷.	÷.	h.	Ν.
///	11	1	ļ	I	1	1	1	1	1	1	4	÷	÷	÷.	ł	4
///	11	1	/	1	1	1	1	1	1	ŧ.	ŧ	ŧ	÷	÷.	Ł	h.
111	11	1	1	1	1	1	1	1	1	1	t	ŧ	÷.	ł.	ł.	N.
111	11	1	1	1	1	1	1	1	1	1	t	ŧ	ŧ.	ł	ł.	ł
	11	1	1	1	1	1	1	1	t	1	t	t	t	ł	1	1
	11	1	1	1	1	1	1	1	1	1	t	t	t.	t.	t.	1
	11	1	1	1	1	1	1	t	1	1	t	1	t.	t	1	1







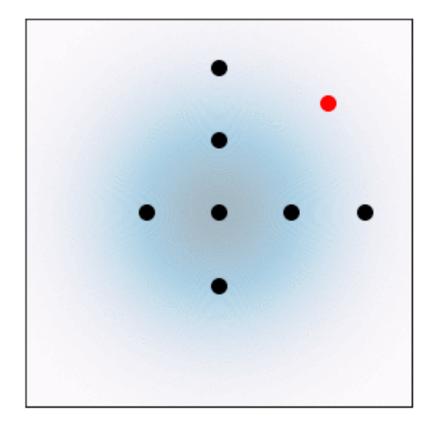
# Conditional Optimal Transport Flows

Construct a conditional flow s.t.  $\psi_0(x \,|\, x_1) = x \ , \ \psi_1(x \,|\, x_1) = x_1$ 

## Cond-OT flow coefficients:

Cond-OT flow:

 $\psi_t(x_0 \,|\, x_1)$ 

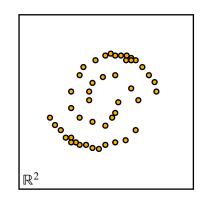


Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

coefficients:  $\alpha_t = t$  ,  $\sigma_t = 1 - t$ T flow:  $\psi_t(x_0 | x_1) = tx_1 + (1 - t)x_0$   $u_t(\psi_t(x_0 | x_1) | x_1) = x_1 - x_0$  $u_t(x | x_1) = \frac{x_1 - x}{1 - t}$ 

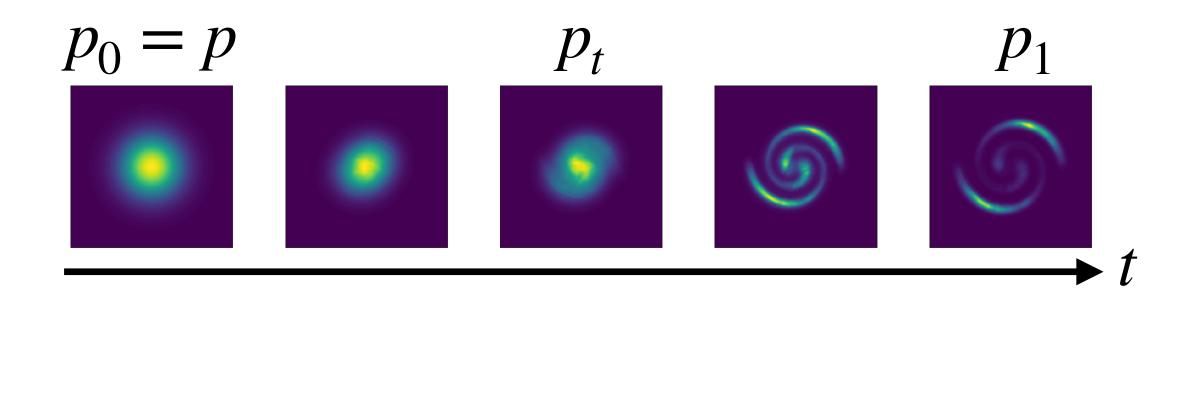
# Recipe: Flow Matching

• Given: samples  $x_1 \sim q$ 

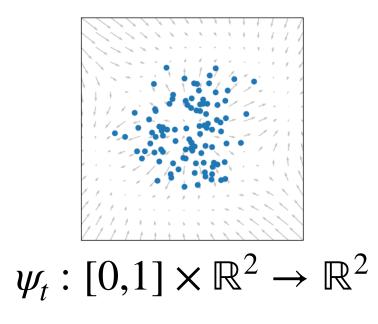


• Construct:  $p_t$  s.t.  $p_0 = p$ ,  $p_1 \approx q$ via conditional flows  $\psi_t(x \mid z)$ 

• Learn: velocity field  $u_t$  with CFM loss s.t.  $\psi_t(x_0) \sim p_t$  where  $x_0 \sim p$ 



## $L_{\text{CFM}}(\theta) = \min \mathbb{E}_{t, q(z), p_t(x|z)} \| u_t^{\theta}(x) - u_t(x|z) \|^2$





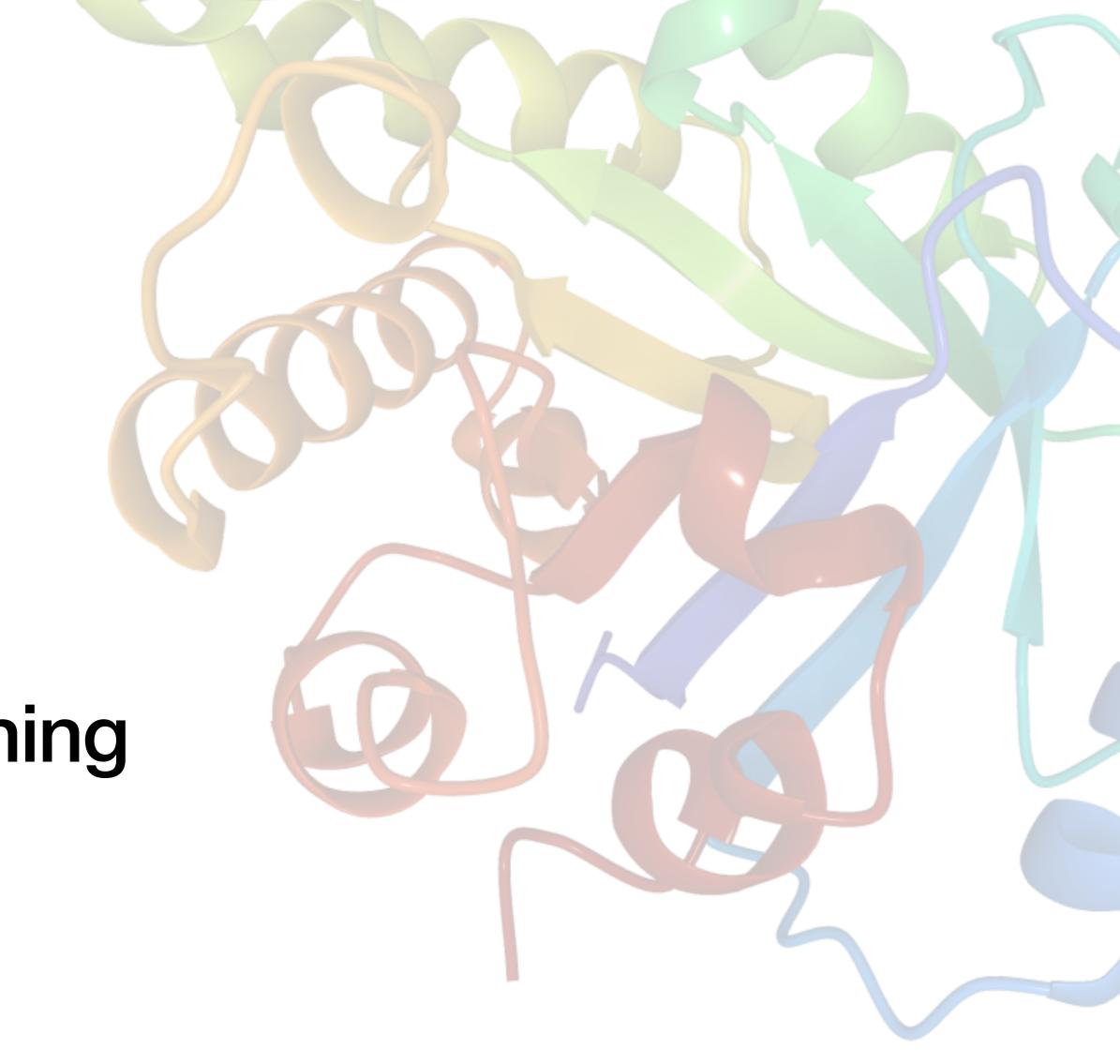


- Flows are powerful generative models when supervised adequately
  - Flow Matching is a **flexible** framework for training generative flows
- Improved sampling speed and stability compared to diffusion models

- <u>Open challenges:</u>
  - Learn a one-step model (without distillation).
  - Scale to other data domains such as language.



# Part II: Geometry for Machine Learning





# So Generative Models on Manifolds?

• Given: samples  $x_1 \sim q$ 

• Construct:  $p_t$  s.t.  $p_0 = p$ ,  $p_1 \approx q$ via conditional flows  $\psi_t(x \mid z)$ 

• Learn: velocity field  $u_t$  with CFM loss s.t.  $\psi_t(x_0) \sim p_t$  where  $x_0 \sim p$ 

How do you represent  $x_1$  on a manifold?

There is no "Gaussian dist." on manifold

 $\alpha_t x_1 + \sigma x_0$ 

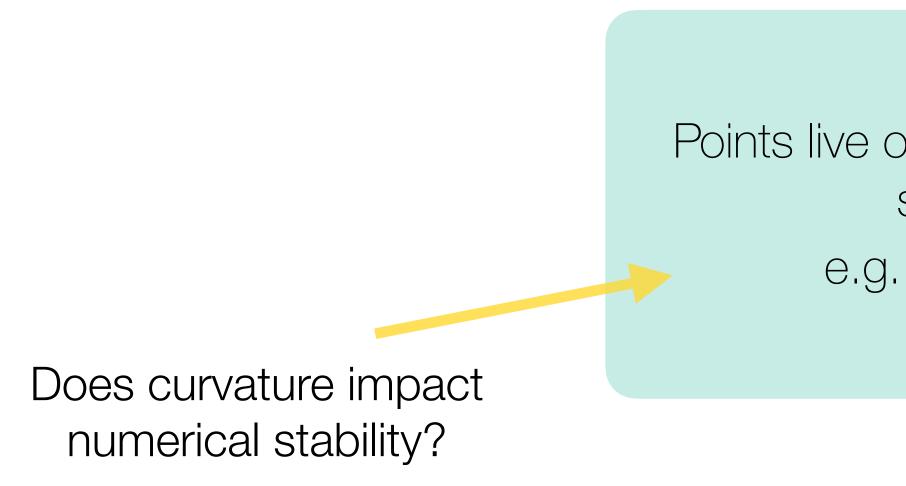
Can't do addition! No Vector space structure!

The notion of velocity/vector fields needs to be generalized





Space (think Euclidean space) when glued together look globally different.



How do we parametrize  $\mathcal{M}$ 

# Smooth Manifolds

Informally: A (smooth) topological space that locally looks like patches of a Vector

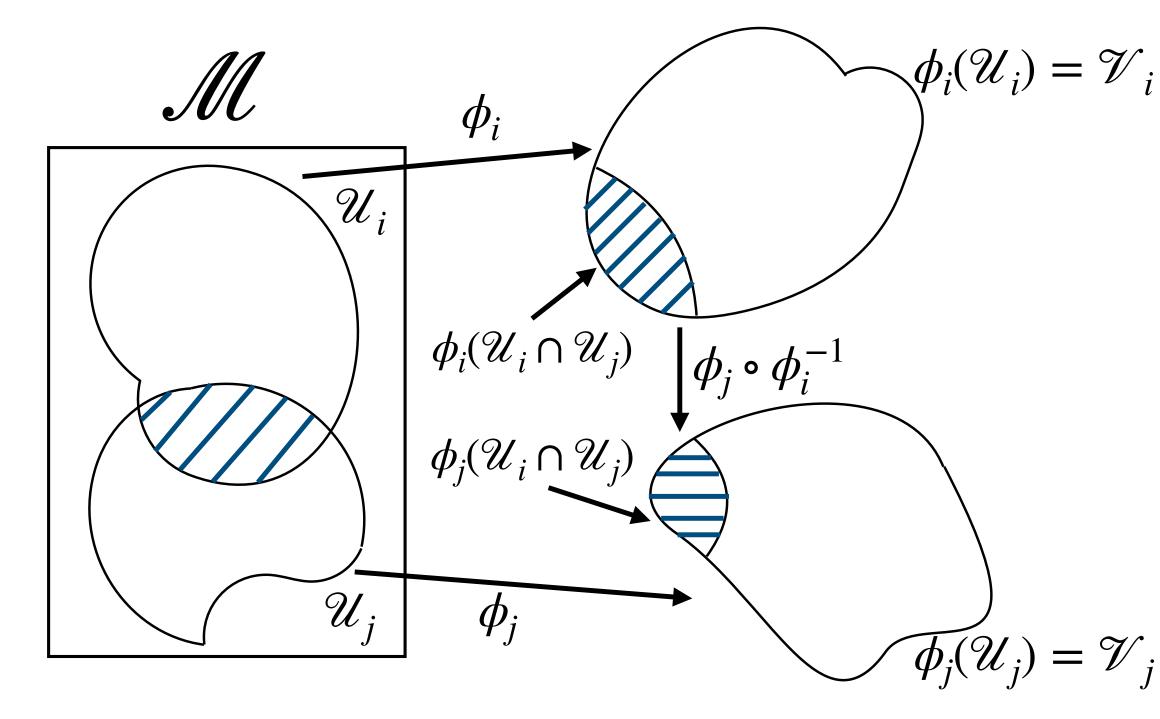
Points live on this topological space e.g.  $x_1 \in \mathcal{M}$ What additional structure do we need on  $\mathcal{M}$  for FM/Diffusion?

- Space (think Euclidean space) when glued together look globally different.
- A chart  $\{U_i, \phi_i | i \in \mathscr{A}\}$  maps each patch to a vector space  $\phi_i : U_i \to \mathbb{R}^n$ .

We added "smoothness" i.e.  $C^{\infty}$ differentiability and continuity to  $\mathcal{M}$ 

# Smooth Manifolds

Informally: A (smooth) topological space that locally looks like patches of a Vector







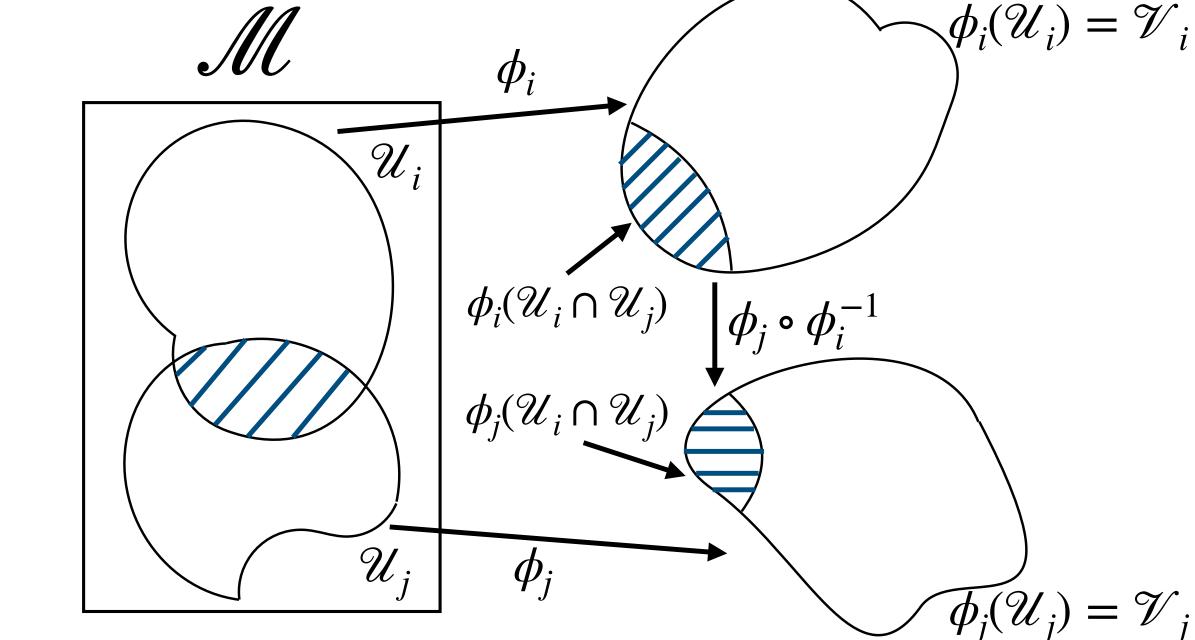
- Space (think Euclidean space) when glued together look globally different.
- A chart  $\{U_i, \phi_i \mid i \in \mathscr{A}\}$  maps each patch to a vector space  $\phi_i : U_i \to \mathbb{R}^n$ .

$$\phi_j \circ \phi_i^{-1} \bigg|_{\phi_i(U_i \cap U_j)} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$$

# Smooth Manifolds

Informally: A (smooth) topological space that locally looks like patches of a Vector

• Stitching charts together requires satisfying a compatibility condition if  $U_i \cap U_i \neq \emptyset$ 







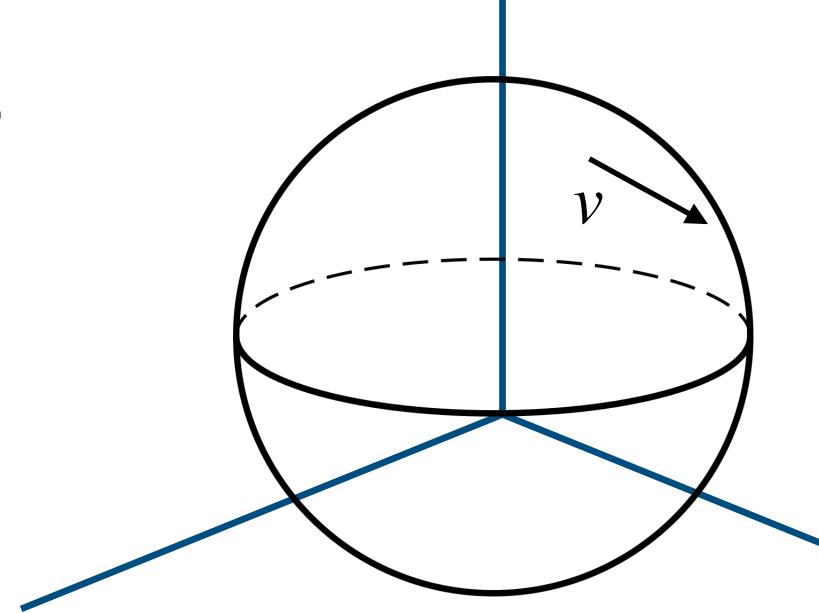
- Intrinsic perspectives of Riemannian geometry.
- Extrinsic: A manifold is embedded in  $\mathbb{R}^n$ , n > d, if there is an inclusion map  $\iota(x) = x \in \mathbb{R}^n, \forall x \in \mathcal{M}$ .

Which parametrization should you use?

General principle: Think like a deep learner

# Extrinsic vs. Intrinsic Views

• Multiple ways of representing the same geometry. Two main ways are Extrinsic vs.





 $\mathbb{S}^2$  sphere embedded in  $\mathbb{R}^3$ 



- subsets of  $\mathbb{R}^d$  instead of a manifold.

Example: Stereographic projection of  $\mathbb{S}^2$  $U_{+} = \mathbb{S}^{2} \setminus \{s\} \quad \phi_{+} : U_{+} \to \mathbb{R}^{2}$  $U_{-} = \mathbb{S}^{2} \backslash \{n\} \quad \phi_{-} : U_{-} \to \mathbb{R}^{2}$ 

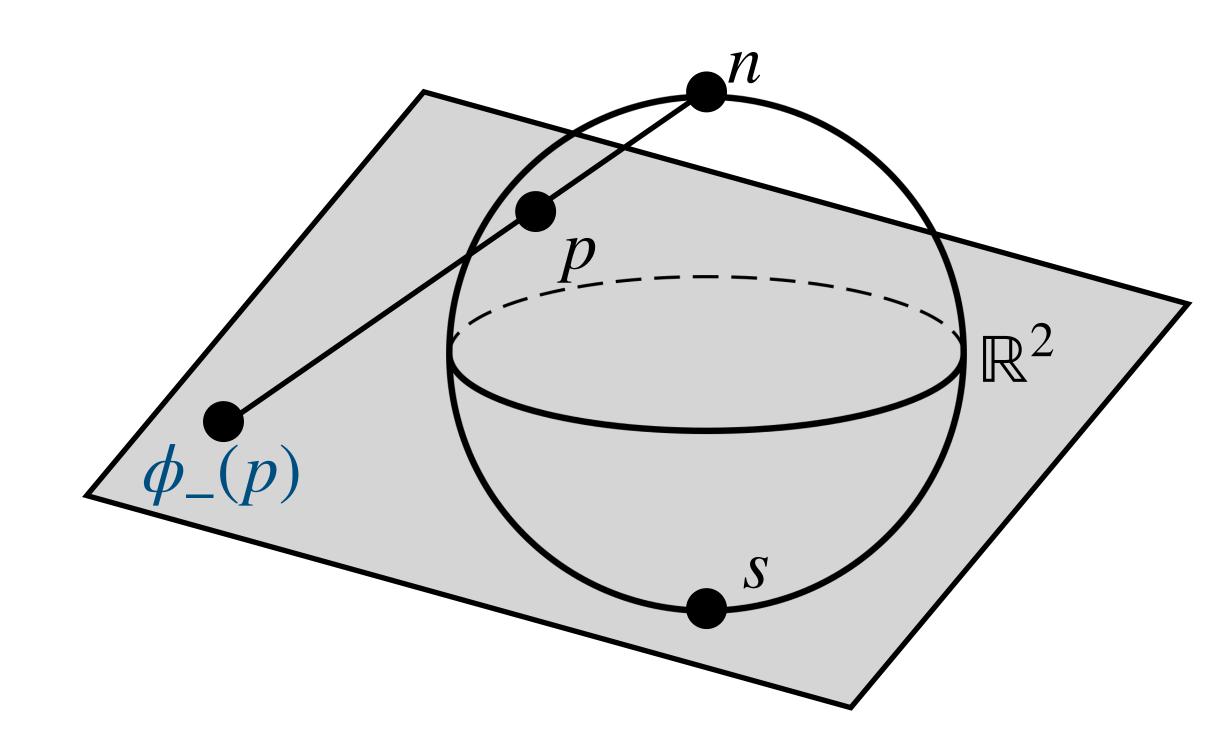
> Numerical instability near the poles!

# Extrinsic vs. Intrinsic Views

• Intrinsic: A local coordinate system is "a choice" of charts that cover the manifold.

• Computation in "local coordinates" means using coordinate charts to put it in in

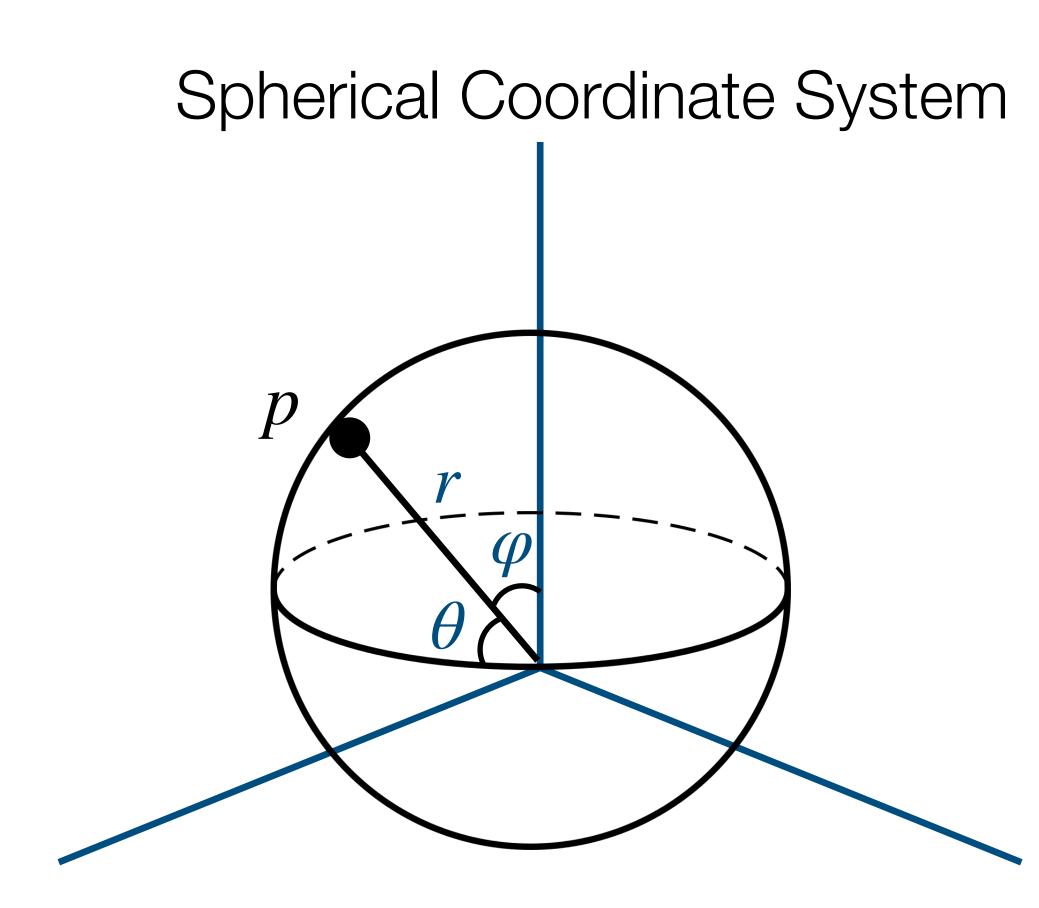
Stereographic projection



# Global Coordinate Systems

- Global coordinates: A coordinate chart that covers the entire manifold
- $(r, \theta, \phi)$
- (Almost) Global coordinate system *r* - radius
- $\theta$  azimutal angle
- $\varphi$  polar angle

Are trigonometric functions numerically stable (always?). What about their inverses?

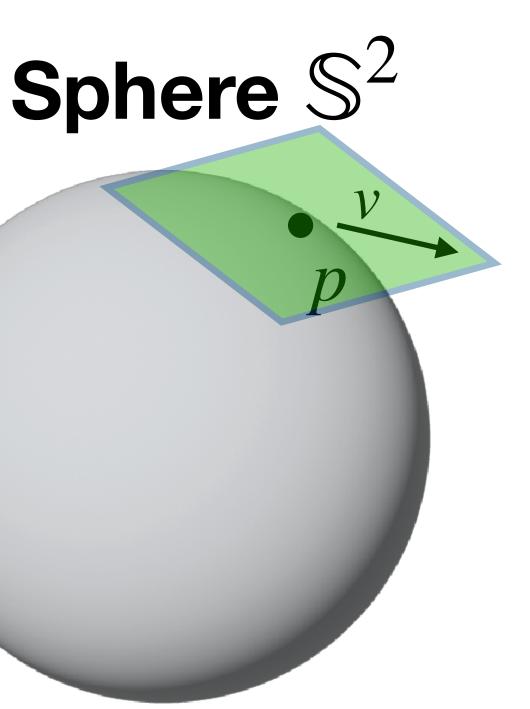


## • Tangent space: For each $p \in \mathcal{M}$ , a tangent vector is a smooth map $v : \mathcal{F} \to \mathbb{R}^n$ .



Need to define a "vector" on  $\mathcal{M}$ 

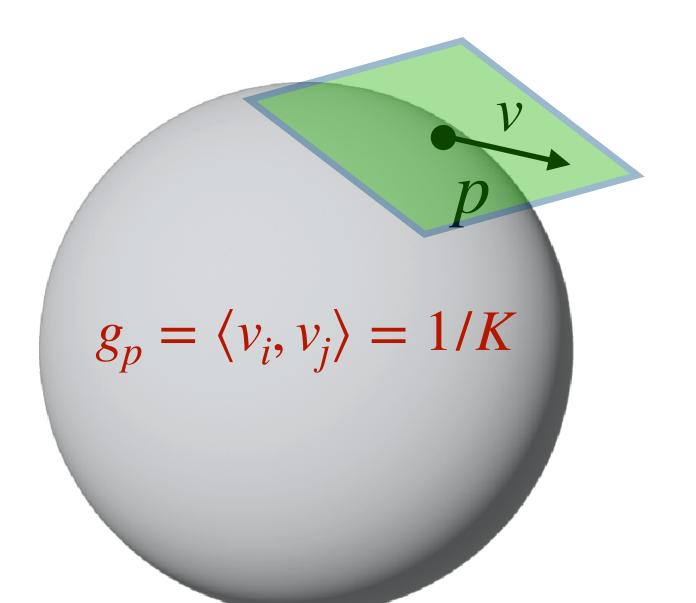




In a chart we can use the local basis  $(e_1, ..., e_d)$ 

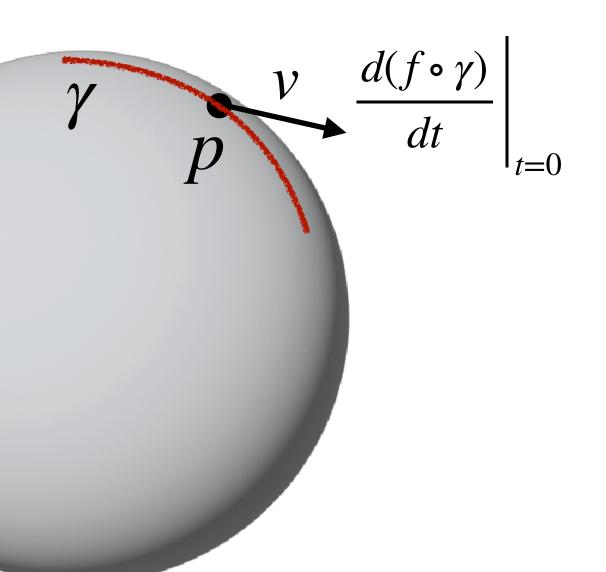


- A curve: A smooth map  $\gamma : [-1,1] \rightarrow \mathcal{M}, \gamma(0) = p$ .

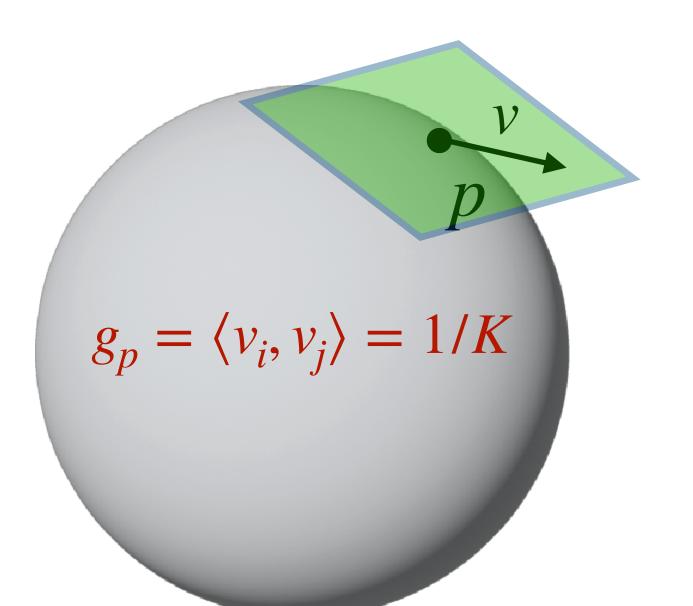


# A bit more on Tangent Spaces

• Tangent Basis: Any  $v \in T_p \mathscr{M}$  can be expressed as a linear combination of basis vectors which are taken from the chart  $(U_i, \phi_i)$  (by pulling them back via  $\phi_1^{-1}$ ).



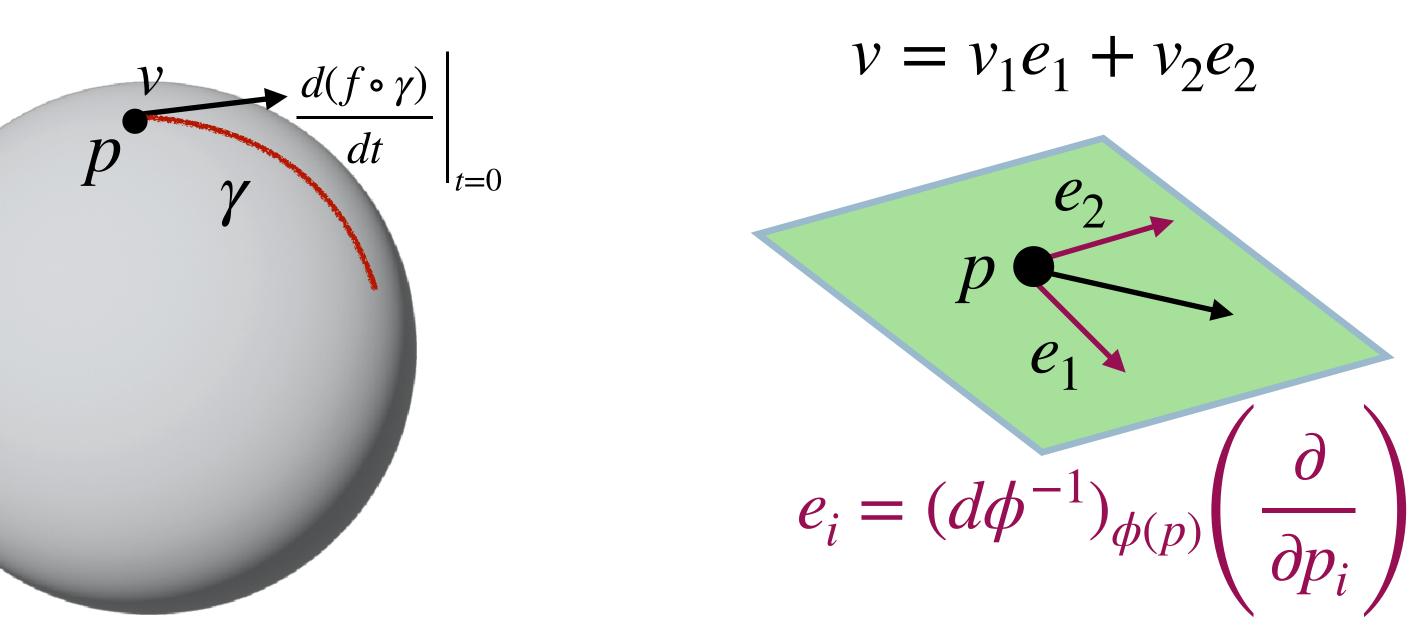
- A curve: A smooth map  $\gamma : [0,1] \rightarrow \mathcal{M}, \gamma(0) = p$ .



# A bit more on Tangent Spaces

• Tangent Basis: Any  $v \in T_p \mathscr{M}$  can be expressed as a linear combination of basis vectors which are taken from the chart  $(U_i, \phi_i)$  (by pulling them back via  $\phi_1^{-1}$ ).

• Let  $p = (p_1, \dots, p_d) = \phi(p)$  be local coordinates and  $d\phi_p : T_p \mathscr{M} \to T_{\phi(p)} \mathbb{R}^d$ 



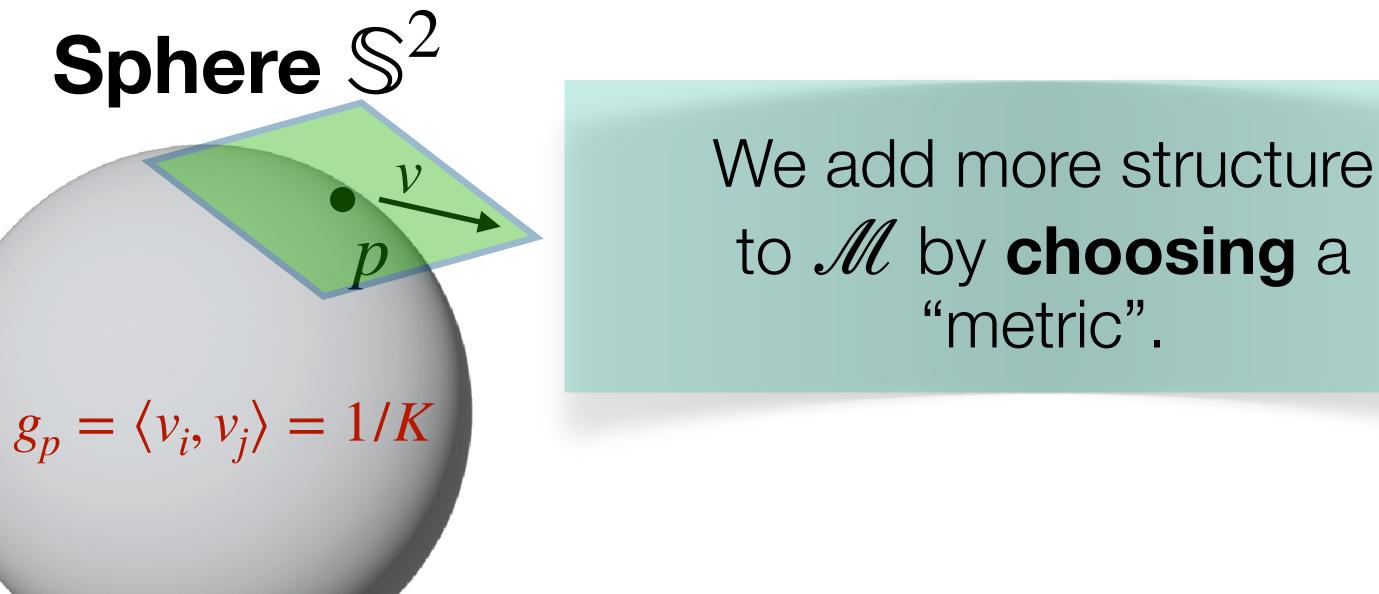
# Riemannian Manifolds

- smoothly.

 $\|\boldsymbol{u}_t^{\theta}(\boldsymbol{x}) - \boldsymbol{u}_t(\boldsymbol{x} \,|\, \boldsymbol{z})\|^2$ Q1. How do we compute norms? Q1. How do we get  $x_t = \alpha_t x_1 + \sigma x_0?$ 

• Tangent space: For each  $p \in \mathcal{M}$ , a tangent vector is a smooth map  $v : \mathcal{F} \to \mathbb{R}^n$ .

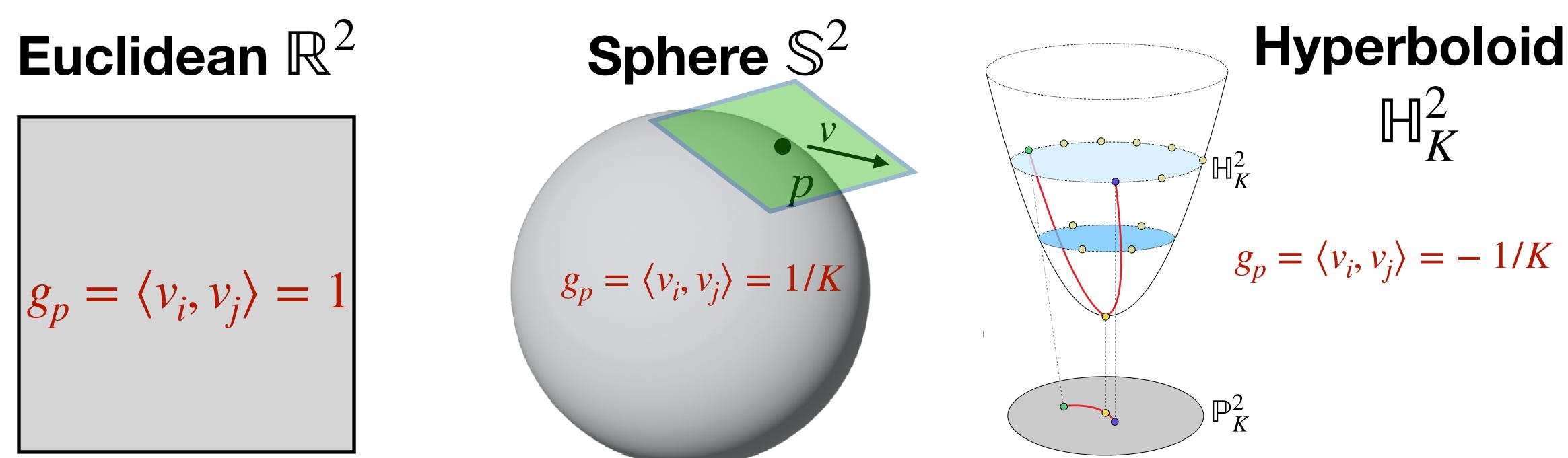
• Riemannian metric: Inner product  $g_p = \langle \cdot, \cdot \rangle_p$  on each tangent space that varies





# Riemannian Manifolds

- Riemannian metric: Inner product  $g_p = \langle \cdot, \cdot \rangle_p$  on each tangent space that varies smoothly.
- Riemannian manifold: A smooth manifold equipped with an inner product  $(\mathcal{M}, g)$



• Tangent space: For each  $p \in \mathcal{M}$ , a tangent vector is a smooth map  $v : \mathcal{F} \to \mathbb{R}^n$ .





# Why are metrics important?

- Riemannian metric is not the same as saying "metric space"
- $g_p := \langle, \rangle_g$  can be used to
  - Lengths of vectors
  - Distances
  - Angles.



# $\langle u, v \rangle_g = u^T G v$ Tangent vector

(Positive definite) matrix representation of the metric

# Why are metrics important?

- Riemannian metric is not the same as saying "metric space".
- angles. It is the main gadget that allows actual computation.

Norm of a vector 
$$u \in T_p \mathscr{M}$$

$$\|u\|_g = \sqrt{\langle u, u \rangle_g} = \sqrt{u^T G u}$$

Angle between  $u, v \in T_p \mathcal{M}$ 

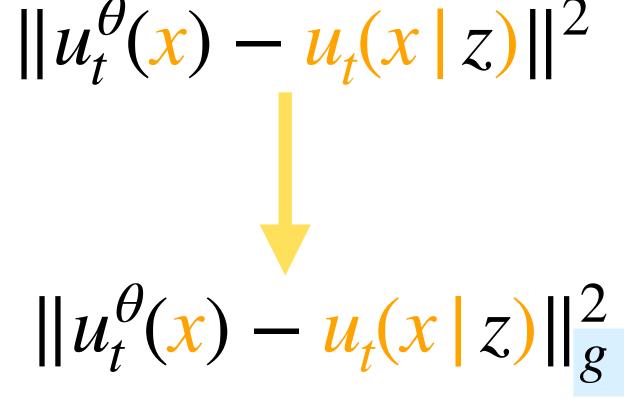
$$\cos \theta = \frac{\langle u, v \rangle_g}{\|u\|_g \|v\|_g}$$

• A Riemannian metric allows us to measure many things: distances, lengths of vectors,

 $\theta$ 

 $T_p \mathcal{M}$ 





Norm changes!

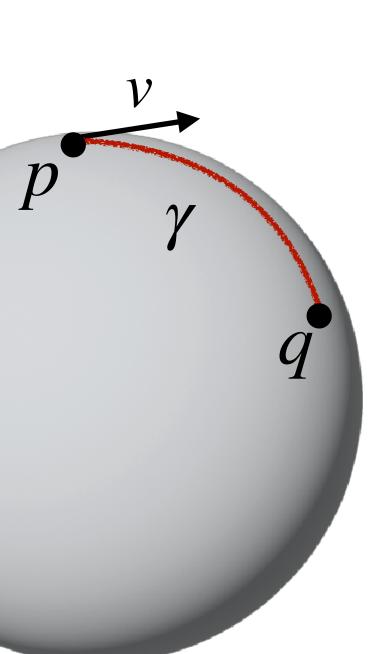




# Measuring distances and geodesics

# • A curve: A smooth map $\gamma : [0,1] \to \mathcal{M}, \gamma(-1) = p, \gamma(1) = q$ .

How do we measure the distance between two points on  $p, q \in \mathcal{M}$  linked by  $\gamma$ ?



# Measuring distances and geodesics

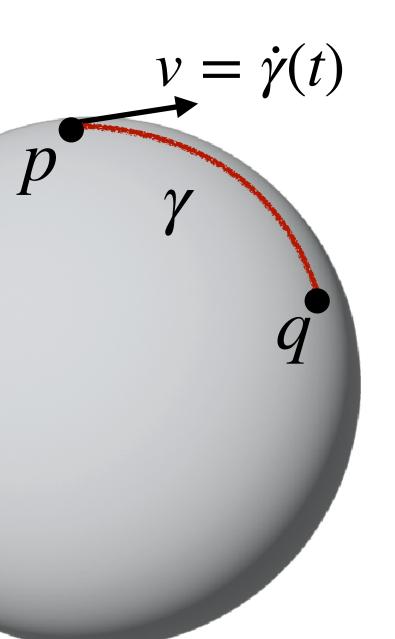
• Main idea: Measure the norm of the tangent vector  $\dot{\gamma}(t)$  along the curve

$$\operatorname{length}(\gamma) = \int_0^1 \|\dot{\gamma}(t)\|_{g(\gamma(t))}^2 \mathrm{d}t = \int_0^1 \sqrt{\dot{\gamma}(t)^T}$$

Distance is the shortest curve  $\gamma$ 

$$d_g(p,q) = \inf_{\gamma} \int_0^1 \|\dot{\gamma}(t)\| dt$$

## $G\dot{\gamma}(t)dt \longrightarrow G$ measures length of $\dot{\gamma}(t)$



## Facts:

- Shortest path is a geodesic
- It is also the "straightest"
- Geodesics minimize Kinetic Energy.

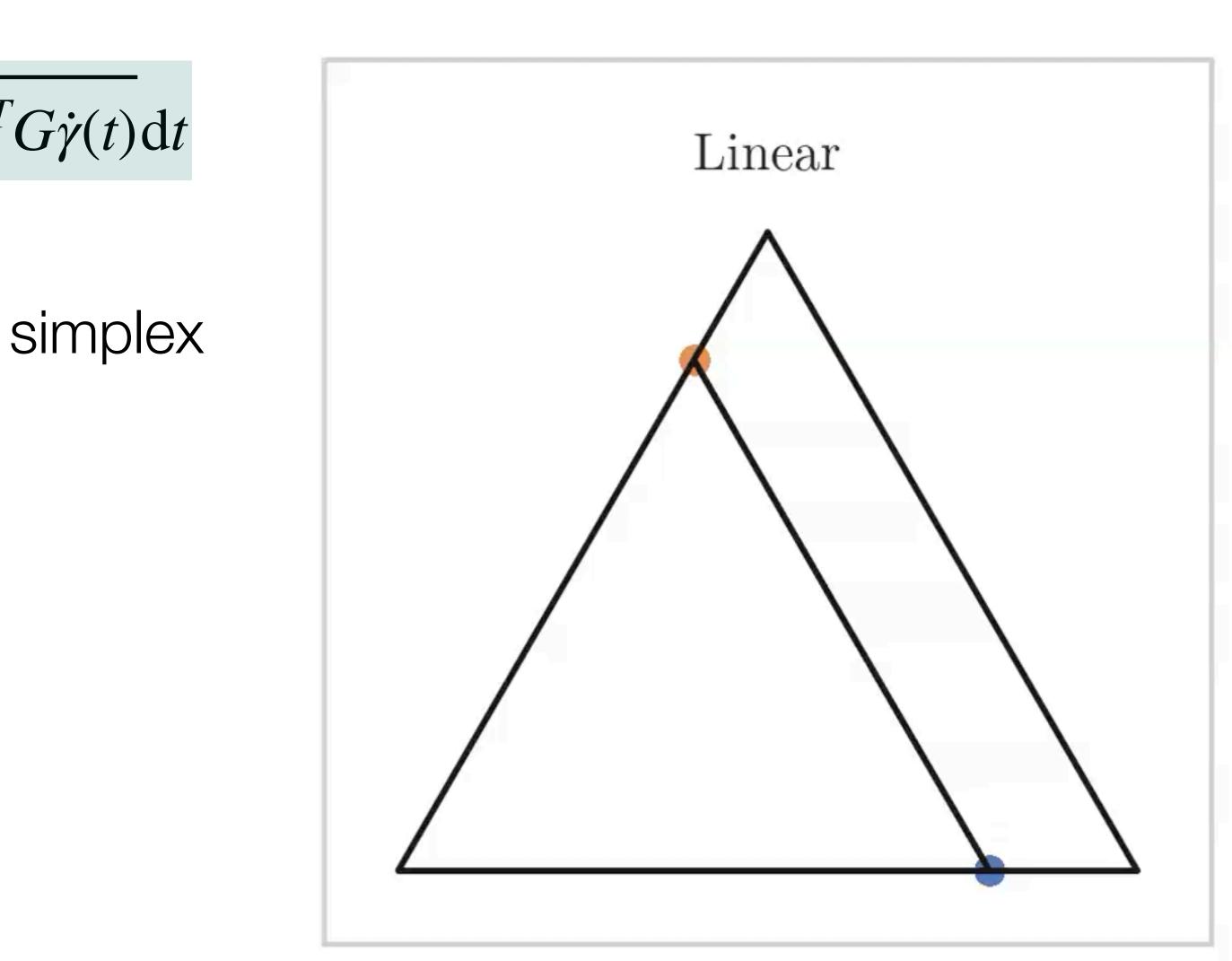


• Different Metrics Induce different Geodesics on the same space

$$\operatorname{length}(\gamma) = \int_0^1 \|\dot{\gamma}(t)\|_{g(\gamma(t))}^2 \mathrm{d}t = \int_0^1 \sqrt{\dot{\gamma}(t)^T}$$

Example: Geodesics on the probability simplex

- Euclidean metric "Linear"
- Fisher-Rao metric



# Flows $L_{\text{CFM}}(\theta) = \min \mathbb{E}_{t, q(z), p_t(x|z)} \| d(\hat{x}_1^{\theta}(x), x_1)_{\varrho} \|_{\varrho}^2$

ODE

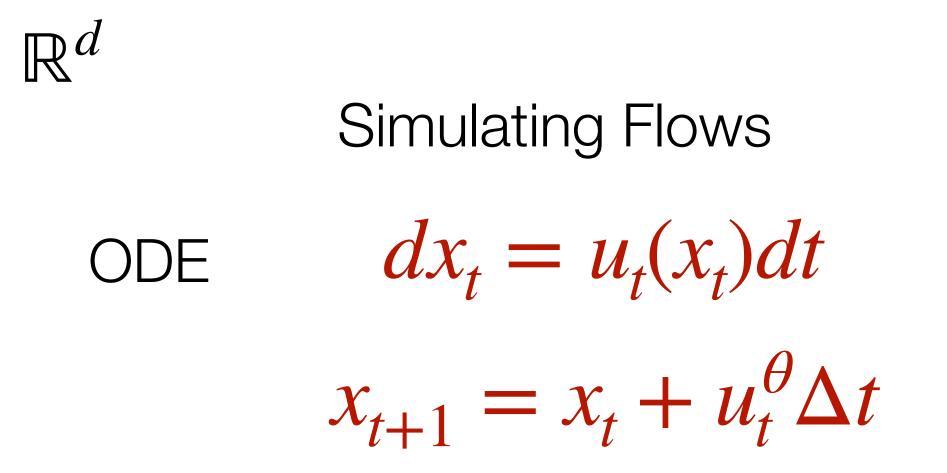
 $dx_t = u_t(x_t)dt$ 

Velocity field

Distances allow us to ... Diffusion  $L_{\text{CFM}}(\theta) = \min \mathbb{E}_{t, q(z), p_t(x|z)} \|u_t^{\theta}(x) - u_t(x|z)\|_g^2 \|L_{\text{Diff}}(\theta) = \min \mathbb{E}_{t, q(z), p_t(x|z)} \|s_t^{\theta}(x) - \nabla_x p_t(x|x_{data})\|_g^2$  $L_{\text{Diff}}(\theta) = \min \mathbb{E}_{t, q(z), p_t(x|z)} \| d(\epsilon_t^{\theta}(x), \epsilon_t)_g \|_g^2$ SDE  $dx_t = f_t(x_t)dt + g_t dw_t$ Brownian Drift Diffusion Motion Coefficient But How do we integrate on M?









## Can not do +

Need  $x_{t+1} \in \mathcal{M}$ 

Inference on Manifolds  $\mathbb{R}^{d}$ Simulating Diffusion SDE  $dx_t = f_t(x_t)dt + g_t dw_t$  $x_{t+1} = x_t + [f(x_t) - g_t^2 s_t^{\theta}(x_t)] \Delta t + g_t \sqrt{|\Delta t| z_t}$  $z_{t} \sim N(0,1)$ M Can not do + Need  $x_{t+1} \in \mathcal{M}$ Need  $z_t$  to be Brownian motion on  $\mathcal{M}$ 



How do we move from a the tangent space back to the manifold?

How do we move from the manifold to a tangent space?

How do we move vectors between tangent spaces?

# Manifold Operations

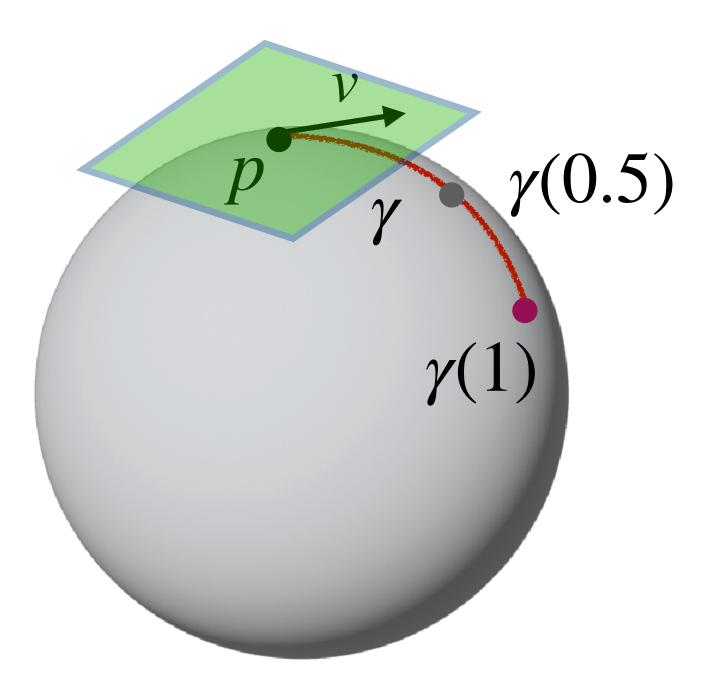
## **Exponential Map**

## Logarithmic Map

## Parallel Transport

# Exponential Map

- Exponential map: Takes a tangent vector  $v \in T_p \mathscr{M}$  and transports it along the unique geodesic which satisfies  $\gamma(0) = p$  and  $\dot{\gamma}(0) = v$  to the point  $\exp_p(v) = \gamma(1)$ .
- Output of the exponential map is a point on  $\mathcal{M}$ .
- Effectively we travel a unit of time along  $\gamma$ .
- Conceptually like "addition" in Euclidean space, case in point  $\exp_p(v) = p + v, \forall p \in \mathbb{R}^n$



 $\exp_{p}(v) = \cos\left(||v||_{2}\right)p + \sin\left(||v||_{2}\right)\frac{v}{||v||_{2}}$ 

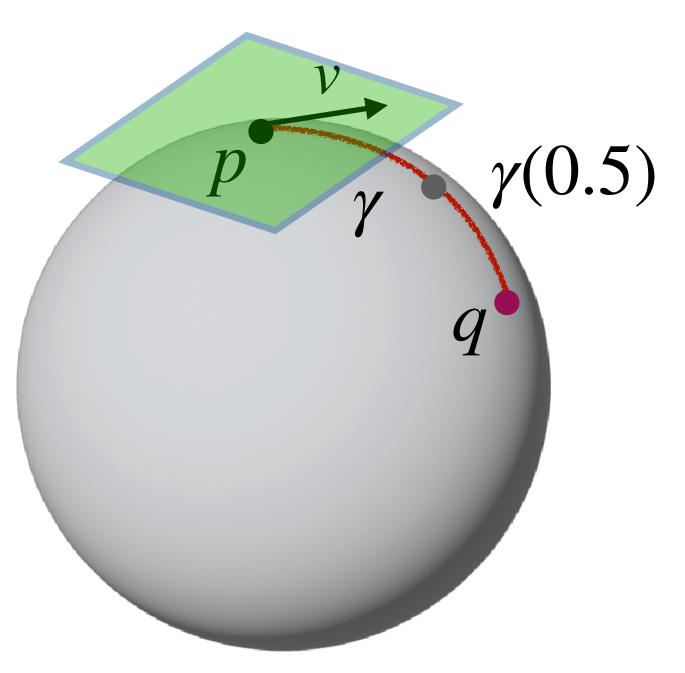






# Logarithmic Map

- Logarithmic map:  $\log_p: \mathcal{M} \to T_p\mathcal{M}$ . Takes a point on  $\mathcal{M}$  back to the tangent space of a base point by following  $\gamma$ .
- Output of the logarithmic map is  $v \in T_p \mathcal{M}$ .
- (usually) inverse of the exponential map.
- The log map is well-defined only in a neighbourhood of p where  $\exp_p$  is a diffeomorphism



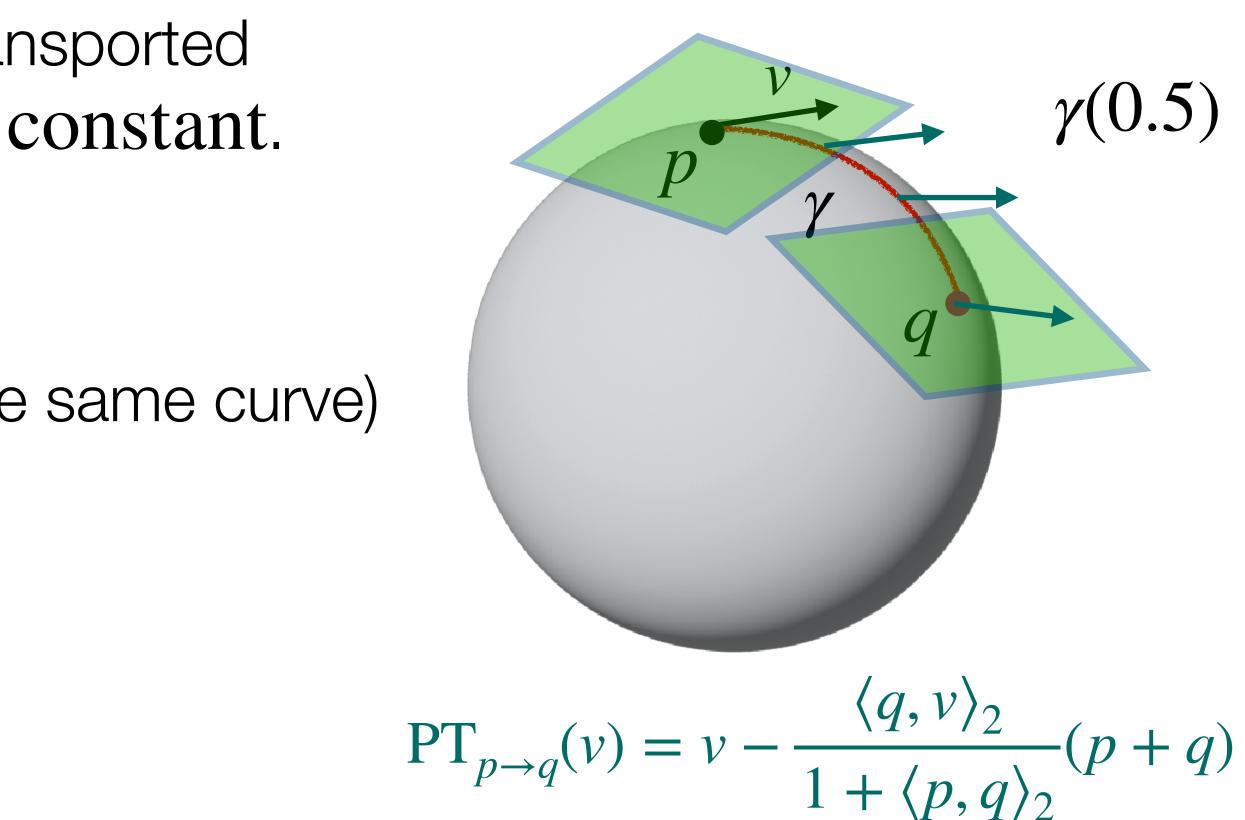
 $\log_p(q) = d(p,q) \frac{q - \langle p,q \rangle_2 p}{\|q - \langle p,q \rangle_2 \|_2}$ 



- Length and angles between parallel transported vectors are preserved  $\langle v(t), w(t) \rangle_g = \text{constant}$ .
- Parallel transport is unique.
- Parallel transport is reversible (along the same curve)

# Parallel Transport

• Parallel Transport:  $\log_p : \mathcal{M} \to T_p \mathcal{M}$ . Moves a tangent vector v along a curve  $\gamma(t)$ such that the vector remains "parallel" to it and lands at another tangent space.

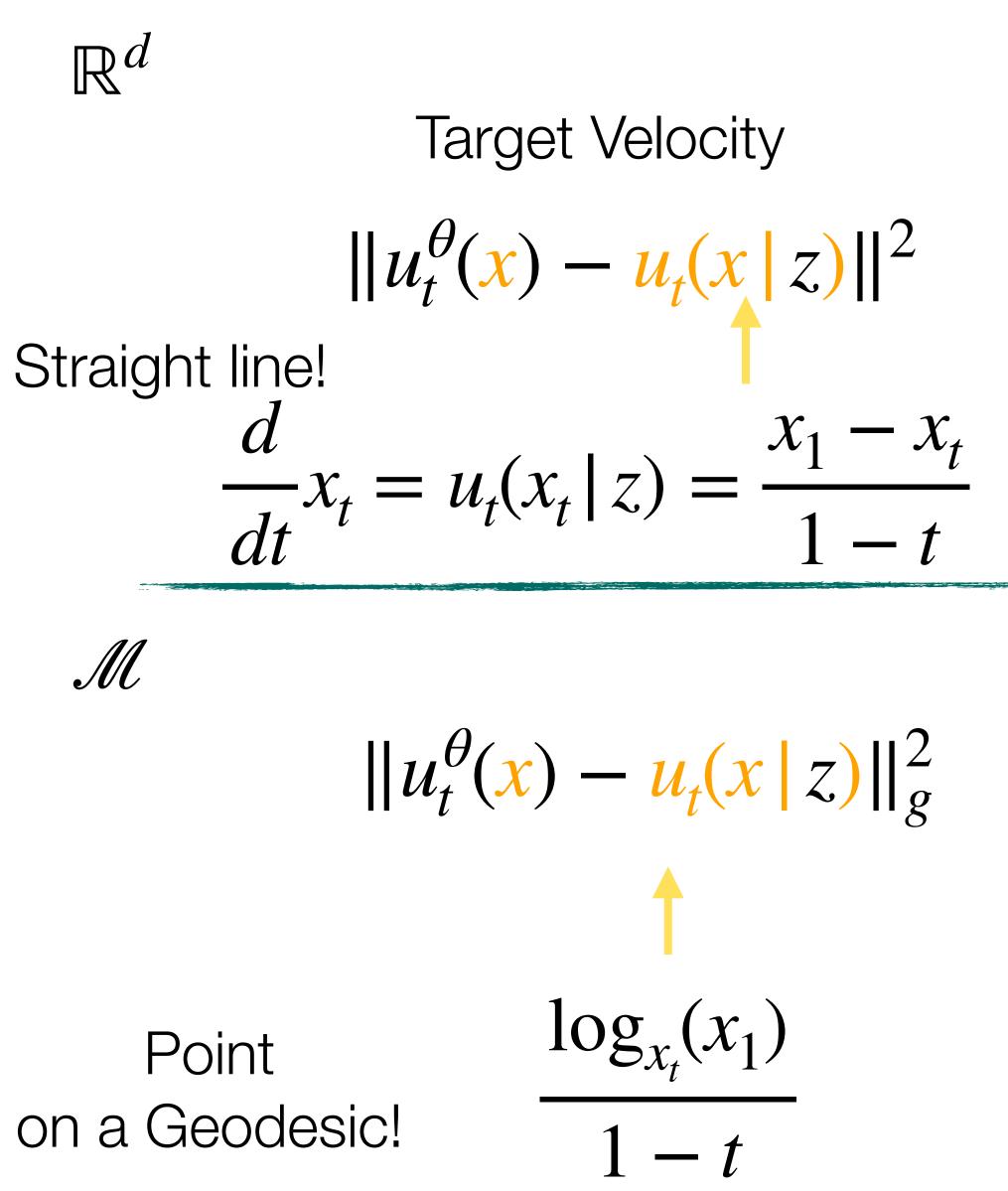








# Manifold Oper



rations in Action  
SO(3)  

$$\log(X) \approx \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n} (g-I)^n$$
  
A rotation matrix  
Very expensive to approximate!  
 $r = \exp \hat{\omega} = \cos(\omega)I + \sin(\omega)e_{\omega} + (1 - \cos(\omega)A)$   
 $\log(r) = \begin{cases} \frac{\omega}{2\sin(\omega)}(r - r^{\top}) & \text{if } r \neq 0 \\ 0 & \text{if } r = 0 \end{cases}$ 

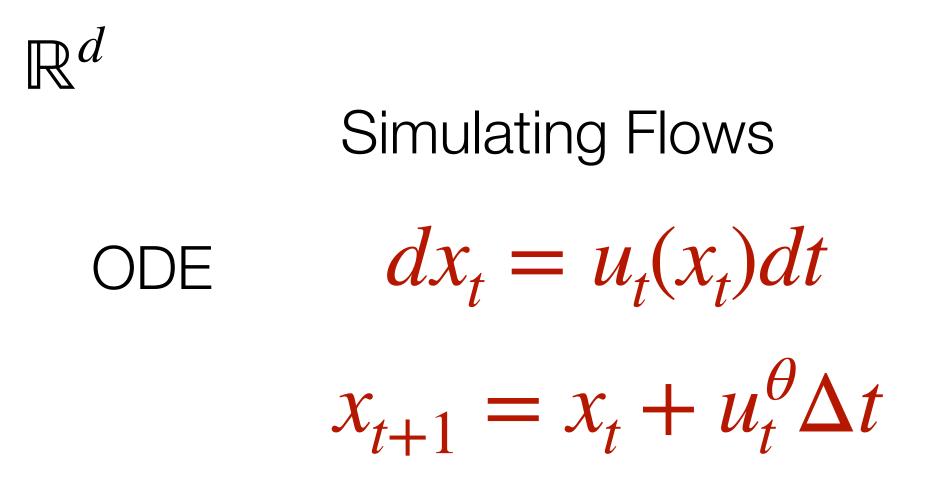








# Inference (





 $dx_t = u_t(x_t)dt$  $x_{t+1} = \exp_{x_t} \left( u_t^{\theta} \Delta t \right)$ 

Use tangent space and exp map

on Manifolds  

$$\mathbb{R}^{d}$$
Simulating Diffusion  
SDE  $dx_{t} = f_{t}(x_{t})dt + g_{t}dw_{t}$   
 $x_{t+1} = x_{t} + [f(x_{t}) - g_{t}^{2}s_{t}^{\theta}(x_{t})]\Delta t + g_{t}\sqrt{|\Delta|}$   
 $z_{t} \sim N(0,1)$   
 $\mathcal{M}$   
 $x_{t+1} = \exp_{x_{t}} \left( [f(x_{t}) - g_{t}^{2}s_{t}^{\theta}(x_{t})]\Delta t + g_{t}\sqrt{|\Delta|} + g_{t}\sqrt{|\Delta|} \right)$   
we tangent



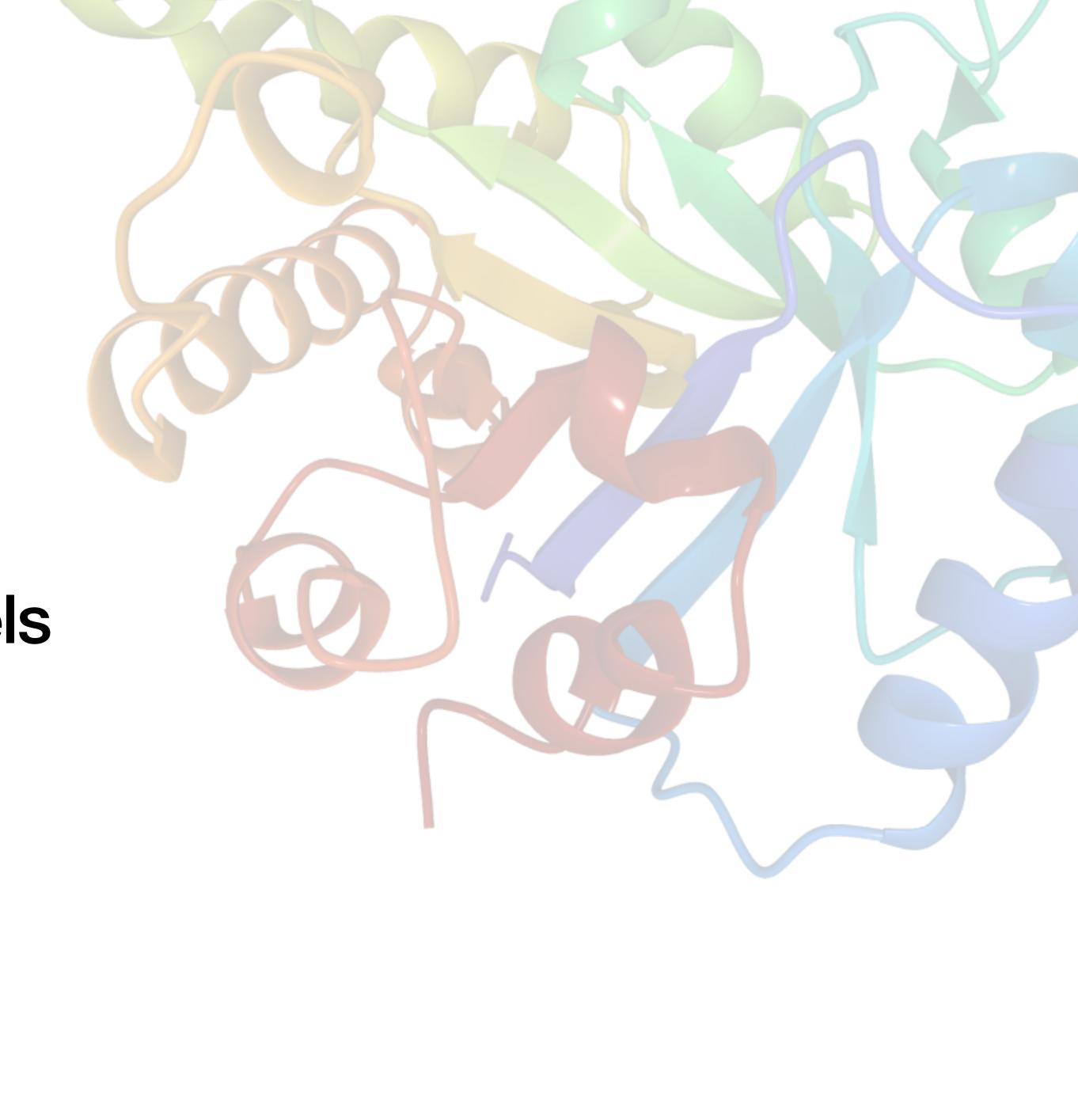
- Each Manifold requires different design considerations for Generative Modeling
  - Tip: Pick a parametrization that makes it "as close" as possible to  $\mathbb{R}^d$
  - Tip: Take into account that certain manifold operations might be numerically unstable, e.g. close to the boundary.
  - Tip: Diffusion seems harder to do on Manifolds than Flow Matching. Ask yourself, do you really need an SDE on a manifold?
- There is no Canonical Gaussian distribution, choice of prior is a design decision.







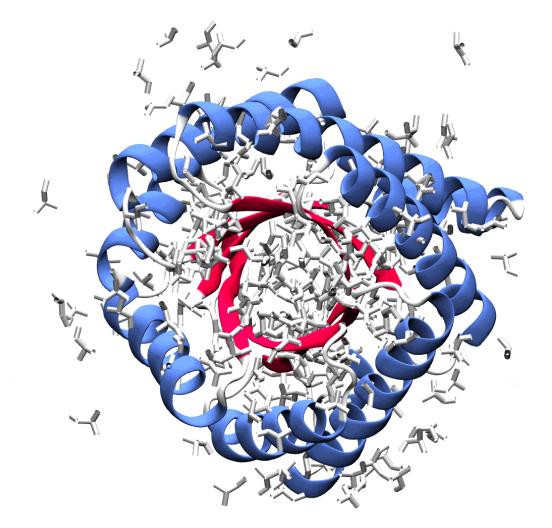
# Part III: Geometric Generative Models



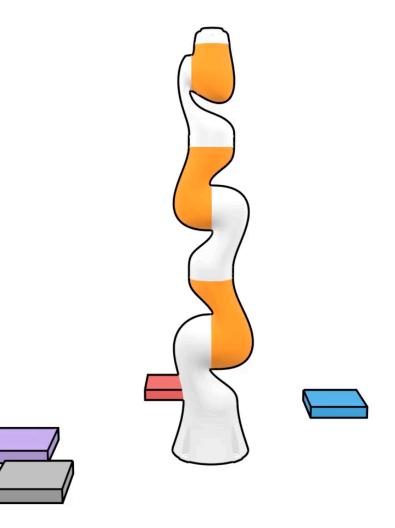
# Modern Applications of Geometric Generative Models Parametrizable manifolds

## Scientific Data

## Robotics

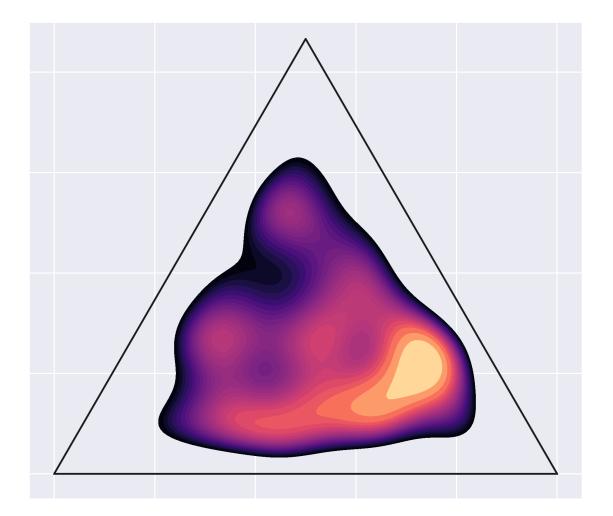


SE(3) equivariant protein + molecule representations



SO(2) invariant Block stacking Information Geometry

Climate Modeling





## Fisher-Rao geometry On the probability Simplex

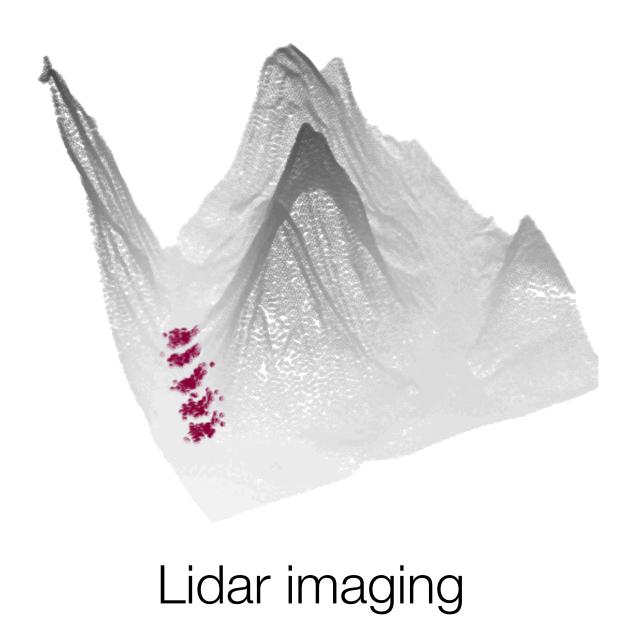
Spherical Geometry  $\mathbb{S}^2$ 

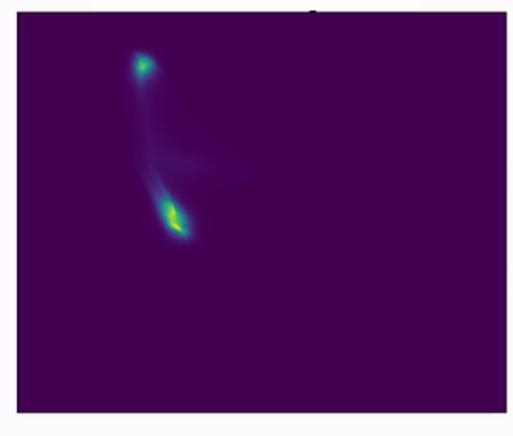


# Modern Applications of Geometric Generative Models non-parametrizable manifolds



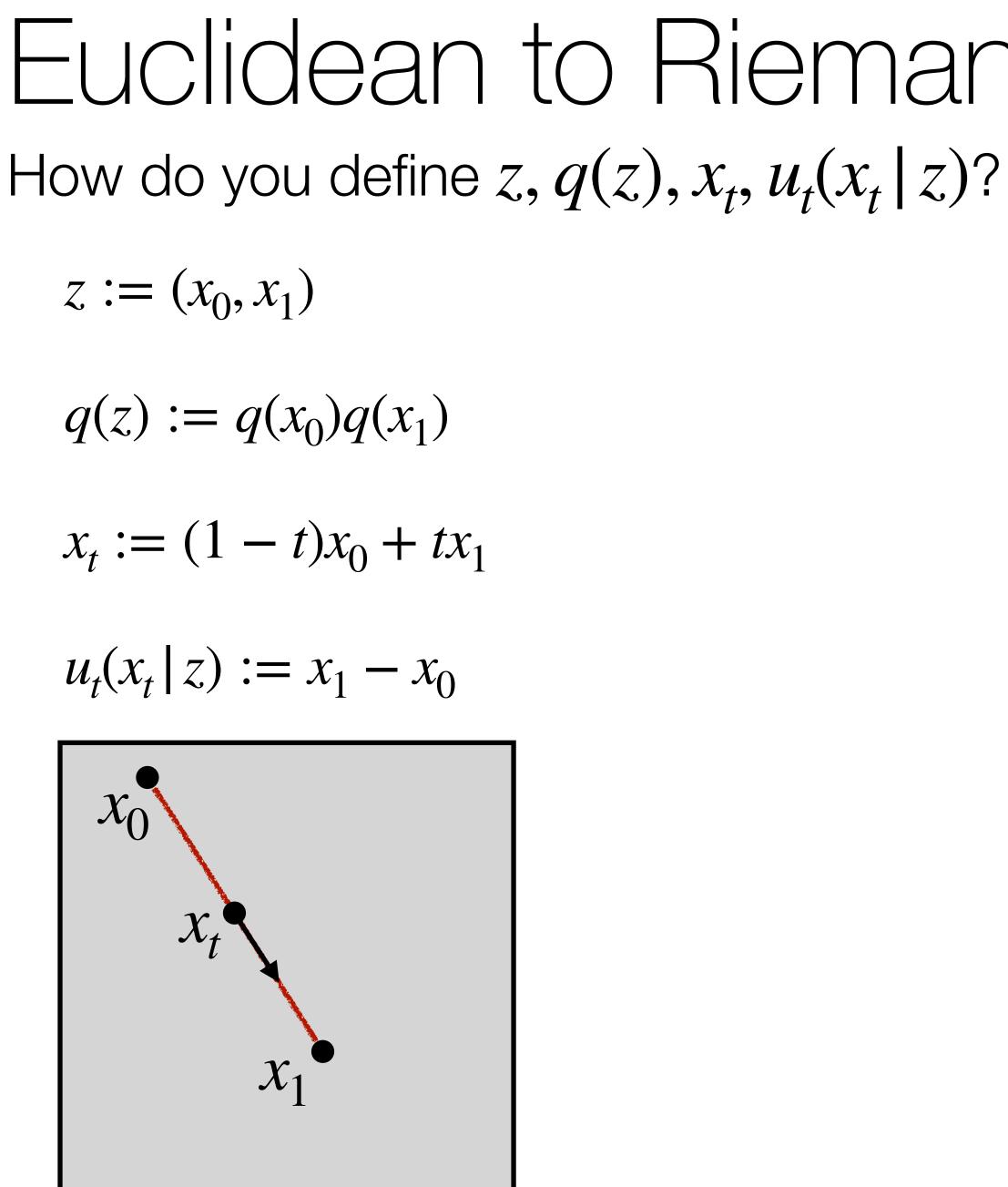


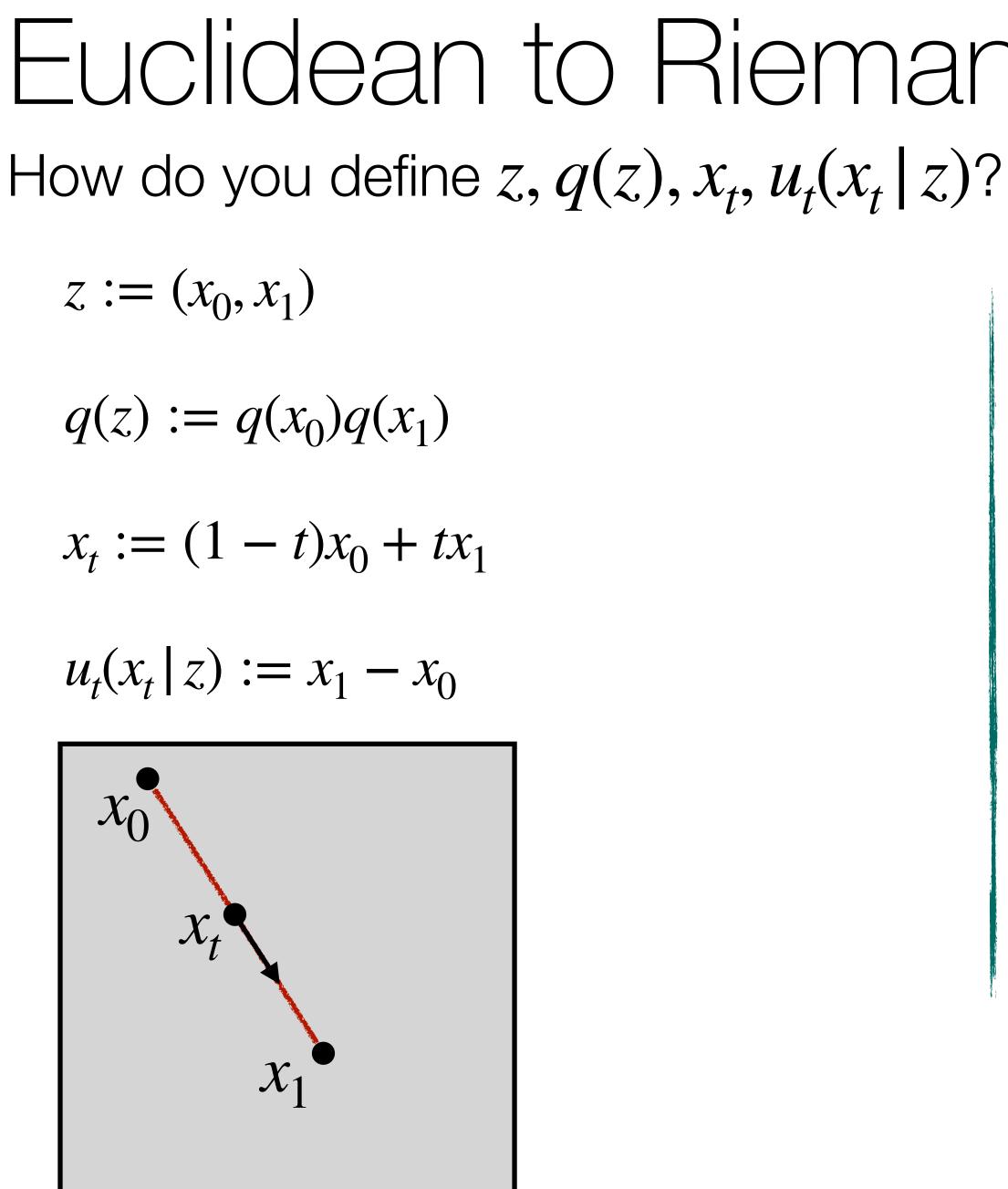






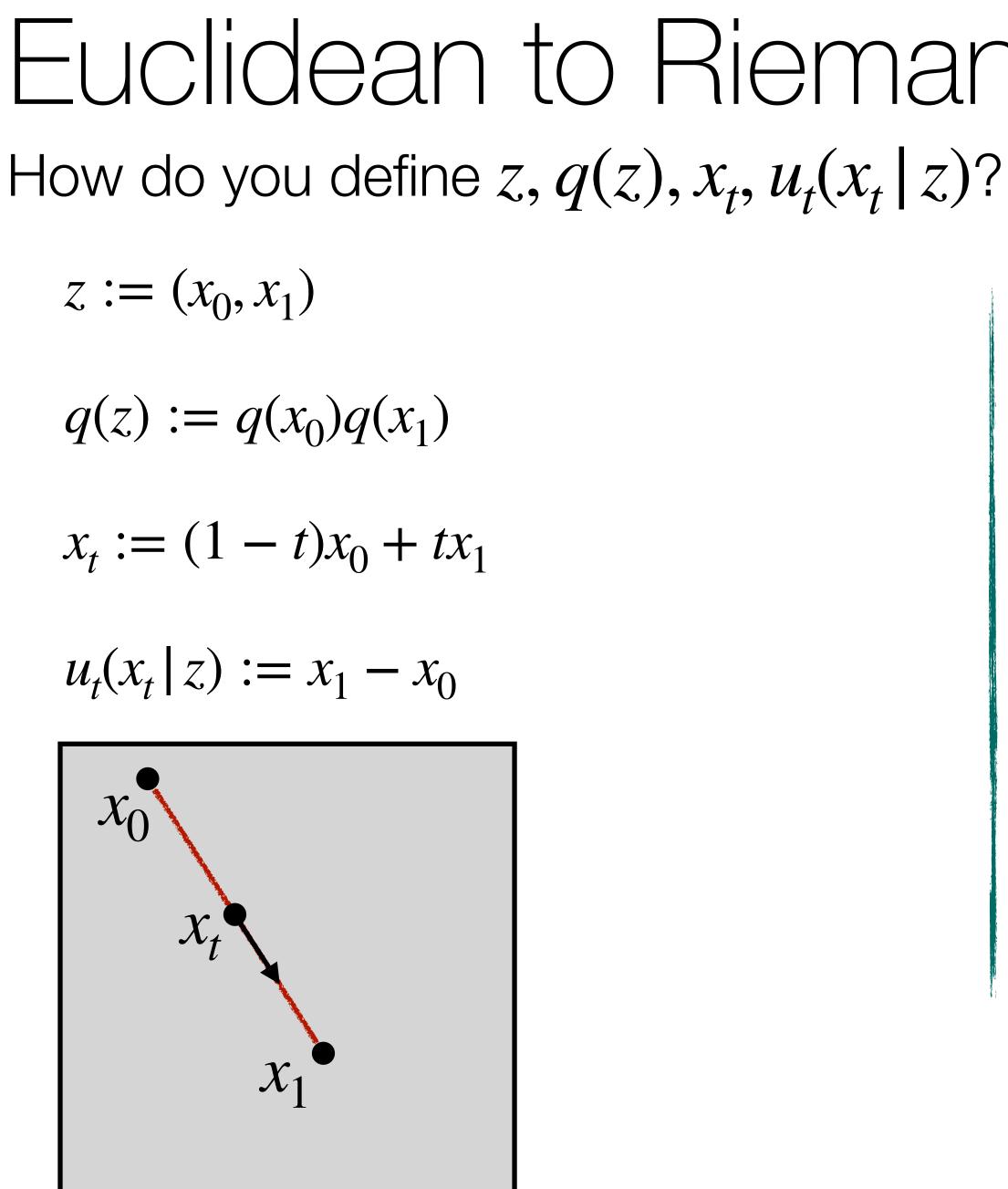
Data-driven manifolds





 $z := (x_0, x_1)$ 

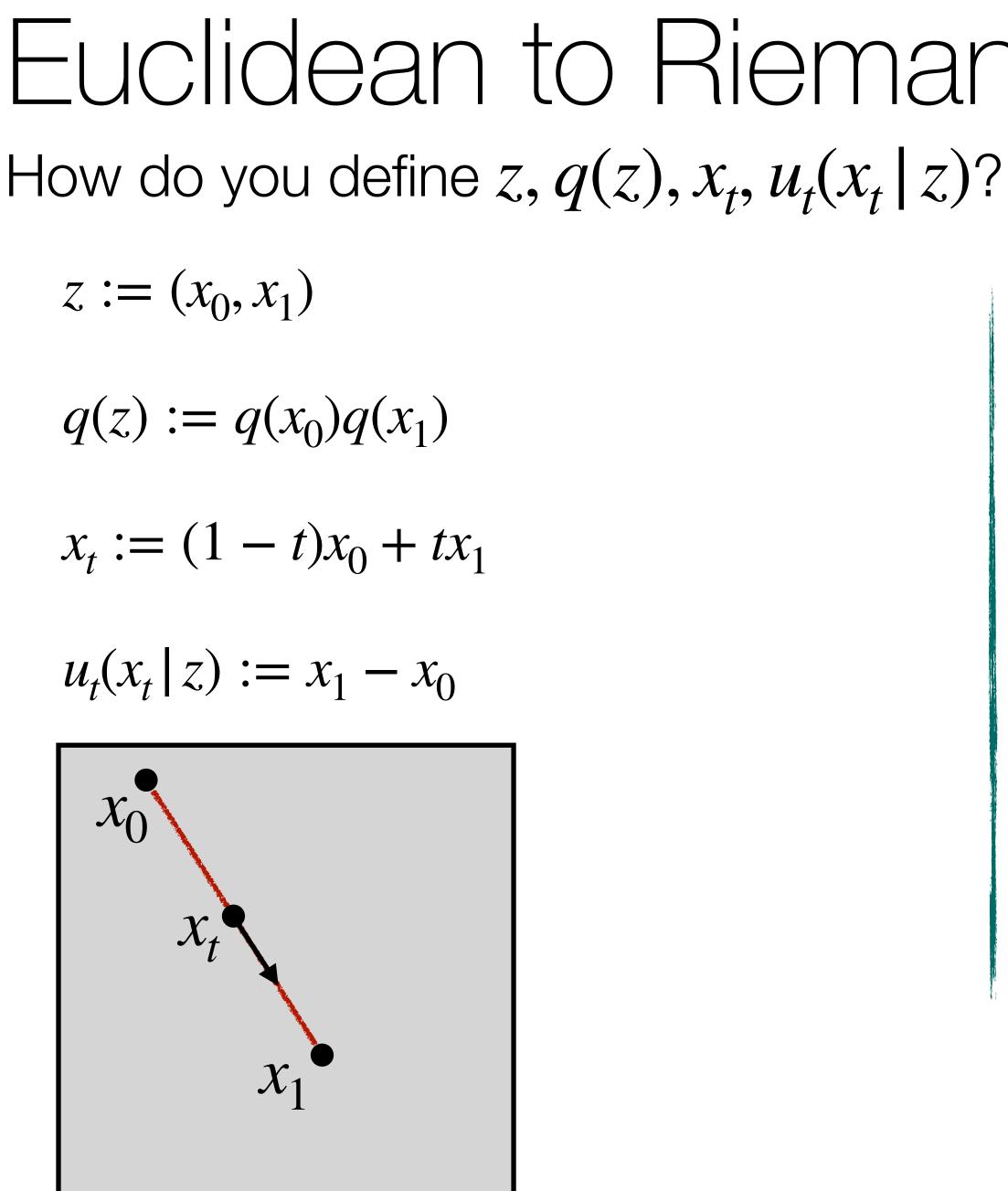
 $q(z) := q(x_0)q(x_1)$ 



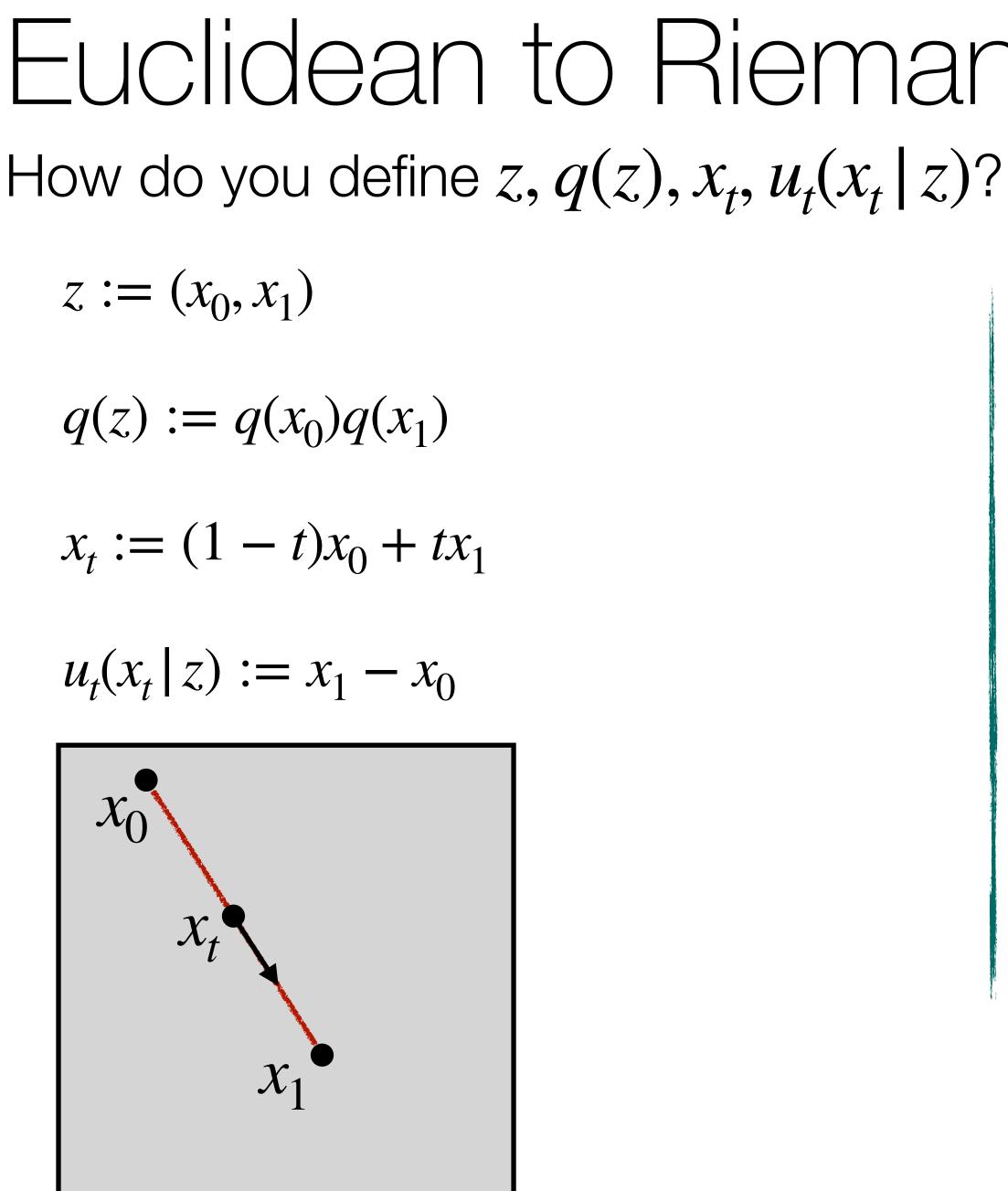
 $z := (x_0, x_1)$ 

 $q(z) := q(x_0)q(x_1)$ 

 $x_t := \exp_{x_0}(t \log_{x_0} x_1)$ 



- $z := (x_0, x_1)$
- $q(z) := q(x_0)q(x_1)$
- $x_t := \exp_{x_0}(t \log_{x_0} x_1)$
- $u_t(x_t | z) := (\log_{x_t} x_1) / (1 t)$

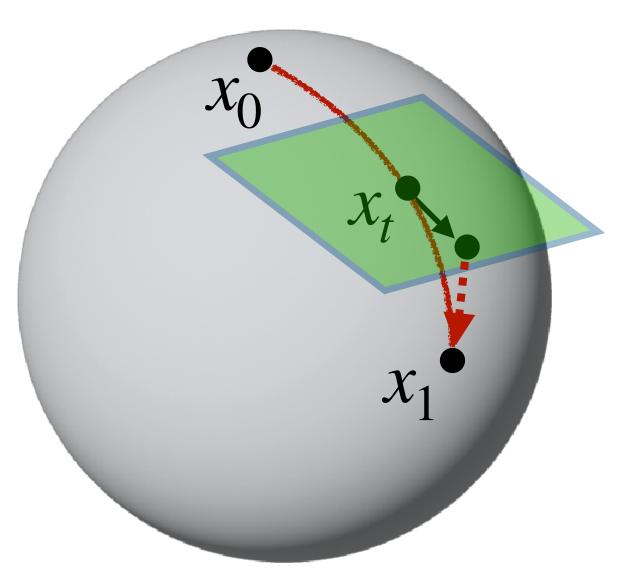


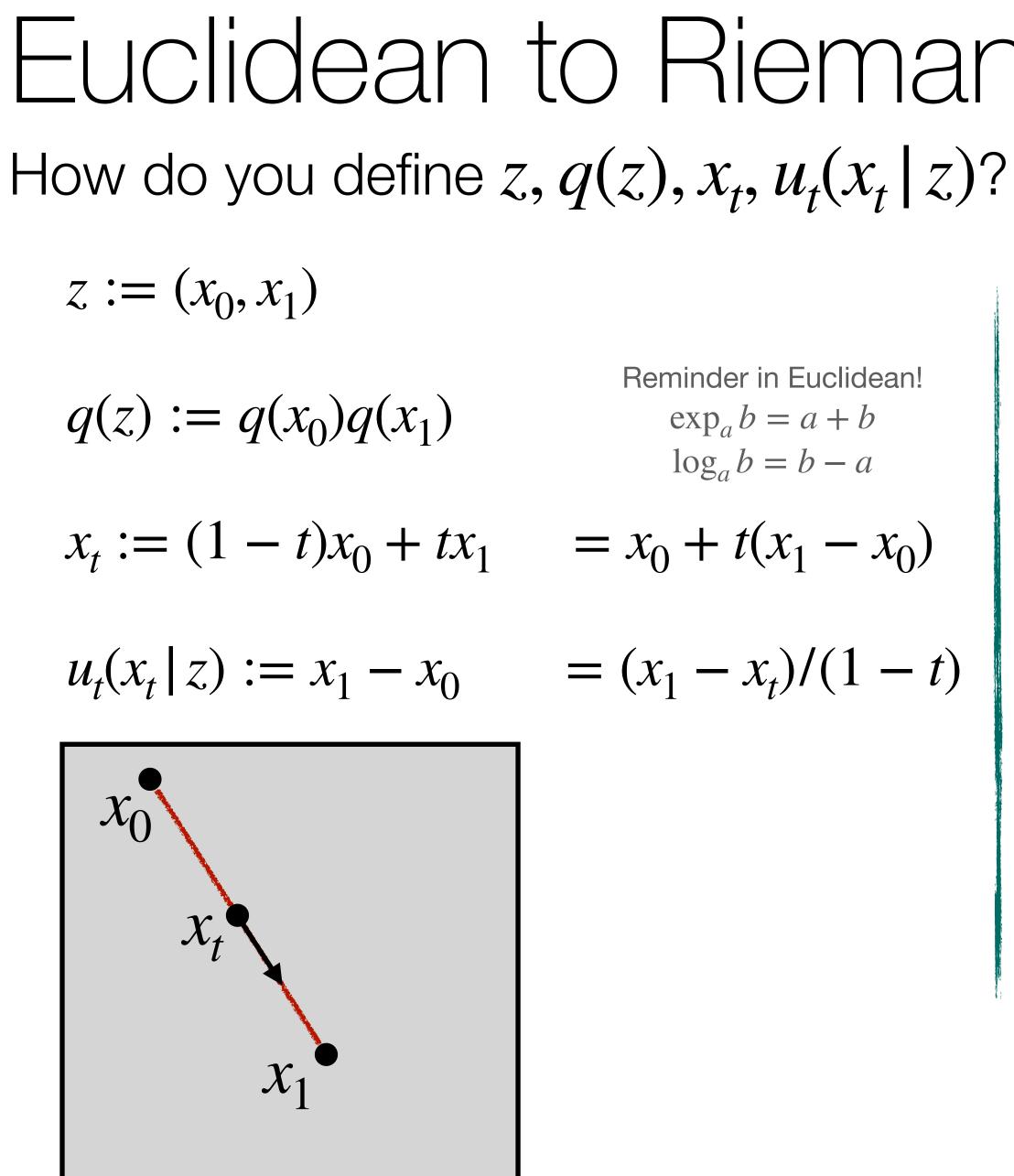
 $z := (x_0, x_1)$ 

 $q(z) := q(x_0)q(x_1)$ 

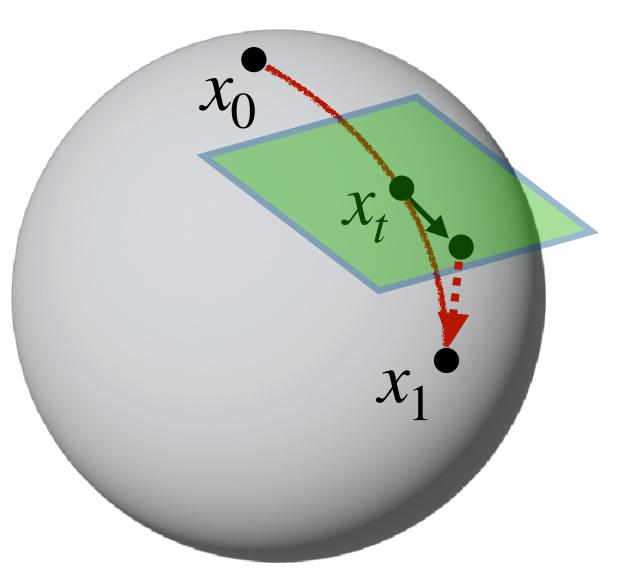
 $x_t := \exp_{x_0}(t \log_{x_0} x_1)$ 

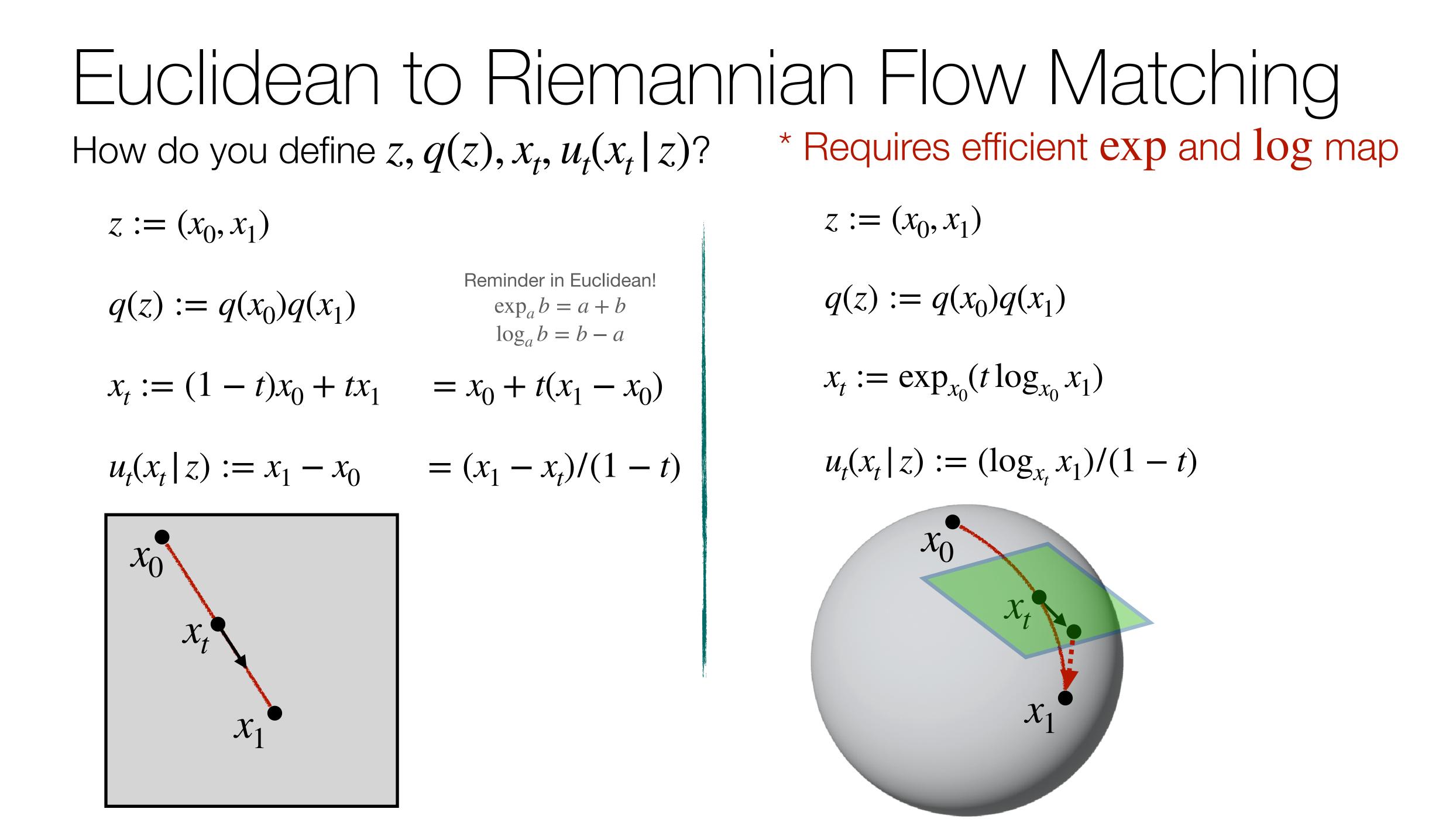
 $u_t(x_t | z) := (\log_{x_t} x_1) / (1 - t)$ 





- $z := (x_0, x_1)$
- $q(z) := q(x_0)q(x_1)$
- $x_t := \exp_{x_0}(t \log_{x_0} x_1)$
- $u_t(x_t | z) := (\log_{x_t} x_1) / (1 t)$





Log-likelihood computation

$$\log p_1(x_1) = \log p(x_0) + \int_1^0 \operatorname{div}_g(u_t(x_t)) dt$$
$$x_t = x_1 + \int_1^t u_s(x_s) ds$$

## Likelihood computation

**Riemannian Divergence** 

$$\operatorname{div}_{g}(X) = \nabla \circ X = \frac{1}{\sqrt{\det g}} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (\sqrt{\det g} X^{i})$$

### Allows calculation of the log likelihood by integrating divergence over time!

## A Case Study: The protein design problem

Given a set of desired properties, create a protein sequence that satisfies those properties.

## Why Design Proteins?

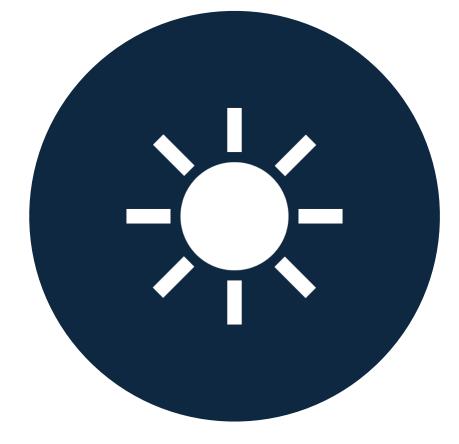


## MEDICINE









## VACCINES

## CLIMATE

## What might you want to design for?

- Structure
- Binding / Interaction affinity
  - Strength
  - Specificity
- Stability
- Flexibility
- Evading the immune system
- Activating the immune system

Property —> Structure + Sequence

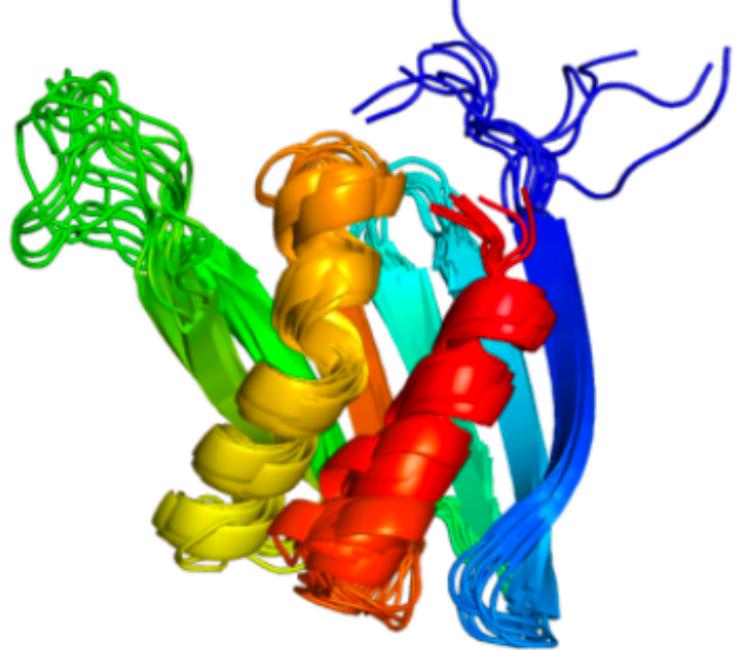


## What are proteins and why do we care?

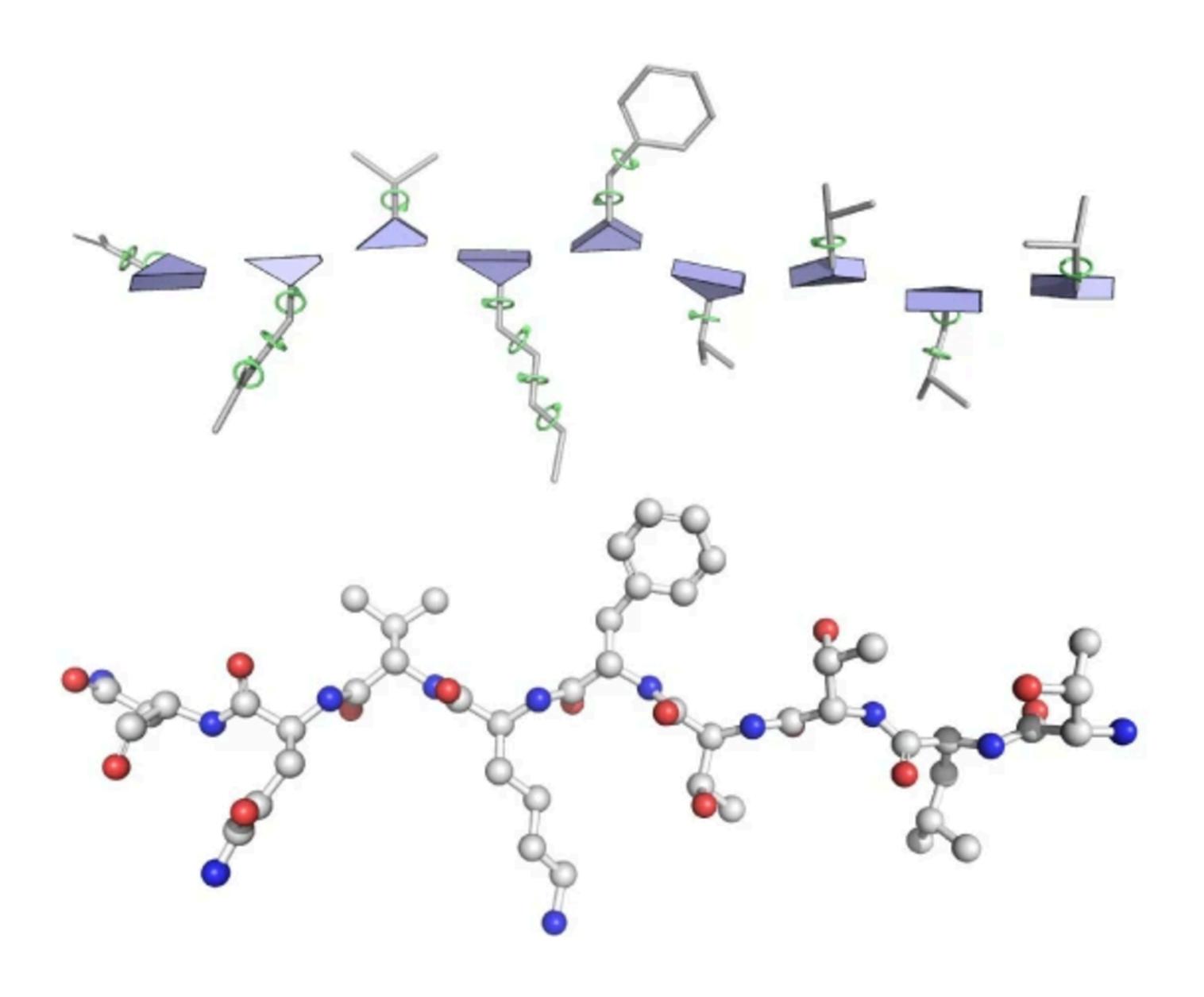
- Molecules found in all life
- Human DNA contains code for ~20k unique types of proteins
- All stem from the same 20 "amino acid" building blocks
- Sequence of amino acids determine the 3D structure and therefore function of the protein

#### Sequence: MVKSYELIAGWFTPHQMVKS

Structure:

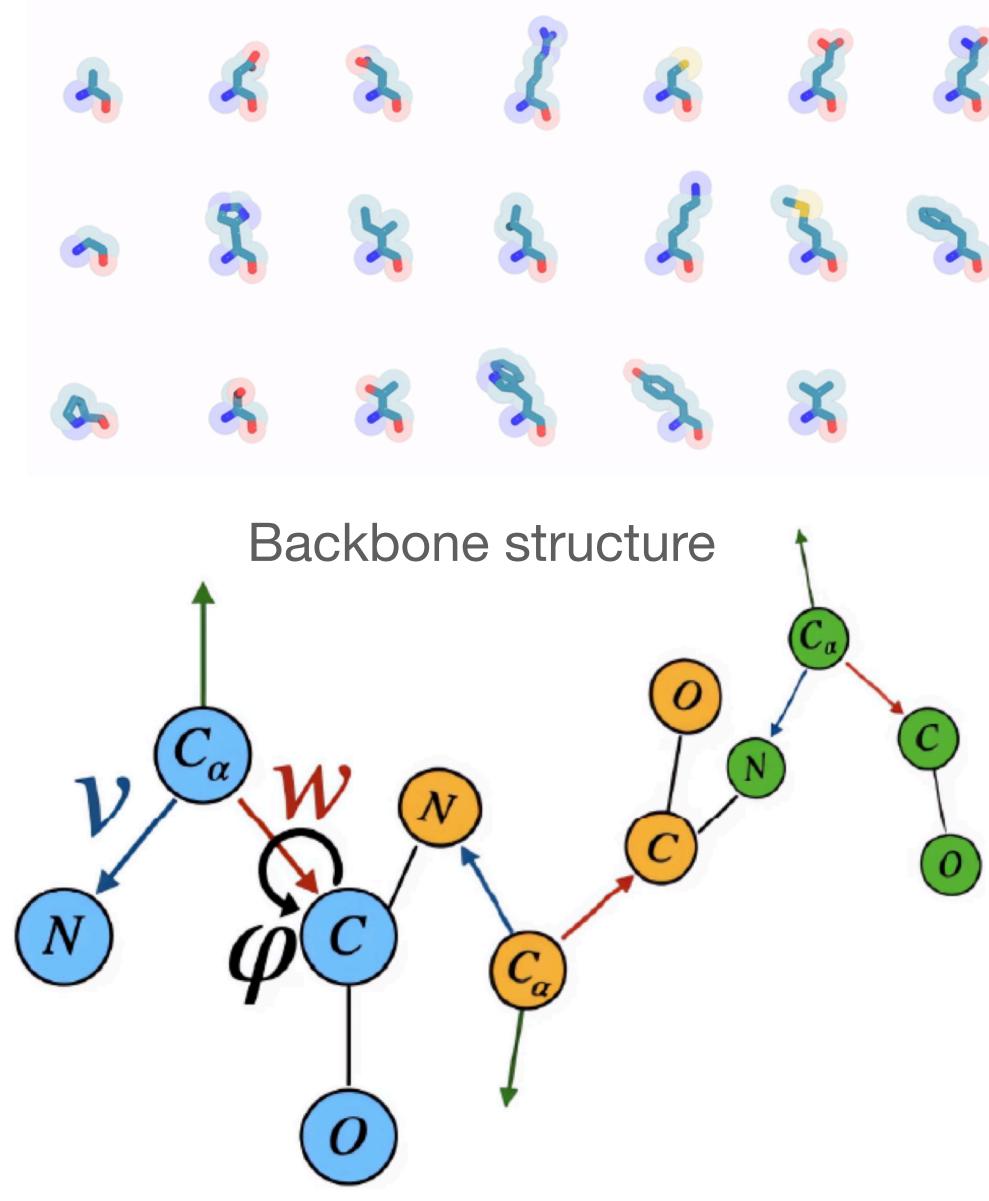


- Can be represented as a cloud of atoms in  $\mathbb{R}^{(N\times\sim19.2)\times3}$
- Backbone is represented as elements of  $SE(3)^N$  (local orientations around  $C_{\alpha}$  atoms)
- Sidechains are represented as elements of  $SO(2)^{N \times 7}$  (torsion angles)



- Can be represented as a cloud of atoms in  $\mathbb{R}^{(N\times\sim19.2)\times3}$
- Backbone is represented as elements of  ${\rm SE}(3)^N$  (local orientations around  $C_{\alpha}$  atoms)
- Sidechains are represented as elements of  $SO(2)^{N \times 7}$  (torsion angles)

#### 20 amino acids

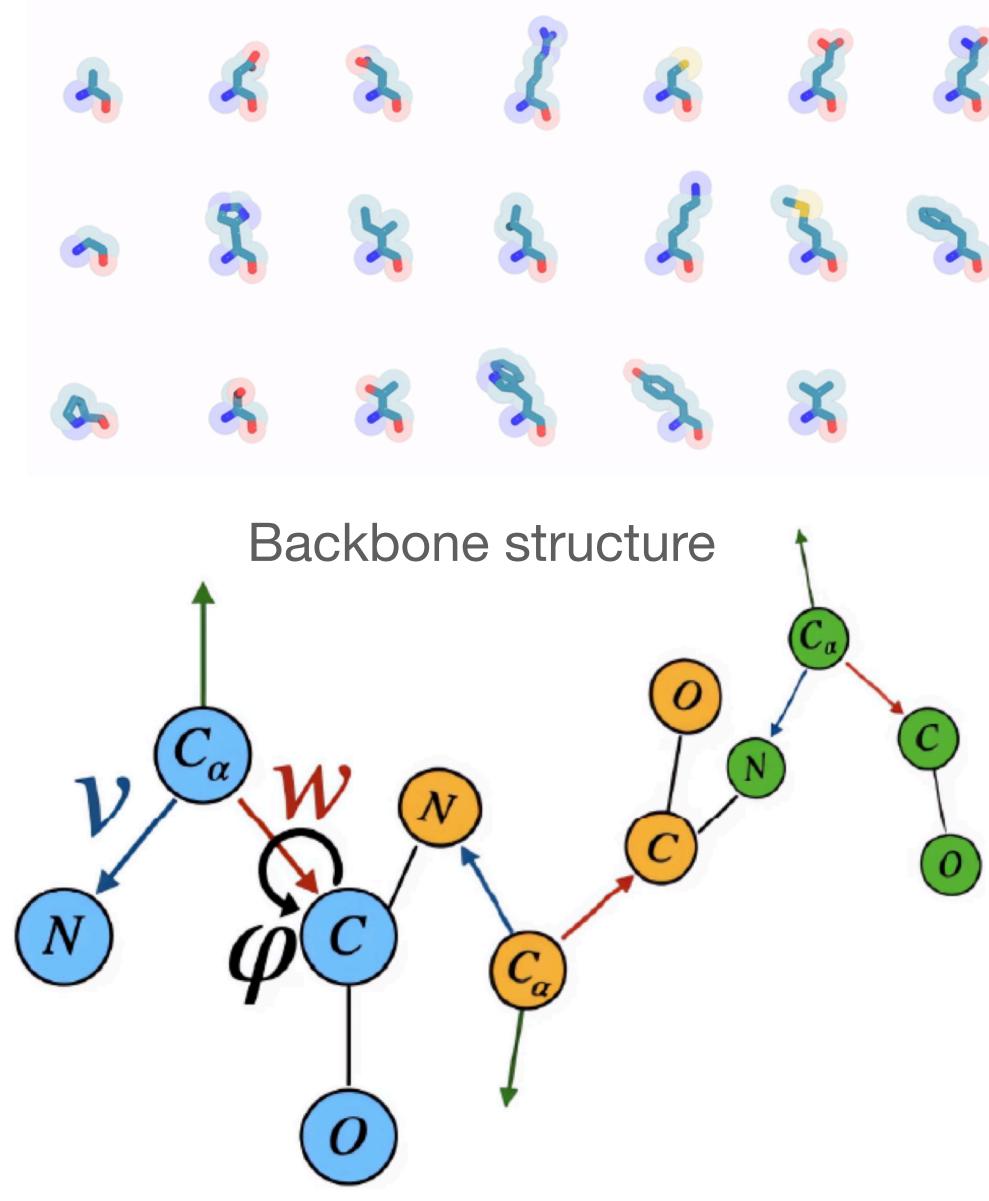




- Can be represented as a cloud of atoms in  $\mathbb{R}^{(N\times\sim19.2)\times3}$
- Backbone is represented as elements of  ${\rm SE}(3)^N$  (local orientations around  $C_{\alpha}$  atoms)
- Sidechains are represented as elements of  $SO(2)^{N \times 7}$  (torsion angles)



#### 20 amino acids



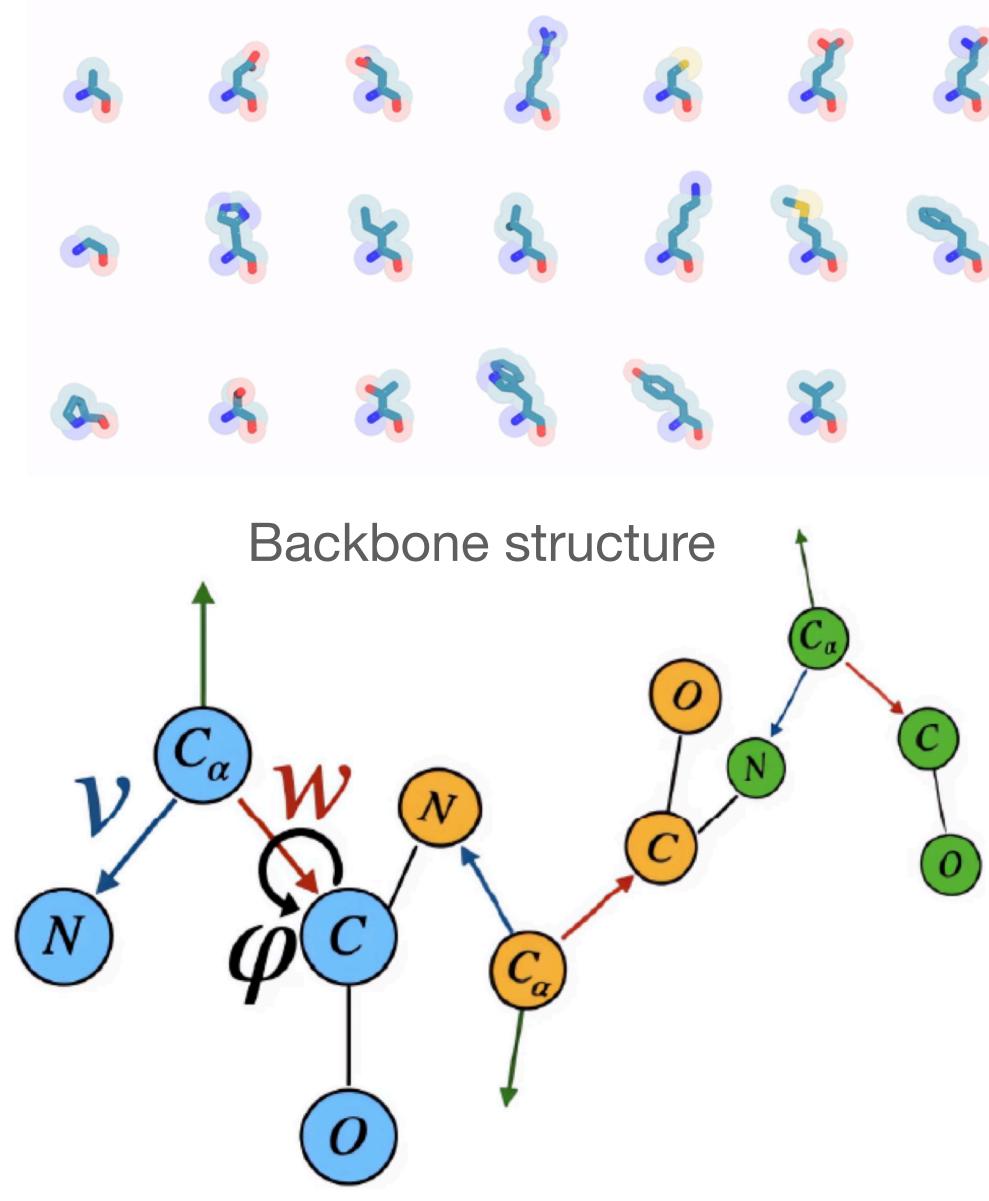


- Can be represented as a cloud of atoms in  $\mathbb{R}^{(N\times\sim19.2)\times3}$
- Backbone is represented as elements of  ${\rm SE}(3)^N$  (local orientations around  $C_\alpha$  atoms)
- Sidechains are represented as elements of  $SO(2)^{N \times 7}$  (torsion angles)



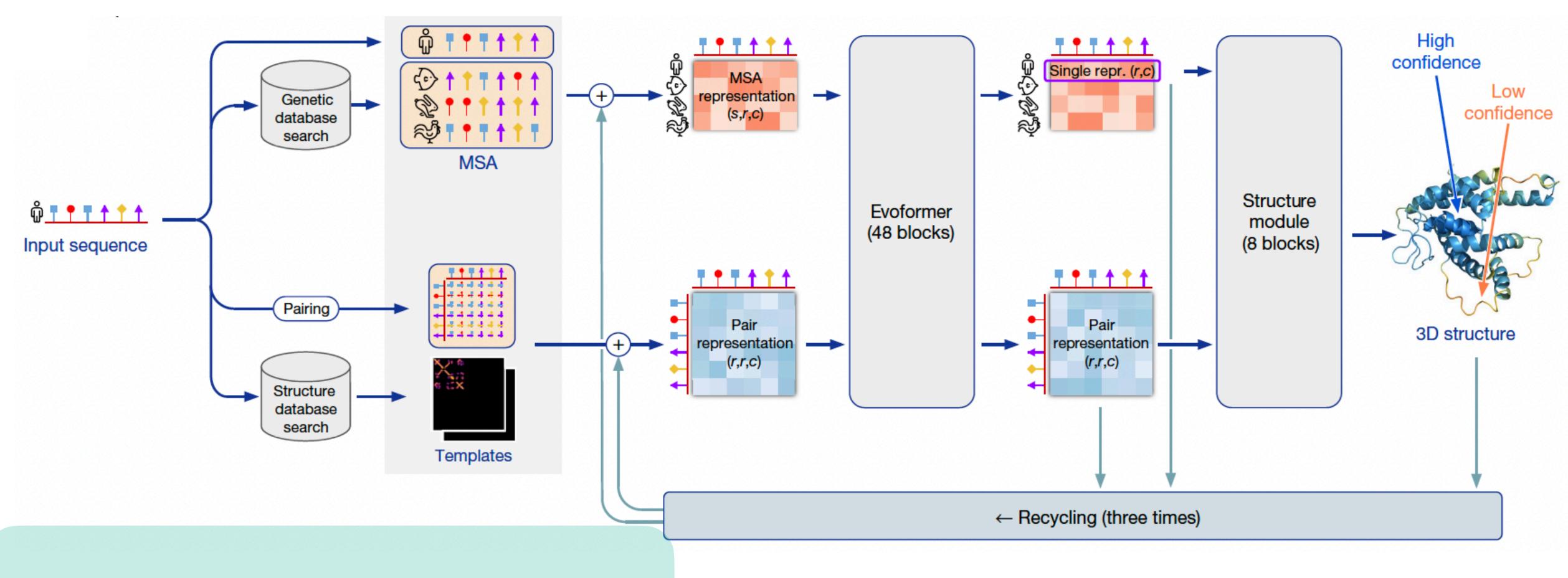
Leverages prior knowledge on bond lengths and amino acid structure (order of atom types)

#### 20 amino acids

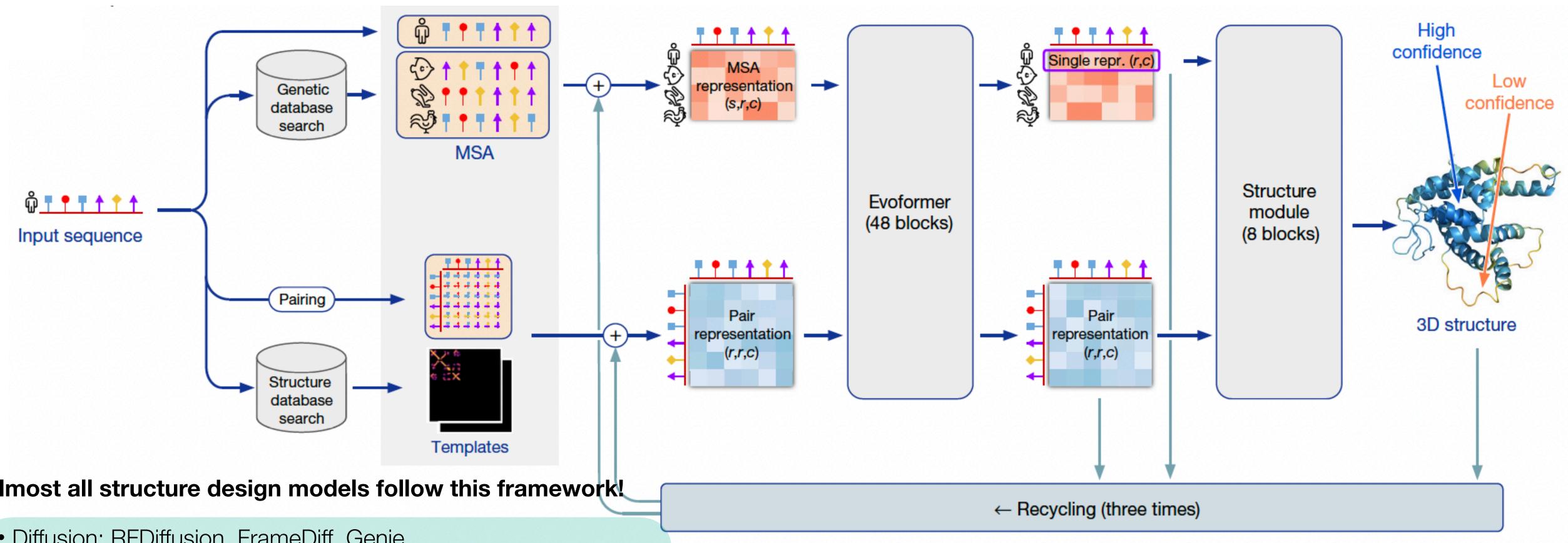




## AlphaFold 2



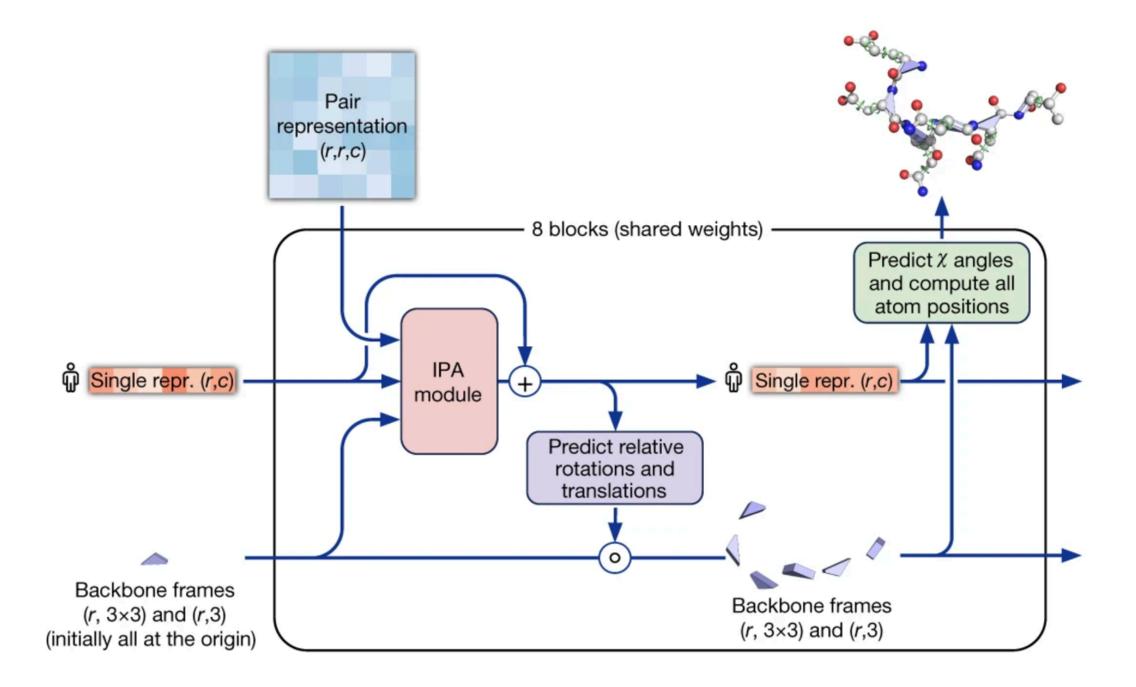
## AlphaFold 2



#### Almost all structure design models follow this framework!

- Diffusion: RFDiffusion, FrameDiff, Genie
- Flow-based: FoldFlow, FrameFlow
- Improved flow-based: Proteus, MultiFlow, PepFlow, and PPFlow
- Sequence + structure: Genie 2 and FoldFlow 2

## AlphaFold 2 — Structure Module



```
def forward(self, s, z):
    111111
    Args:
       "s": [*, N_res, C_s] single representation
        "z": [*, N_res, N_res, C_z] pair representation
    Returns:
        "rigids": [*, N_res, 7] rigid transformation
       "angles": [*, N_res, 7, 2] angles
        "s": [*, N_res, C_s] single representation
    .....
    rigids = self.identity(s.shape[:-1])
    for i in range(self.no_blocks):
        s = s + self.ipa(s, z, rigids)
        rigids = rigids.compose_q_update_vec(self.bb_update(s))
       rigids = rigids.stop_rot_gradient()
    angles = self.angle_resnet(s)
    return rigids, angles, s
```



## AlphaFold 2 — Structure Module

- "rigids" are elements of SE(3)and a concatenation of
  - Translation  $\mathbb{R}^3$
  - Quaternion SO(3)
- Directly parameterized

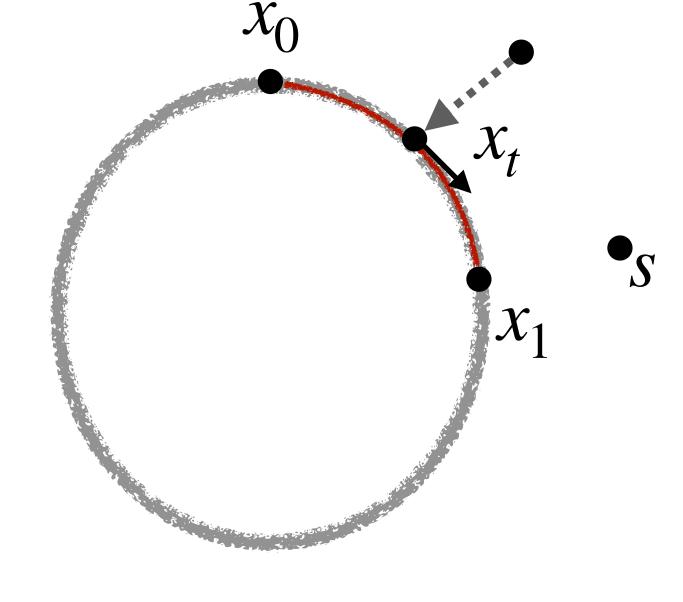
```
def forward(self, s, z):
    111111
   Args:
       "s": [*, N_res, C_s] single representation
       "z": [*, N_res, N_res, C_z] pair representation
    Returns:
        "rigids": [*, N_res, 7] rigid transformation
       "angles": [*, N_res, 7, 2] angles
        "s": [*, N_res, C_s] single representation
    .....
    rigids = self.identity(s.shape[:-1])
    for i in range(self.no_blocks):
        s = s + self.ipa(s, z, rigids)
        rigids = rigids.compose_q_update_vec(self.bb_update(s))
       rigids = rigids.stop_rot_gradient()
   angles = self.angle_resnet(s)
    return rigids, angles, s
```



## AlphaFold 2 — Structure Module

"angles" are elements of  $SO(2)^{\prime}$ Projections on the unit circle of  $\mathbb{R}^{7\times 2}$ 

```
def forward(self, s):
    111111
    Args:
        s: [*, C_hidden] single embedding
    Returns:
        [*, no_angles, 2] predicted angles
    .....
    for l in self.layers:
        s = l(s)
    s = self.linear_out(self.relu(s))
    s = s.view(s.shape[:-1] + (-1, 2))
    norm_denom = torch.norm(s, dim=-1, keepdim=True)
   return s / torch.clamp(norm_denom, min=self.eps)
```



```
def forward(self, s, z):
    111111
    Args:
```

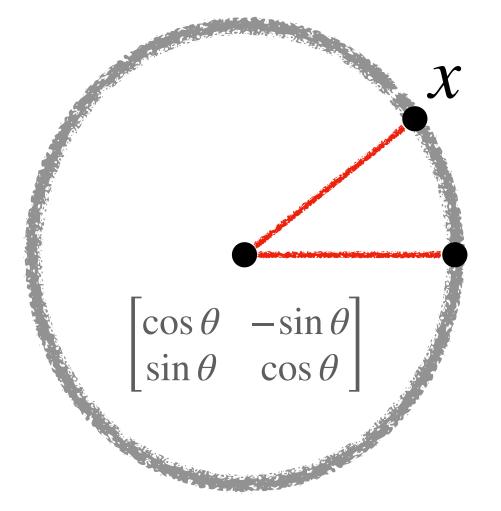
```
"s": [*, N_res, C_s] single representation
    "z": [*, N_res, N_res, C_z] pair representation
Returns:
    "rigids": [*, N_res, 7] rigid transformation
   "angles": [*, N_res, 7, 2] angles
    "s": [*, N_res, C_s] single representation
.....
```

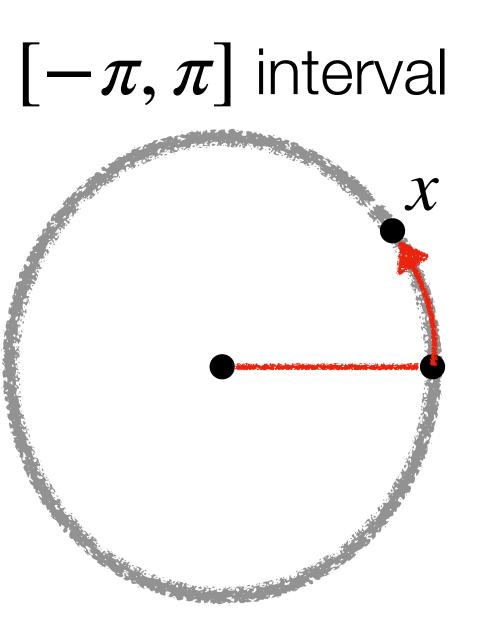
```
rigids = self.identity(s.shape[:-1])
for i in range(self.no_blocks):
    s = s + self.ipa(s, z, rigids)
    rigids = rigids.compose_q_update_vec(self.bb_update(s))
    rigids = rigids.stop_rot_gradient()
angles = self.angle_resnet(s)
return rigids, angles, s
```



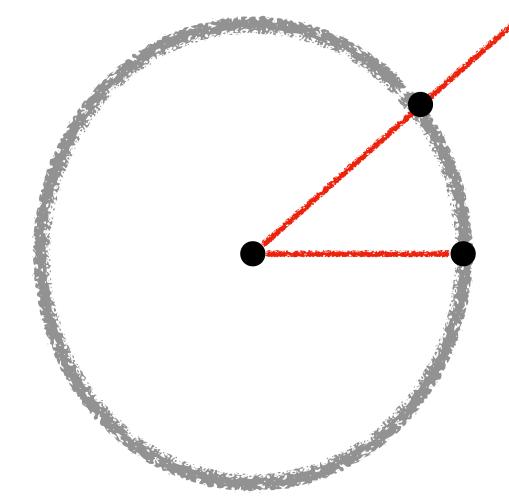
What is the parameterization space?

#### $2 \times 2$ Rotation matrices SO(2)





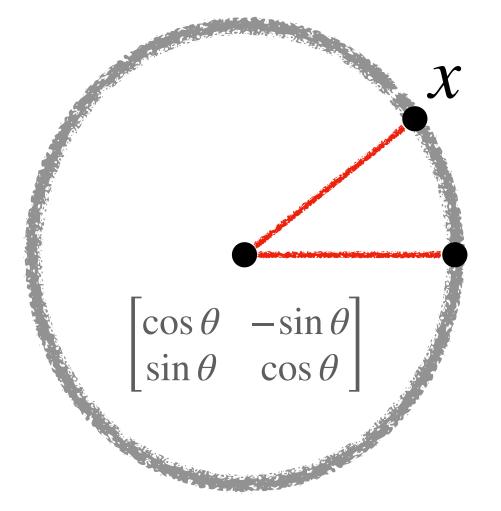
### Unit vectors in $\mathbb{R}^2$

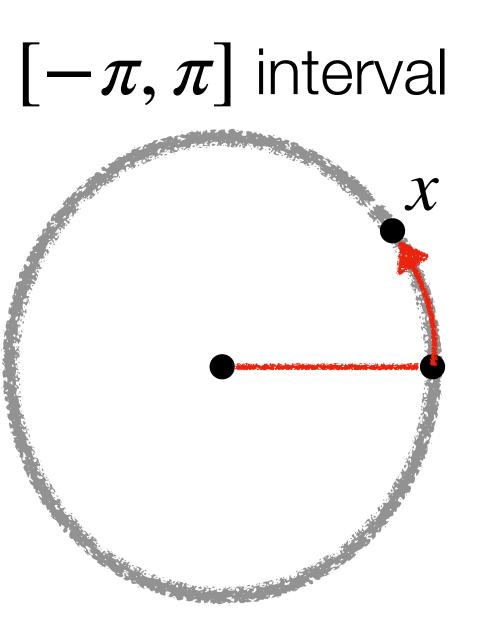




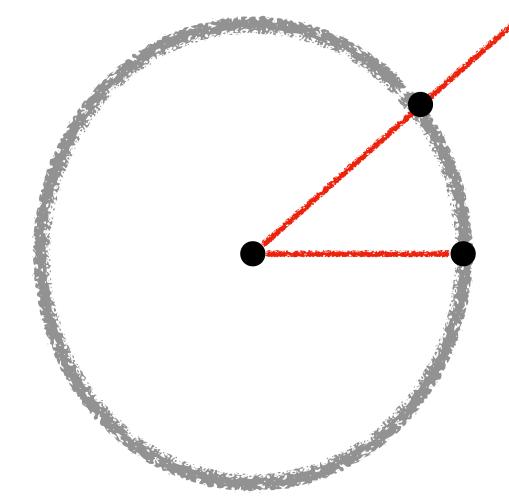
What is the parameterization space?

#### $2 \times 2$ Rotation matrices SO(2)





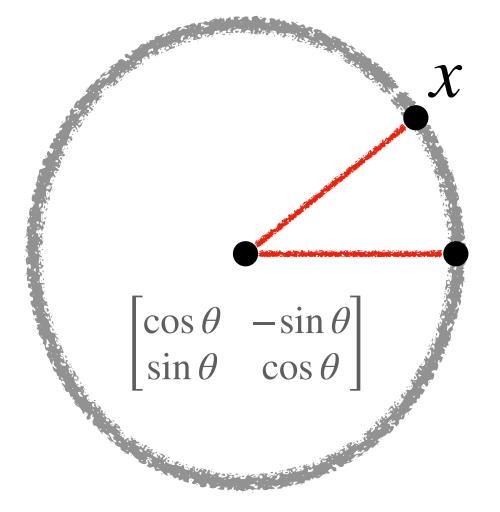
### Unit vectors in $\mathbb{R}^2$



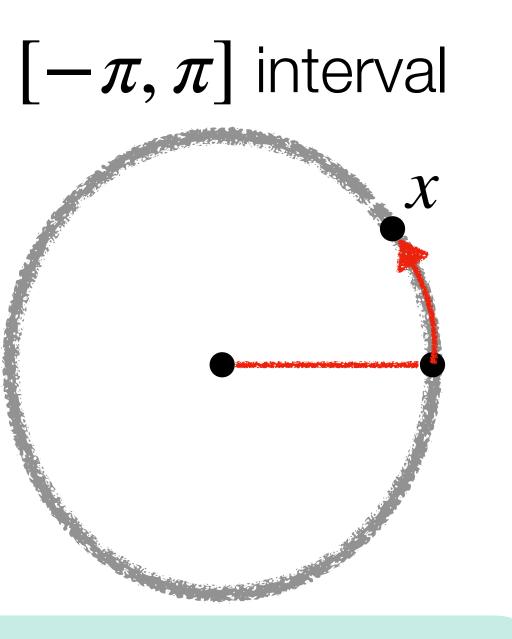


What is the parameterization space?

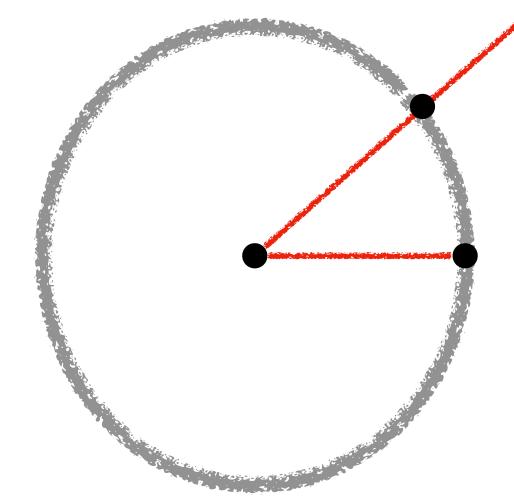
#### $2 \times 2$ Rotation matrices SO(2)



Simplest but has a discontinuity



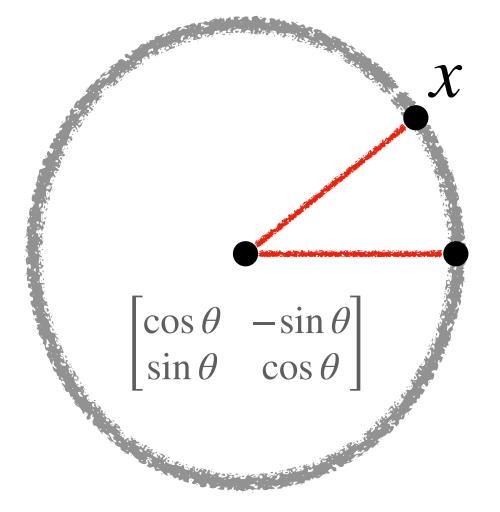
### Unit vectors in $\mathbb{R}^2$



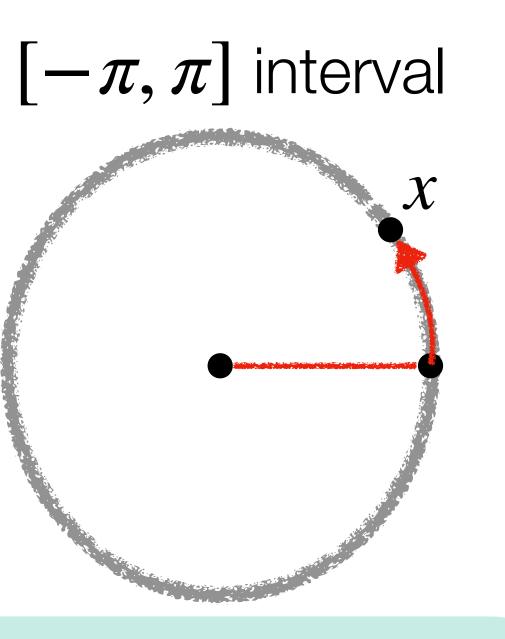


What is the parameterization space?

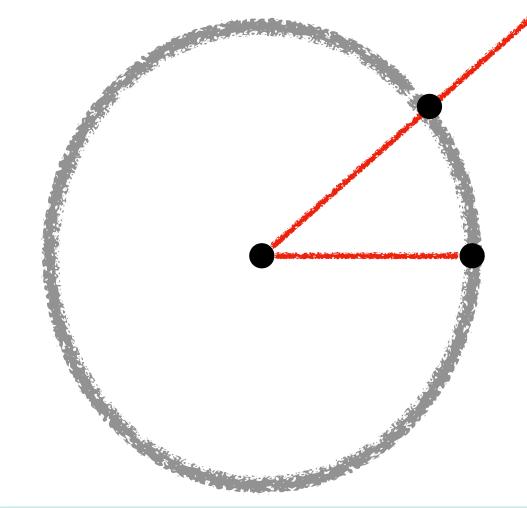
#### $2 \times 2$ Rotation matrices SO(2)



Simplest but has a discontinuity



### Unit vectors in $\mathbb{R}^2$



Higher dimensional but no discontinuity



## Practical conclusions in a Riemannian setting

- Flows preferred over diffusion due to ease of construction on manifolds
- Manifolds can be split into parametrizable and non-parametrizable

Parametrization matters! Making it more like Euclidean is generally good.

## Open problems in Geometric Generative Models

- Do you need equivariance?
- be used?
- diffusion?
- Efficient algorithms for non-parametrizable manifolds?

• How does the parameterization of the model affects the learning dynamics?

• What are the guiding principles for when geometric generative models should

What is the next paradigm for geometric generative models after flows /