
ÖAW AI Winter School 2025
Joey Bose, Oscar Davis
Geometric Generative Models

https://indico.global/event/11646/

Generative Models Beyond Images and Text

Scientific Data

SE(3) invariant
Protein structure generation

Robotics Information Geometry

Fisher-Rao geometry
On the probability Simplex

SO(2) invariant
Block stacking

Climate Modeling

Spherical Geometry 𝕊2

Tutorial Outline ~3hrs:

Part I: Primer on Simulation-Free Generative Models

Part II: Primer of Geometry for Machine Learning

Part III: Geometric Generative Models

Part I:
Simulation Free Generative Models

Problem Setting: Generative Modeling

• Unknown: data distribution

• Given: samples

q

x1 ∼ q

• Unknown: data distribution

• Given: samples

q

x1 ∼ q

Problem Setting: Generative Modeling

• Unknown: data distribution

• Given: samples

q

x1 ∼ q

 x1 ∼ q

ℝ2

Problem Setting: Generative Modeling

• Unknown: data distribution

• Given: samples

q

x1 ∼ q

 x1 ∼ q

ℝ2

Problem Setting: Generative Modeling

Goal: learn a sampler from the unknown q

 x1 ∼ q

ℝ2

• Unknown: data distribution

• Given: samples

q

x1 ∼ q

Deep Generative Modeling

Deep Generative Modeling
 x1 ∼ q

ℝ2

• Unknown: data distribution

• Given: samples

• Learn: neural network with parameters

q

x1 ∼ q

θ

(ψθ , pθ)
Generative Model

Generator Underlying Density

Goal: find parameters s.t. θ pθ ≈ q

Deep Generative Modeling
 x1 ∼ q

ℝ2ℝ2

 x0 ∼ p

Generator
ψθ

Easy to sample from

ψθ(x0) ∼ q
x0 ∼ p

Sampling

pθ ≈ q
Density EstimationHow to model ?ψθ

Focus: Dynamical Systems as Generative Models
 x1 ∼ q

ℝ2ℝ2

 x0 ∼ p

Generator
ψθ

 x1 ∼ q

ℝ2ℝ2

 x0 ∼ p

ψt : [0,1] × ℝ2 → ℝ2

Focus: Dynamical Systems as Generative Models

Time-Dependent Generator

simulate(x0, t) = ψt(x0)

Sampling = Simulating

x0 ∼ p

Deterministic and Stochastic Dynamics

dxt = ft(xt)dt + gtdwt

Diffusion

SDEdxt = ut(xt)dt
Flows

ODE

Velocity field Drift Diffusion
Coefficient

Brownian
Motion

Deterministic and Stochastic Dynamics

dxt = ft(xt)dt + gtdwt

Diffusion

SDEdxt = ut(xt)dt
Flows

ODE

Velocity field Drift Diffusion
Coefficient

Brownian
Motion

ℝ2
xt

us

x0
xs

xt = x0 + ∫
t

0
us(xs)ds

Deterministic

Deterministic and Stochastic Dynamics

dxt = ft(xt)dt + gtdwt

Diffusion

SDEdxt = ut(xt)dt
Flows

ODE

Velocity field Drift Diffusion
Coefficient

Brownian
Motion

ℝ2
xt

us

x0
xs

xt = x0 + ∫
t

0
us(xs)ds

ℝ2
xt

fs
x0

xs

x′ t

xt = x0 + ∫
t

0
fs(xs)ds + ∫

t

0
gsdws

StochasticDeterministic

Deterministic and Stochastic Dynamics

dxt = ft(xt)dt + gtdwt

Diffusion

SDEdxt = ut(xt)dt
Flows

ODE

Velocity field Drift Diffusion
Coefficient

Brownian
Motion

ℝ2
xt

us

x0
xs

xt = x0 + ∫
t

0
us(xs)ds

ℝ2
xt

fs
x0

xs

x′ t

xt = x0 + ∫
t

0
fs(xs)ds + ∫

t

0
gsdws

StochasticDeterministic

xt

xt+Δt

Deterministic and Stochastic Dynamics

dxt = ft(xt)dt + gtdwt

Diffusion

SDEdxt = ut(xt)dt
Flows

ODE

Velocity field Drift Diffusion
Coefficient

Brownian
Motion

ℝ2 ≈ xN⋅Δt

ut

x0

ℝ2
xt

fs
x0

xs

x′ t

StochasticDeterministic

xt+Δt = xt + Δt ⋅ ut(xt)
Euler:

xt+Δt = xt + Δt ⋅ ft(xt) + gt |Δt | zt zt ∼ N(0,1)
Euler-Maruyama:

Where are the probabilities?

dxt = ft(xt)dt + gtdwtdxt = ut(xt)dt
Flows Diffusion

ODE SDE

Velocity field Drift

The Fokker-Planck Equation

∂t pt = − div(pt ft) +
1
2

g2
t ∇2pt

The Continuity Equation

∂t pt = − div(ptut)

Diffusion
Coefficient

Brownian
Motion

Where are the probabilities?

dxt = ft(xt)dt + gtdwtdxt = ut(xt)dt
Flows Diffusion

ODE SDE

Velocity field Drift

The Fokker-Planck Equation

∂t pt = − div(pt ft) +
1
2

g2
t ∇2pt

The Continuity Equation

∂t pt = − div(ptut)

Diffusion
Coefficient

Brownian
Motion

Can we build a generative model with these?

Yes! Need one more thing…

Diffusion and Score Models

dxt = ft(xt)dt + gtdwtSDE

Drift

The Fokker-Planck Equation

∂t pt = − div(pt ft) +
1
2

g2
t ∇2pt

Diffusion
Coefficient

Brownian
Motion

Need one more thing…

Sohl-Dickstein et al., Deep unsupervised learning using nonequilibrium thermodynamics. (ICML 2015)
Ho et at., Denoising Diffusion Probabilistic Models. (NeurIPS 2020)
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations. (ICLR 2021)

Diffusion and Score Models

dxt = ft(xt)dt + gtdwt
Forward

SDE

The Fokker-Planck Equation

∂t pt = − div(pt ft) +
1
2

g2
t ∇2pt

Need one more thing…

Data Noise→

Sohl-Dickstein et al., Deep unsupervised learning using nonequilibrium thermodynamics. (ICML 2015)
Ho et at., Denoising Diffusion Probabilistic Models. (NeurIPS 2020)
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations. (ICLR 2021)

Diffusion and Score Models

dxt = ft(xt)dt + gtdwt
Forward

SDE

The Fokker-Planck Equation

∂t pt = − div(pt ft) +
1
2

g2
t ∇2pt

Need one more thing…

Reverse
SDE dx̄t = (ft(xt) − g2

t ∇log pt)dt + gtdw̄t

The Score!

Data Noise→

Noise Data→

Sohl-Dickstein et al., Deep unsupervised learning using nonequilibrium thermodynamics. (ICML 2015)
Ho et at., Denoising Diffusion Probabilistic Models. (NeurIPS 2020)
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations. (ICLR 2021)

Diffusion and Score Models

dxt = ft(xt)dt + gtdwt
Forward

SDE

Reverse
SDE dx̄t = (ft(xt) − g2

t ∇log pt)dt + gtdw̄t

Data Noise→

Noise Data→

min
θ

𝔼pdata,pt(x|xdata) [∥sθ
t (x) − ∇log pt(x |xdata)∥2]

Learn the score by regressing to conditional scores:

Simulation-free Known SDEs: Variance Exploding
 Variance Preserving

Where are the probabilities?

dxt = ft(xt)dt + gtdwtdxt = ut(xt)dt
Flows Diffusion

ODE SDE

Velocity field Drift

The Fokker-Planck Equation

∂t pt = − div(pt ft) +
1
2

g2
t ∇2pt

The Continuity Equation

∂t pt = − div(ptut)

Diffusion
Coefficient

Brownian
Motion

Yes!
Learn: score ∇log pt
- Only Gaussian source

- Solution asymptotically reaches source

Where are the probabilities?

dxt = ut(xt)dt
Flows

ODE

Velocity field

The Continuity Equation

∂t pt = − div(ptut)

Yes!

 ·ψt(x0) = ut(ψt(x0))
Flow ODE

 is smooth with smooth
inverse defined by

ψt(x)
−ut(x)

 x0

Where are the probabilities?

dxt = ft(xt)dt + gtdwt

Diffusion

SDE

Drift

The Continuity Equation

∂t pt = − div(ptut)

The Liouville Equation

∂t pt = − div(pt(ft −
1
2

g2
t ∇log pt))

Learn: velocity field ut Learn: score ∇log pt
- Only Gaussian source

- Solution asymptotically reaches source

Diffusion
Coefficient

Brownian
Motion

- Universal transformation between densities

- Defined on finite time interval

 ·ψt(x0) = ut(ψt(x0))
Flow ODE

Where are the probabilities?

dxt = ft(xt)dt + gtdwt

Diffusion

SDE

Drift

The Continuity Equation

∂t pt = − div(ptut)

The Liouville Equation

∂t pt = − div(pt(ft −
1
2

g2
t ∇log pt))

Learn: velocity field ut Learn: score ∇log pt
- Only Gaussian source

- Solution asymptotically reaches source

Diffusion
Coefficient

Brownian
Motion

- Universal transformation between densities

- Defined on finite time interval

 ·ψt(x0) = ut(ψt(x0))
Flow ODE

Flows as Generative Models

dxt = ut(xt)dt + gtdwt

Diffusion

SDE

Drift Diffusion
Coefficient

Brownian
Motion

The Fokker-Planck Equation

∂tpt = − div(ptut) + g2
t ∇2pt

Goal: find velocity field s.t. ut p1 ≈ q

Learn: velocity field ut

Chen et al., Neural Ordinary Differential Equations. (NeurIPS 2018)

Generative Models

 x0

Continuity Equation

 ∂t pt = − div(ptut) ·ψt(x0) = ut(ψt(x0))
Flow ODE

Training with Simulation

dxt = ut(xt)dt + gtdwt

Diffusion

SDE

Drift Diffusion
Coefficient

Brownian
Motion

The Fokker-Planck Equation

∂tpt = − div(ptut) + g2
t ∇2pt

Learn: velocity field ut

Chen et al., Neural Ordinary Differential Equations. (NeurIPS 2018)

Generative Models

 x0

Continuity Equation

 ∂t pt = − div(ptut) ·ψt(x0) = ut(ψt(x0))
Flow ODE

 log p1(x1) = log p(x0) + ∫
0

1
div(ut(xt))dt

Log-likelihood computation

 xt = x1 + ∫
t

1
us(xs)ds

DKL(q ∥ p1) = − 𝔼x∼q log p1(x)+c
Maximum Likelihood Objective

Requires:
• Simulating
• Backprop through simulation
• (Unbiased) estimator of
• Can compute

xt

div(ut)
log p(x)

Flow Matching

LFM(θ) = min 𝔼t, pt(x)∥uθ
t (x) − ut(x)∥2

Construct:

• Target probability path s.t.

• Generating velocity field

pt p0 = p , p1 ≈ q

ut

Find a tractable optimization objective

 generates
iff they satisfy the continuity equation

ut pt

Core Principle:

Marginal path

pt(x) = ∫ pt(x |x1)q(x1)dx1

 x1

Conditional path

pt(x |x1)

p0(⋅ |x1) = p

p1(⋅ |x1) = δx1

Boundary conditions:
p0 = p

p1 = q

q
pt

p

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

Conditional Probability Paths

Law of total probability

Marginal path

Conditional path

 x1

pt(x) = ∫ pt(x |x1)q(x1)dx1

pt(x |x1) ut(x |x1)

ut(x) = ∫ ut(x |x1)
pt(x |x1)q(x1)

pt(x)
dx1

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

The marginalization “trick”

Flow Matching

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

Construct:

• Target probability path s.t.

• Generating velocity field

pt p0 = p , p1 ≈ q

ut

Find a tractable optimization objective

ut(x) = ∫ ut(x |x1)
pt(x |x1)q(x1)

pt(x)
dx1

LFM(θ) = min 𝔼t, pt(x)∥uθ
t (x) − ut(x)∥2

Flow Matching

Construct:

• Target probability path s.t.

• Generating velocity field

pt p0 = p , p1 ≈ q

ut

Find a tractable optimization objective

ut(x) = ∫ ut(x |z)
pt(x |z)q(z)

pt(x)
dz

LFM(θ) = min 𝔼t, pt(x)∥uθ
t (x) − ut(x)∥2

Useful examples:
z = (x0, x1) → q(x0, x1)
z = x0 → p(x0)

Pooladian*, Ben-Hamu*, Enrich* et al., Multisample Flow Matching: Straightening Flows with Minibatch Couplings. (ICML 2023)
Tong et al., Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport. (TMLR)

Flow Matching

Construct:

• Target probability path s.t.

• Generating velocity field

pt p0 = p , p1 ≈ q

ut

Find a tractable optimization objective

ut(x) = ∫ ut(x |z)pt(z |x)dz

LFM(θ) = min 𝔼t, pt(x)∥uθ
t (x) − ut(x)∥2

Useful examples:
z = (x0, x1) → q(x0, x1)
z = x0 → p(x0)

Pooladian*, Ben-Hamu*, Enrich* et al., Multisample Flow Matching: Straightening Flows with Minibatch Couplings. (ICML 2023)
Tong et al., Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport. (TMLR)

pt(z |x) =
pt(x |z)q(z)

pt(x)

The gradients of losses coincide:
∇θLFM = ∇θLCFM

LCFM(θ) = min 𝔼t, q(z), pt(x|z)∥uθ
t (x) − ut(x |z)∥2

Conditional Flow Matching Loss

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

LFM(θ) = min 𝔼t, pt(x)∥uθ
t (x) − ut(x)∥2

Flow Matching

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

Construct:

• Target probability path s.t.

• Generating velocity field

pt p0 = p , p1 ≈ q

ut

Find a tractable optimization objective

LCFM(θ) = min 𝔼t, q(z), pt(x|z)∥uθ
t (x) − ut(x |z)∥2

LFM(θ) = min 𝔼t, pt(x)∥uθ
t (x) − ut(x)∥2

Marginal path

Conditional path

 x1

pt(x) = ∫ pt(x |x1)q(x1)dx1

pt(x |x1) ut(x |x1)

ut(x) = ∫ ut(x |x1)pt(x1 |x)dx1

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

Conditional Flows

ψt(x |x1)

Construct a conditional flow
s.t.

ψ0(x |x1) = x , ψ1(x |x1) = x1

Lipman et al., Flow Matching for Generative Modeling. (ICLR 2023)

Conditional Optimal Transport Flows

ψt(x0 |x1)

Construct a conditional flow
s.t.

ψ0(x |x1) = x , ψ1(x |x1) = x1

Cond-OT flow: ψt(x0 |x1) = tx1 + (1 − t)x0

ut(ψt(x0 |x1) |x1) = x1 − x0

ut(x |x1) =
x1 − x
1 − t

αt = t , σt = 1 − tCond-OT flow coefficients:

• Given: samples

• Construct: s.t.

via conditional flows

• Learn: velocity field with CFM loss

s.t. where

x1 ∼ q

pt p0 = p , p1 ≈ q

ψt(x |z)

ut

ψt(x0) ∼ pt x0 ∼ p

ℝ2

ψt : [0,1] × ℝ2 → ℝ2

Recipe: Flow Matching

p0 = p p1pt

t

LCFM(θ) = min 𝔼t, q(z), pt(x|z)∥uθ
t (x) − ut(x |z)∥2

Summary

• Flows are powerful generative models when supervised adequately

• Flow Matching is a flexible framework for training generative flows

• Improved sampling speed and stability compared to diffusion models

• Open challenges:

• Learn a one-step model (without distillation).

• Scale to other data domains - such as language.

Image from Esser et al. 2024

Part II:
Geometry for Machine Learning

So Generative Models on Manifolds?

• Given: samples

• Construct: s.t.

via conditional flows

• Learn: velocity field with CFM loss

s.t. where

x1 ∼ q

pt p0 = p , p1 ≈ q

ψt(x |z)

ut

ψt(x0) ∼ pt x0 ∼ p

How do you represent on a manifold?x1

αtx1 + σx0

Can’t do addition! No Vector space structure!

There is no “Gaussian dist.” on manifold

The notion of velocity/vector fields needs
to be generalized

Smooth Manifolds
• Informally: A (smooth) topological space that locally looks like patches of a Vector

Space (think Euclidean space) when glued together look globally different.

Points live on this topological
space

e.g. x1 ∈ ℳ

How do we parametrize ℳ

What additional structure
do we need

on for FM/Diffusion?ℳDoes curvature impact
numerical stability?

Smooth Manifolds
• Informally: A (smooth) topological space that locally looks like patches of a Vector

Space (think Euclidean space) when glued together look globally different.

• A chart maps each patch to a vector space . {Ui, ϕi | i ∈ 𝒜} ϕi : Ui → ℝn

ℳ
𝒰i

𝒰j

ϕi

ϕj

ϕj ∘ ϕ−1
i

ϕi(𝒰i) = 𝒱i

ϕj(𝒰j) = 𝒱j

ϕi(𝒰i ∩ 𝒰j)

ϕj(𝒰i ∩ 𝒰j)

We added “smoothness” i.e.
differentiability and continuity to

C∞

ℳ

Smooth Manifolds
• Informally: A (smooth) topological space that locally looks like patches of a Vector

Space (think Euclidean space) when glued together look globally different.

• A chart maps each patch to a vector space .

• Stitching charts together requires satisfying a compatibility condition if

{Ui, ϕi | i ∈ 𝒜} ϕi : Ui → ℝn

Ui ∩ Uj ≠ ∅

ℳ
𝒰i

𝒰j

ϕi

ϕj

ϕj ∘ ϕ−1
i

ϕi(𝒰i) = 𝒱i

ϕj(𝒰j) = 𝒱j

ϕi(𝒰i ∩ 𝒰j)

ϕj(𝒰i ∩ 𝒰j)

ϕj ∘ ϕ−1
i

ϕi(Ui∩Uj)

: ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

Extrinsic vs. Intrinsic Views

• Multiple ways of representing the same geometry. Two main ways are Extrinsic vs.
Intrinsic perspectives of Riemannian geometry.

 sphere embedded in 𝕊2 ℝ3

v

• Extrinsic: A manifold is embedded in , , if
there is an inclusion map .

ℝn n > d
ι(x) = x ∈ ℝn, ∀x ∈ ℳ

Which parametrization
should you use?

General principle: Think like a deep learner

Extrinsic vs. Intrinsic Views
• Intrinsic: A local coordinate system is “a choice” of charts that cover the manifold.

• Computation in “local coordinates” means using coordinate charts to put it in in
subsets of instead of a manifold. ℝd

Example: Stereographic projection of 𝕊2

U+ = 𝕊2∖{s}

U− = 𝕊2∖{n}

ϕ+ : U+ → ℝ2

ϕ− : U− → ℝ2

n

s

p

ϕ−(p)
ℝ2

Stereographic projection

Numerical instability
near the poles!

Global Coordinate Systems

• Global coordinates: A coordinate chart that covers the entire manifold

 - radiusr

(r, θ, φ) Spherical Coordinate System

r

θ
φ

 - azimutal angleθ
 - polar angleφ

(Almost) Global coordinate system

p

Are trigonometric functions
numerically stable (always?).
What about their inverses?

Defining Vectors

• Tangent space: For each , a tangent vector is a smooth map . p ∈ ℳ v : ℱ → ℝn

p
v

Sphere 𝕊2How do we model ?ut

Need to define a “vector” on ℳ

In a chart we can
use the local basis

(e1, …, ed)

A bit more on Tangent Spaces

• A curve: A smooth map .

• Tangent Basis: Any can be expressed as a linear combination of basis
vectors which are taken from the chart (by pulling them back via).

γ : [−1,1] → ℳ, γ(0) = p

v ∈ Tpℳ
(Ui, ϕi) ϕ−1

1

p
v

gp = ⟨vi, vj⟩ = 1/K

p
vγ d(f ∘ γ)

dt
t=0

A bit more on Tangent Spaces
• A curve: A smooth map .

• Tangent Basis: Any can be expressed as a linear combination of basis
vectors which are taken from the chart (by pulling them back via).

• Let be local coordinates and

γ : [0,1] → ℳ, γ(0) = p

v ∈ Tpℳ
(Ui, ϕi) ϕ−1

1

p = (p1, …, pd) = ϕ(p) dϕp : Tpℳ → Tϕ(p)ℝd

p
v

gp = ⟨vi, vj⟩ = 1/K

p
v

γ
d(f ∘ γ)

dt
t=0

v = v1e1 + v2e2

e1

e2
p

ei = (dϕ−1)ϕ(p)(∂
∂pi)

Riemannian Manifolds

• Tangent space: For each , a tangent vector is a smooth map .p ∈ ℳ v : ℱ → ℝn

p
v

Sphere 𝕊2
∥uθ

t (x) − ut(x |z)∥2

Q1. How do we
compute norms?

Q1. How do we get
xt = αtx1 + σx0?

gp = ⟨vi, vj⟩ = 1/K

• Riemannian metric: Inner product on each tangent space that varies
smoothly.

gp = ⟨ ⋅ , ⋅ ⟩p

We add more structure
to by choosing a

“metric”.
ℳ

Riemannian Manifolds
• Tangent space: For each , a tangent vector is a smooth map .

• Riemannian metric: Inner product on each tangent space that varies
smoothly.

p ∈ ℳ v : ℱ → ℝn

gp = ⟨ ⋅ , ⋅ ⟩p

p
v

Sphere 𝕊2Euclidean ℝ2

gp = ⟨vi, vj⟩ = 1/Kgp = ⟨vi, vj⟩ = 1

ℙ2
K

ℍ2
Kℝ2

ℝ2

gp = ⟨vi, vj⟩ = − 1/K

Hyperboloid
 ℍ2

K

• Riemannian manifold: A smooth manifold equipped with an inner product (ℳ, g)

Why are metrics important?
• Riemannian metric is not the same as saying “metric space”

• can be used to

• Lengths of vectors

• Distances

• Angles.

gp := ⟨, ⟩g

⟨u, v⟩g = uTGv

(Positive definite) matrix
representation of the metric

Tangent vector

Why are metrics important?
• Riemannian metric is not the same as saying “metric space”.

• A Riemannian metric allows us to measure many things: distances, lengths of vectors,
angles. It is the main gadget that allows actual computation.

Angle between u, v ∈ Tpℳ

cos θ =
⟨u, v⟩g

∥u∥g∥v∥g θu
vp

Tpℳ

∥u∥g = ⟨u, u⟩g = uTGu

Norm of a vector u ∈ Tpℳ
Measures length of

 using u G
∥uθ

t (x) − ut(x |z)∥2

∥uθ
t (x) − ut(x |z)∥2

g

Norm changes!

Measuring distances and geodesics

p
v

γ

q

• A curve: A smooth map . γ : [0,1] → ℳ, γ(−1) = p, γ(1) = q

How do we measure the distance between
two points on linked by ?p, q ∈ ℳ γ

Measuring distances and geodesics
• Main idea: Measure the norm of the tangent vector along the curve ·γ(t)

length(γ) = ∫
1

0
∥ ·γ(t)∥2

g(γ(t))dt = ∫
1

0

·γ(t)TG ·γ(t)dt

p
v = ·γ(t)

γ

q

 measures length of G ·γ(t)

dg(p, q) = inf
γ ∫

1

0
∥ ·γ(t)∥dt

Distance is the shortest curve γ Facts:
Shortest path is a geodesic
It is also the “straightest”
Geodesics minimize Kinetic
Energy.

Geodesics
• Different Metrics Induce different Geodesics on the same space

length(γ) = ∫
1

0
∥ ·γ(t)∥2

g(γ(t))dt = ∫
1

0

·γ(t)TG ·γ(t)dt

• Euclidean metric “Linear”

• Fisher-Rao metric

Example: Geodesics on the probability simplex

Distances allow us to …

dxt = ft(xt)dt + gtdwt

Flows Diffusion

SDE

Drift Diffusion
Coefficient

Brownian
Motion

dxt = ut(xt)dtODE

Velocity field

LCFM(θ) = min 𝔼t, q(z), pt(x|z)∥uθ
t (x) − ut(x |z)∥2

g

LCFM(θ) = min 𝔼t, q(z), pt(x|z)∥d(̂xθ
1(x), x1)g∥2

g

LDiff(θ) = min 𝔼t, q(z), pt(x|z)∥sθ
t (x) − ∇x pt(x |xdata)∥2

g

LDiff(θ) = min 𝔼t, q(z), pt(x|z)∥d(ϵθ
t (x), ϵt)g∥2

g

But How do we integrate
on ?ℳ

Inference on Manifolds

dxt = ft(xt)dt + gtdwt

Simulating Flows Simulating Diffusion

SDE dxt = ut(xt)dtODE

xt+1 = xt + uθ
t Δt xt+1 = xt + [f(xt) − g2

t sθ
t (xt)]Δt + gt |Δt |zt

zt ∼ N(0,1)

Need to be Brownian
motion on
zt

ℳ

Can not do + Can not do +

Need xt+1 ∈ ℳ Need xt+1 ∈ ℳ

ℝd ℝd

ℳ ℳ

Manifold Operations

How do we move from a the
tangent space back to the
manifold?

How do we move from the
manifold to a tangent space?

How do we move vectors
between tangent spaces?

Logarithmic Map

Parallel Transport

Exponential Map

Exponential Map

• Exponential map: Takes a tangent vector and transports it along the unique
geodesic which satisfies and to the point .

v ∈ Tpℳ
γ(0) = p ·γ(0) = v expp(v) = γ(1)

• Output of the exponential map is a point on .

• Effectively we travel a unit of time along .

• Conceptually like “addition” in Euclidean space,
case in point

ℳ

γ

expp(v) = p + v, ∀p ∈ ℝn

p
v

γ

γ(1)

γ(0.5)

expp(v) = cos (| |v | |2) p + sin (| |v | |2) v
| |v | |2

Logarithmic Map

• Logarithmic map: . Takes a point on back to the tangent space
of a base point by following .

logp : ℳ → Tpℳ ℳ
γ

• Output of the logarithmic map is .

• (usually) inverse of the exponential map.

• The log map is well-defined only in a neighbourhood
of where is a diffeomorphism

v ∈ Tpℳ

p expp

p
v

γ

q

γ(0.5)

logp(q) = d(p, q)
q − ⟨p, q⟩2p

∥q − ⟨p, q⟩2∥2

Parallel Transport

• Parallel Transport: . Moves a tangent vector along a curve
such that the vector remains “parallel” to it and lands at another tangent space.

logp : ℳ → Tpℳ v γ(t)

• Length and angles between parallel transported
vectors are preserved .

• Parallel transport is unique.

• Parallel transport is reversible (along the same curve)

⟨v(t), w(t)⟩g = constant p
v

γ

q

γ(0.5)

PTp→q(v) = v −
⟨q, v⟩2

1 + ⟨p, q⟩2
(p + q)

Manifold Operations in Action
Target Velocity

ℝd SO(3)

ℳ

∥uθ
t (x) − ut(x |z)∥2 log(X) ≈

N

∑
n=1

(−1)n−1

n
(g − I)n

Very expensive to approximate!

A rotation matrix

log(r) = {
ω

2 sin(ω) (r − r⊤) if r ≠ I,

0 if r = I .

r = exp ω̂ = cos(ω)I + sin(ω)eω + (1 − cos(ω))eωe⊤
ω

∥uθ
t (x) − ut(x |z)∥2

g

logxt
(x1)

1 − t
Point

on a Geodesic!

d
dt

xt = ut(xt |z) =
x1 − xt

1 − t

Straight line!

Inference on Manifolds

dxt = ft(xt)dt + gtdwt

Simulating Flows Simulating Diffusion

SDE dxt = ut(xt)dtODE

xt+1 = xt + uθ
t Δt xt+1 = xt + [f(xt) − g2

t sθ
t (xt)]Δt + gt |Δt | zt

zt ∼ N(0,1)

ℝd ℝd

ℳ ℳ

dxt = ut(xt)dt

xt+1 = expxt (uθ
t Δt)

xt+1 = expxt ([f(xt) − g2
t sθ

t (xt)]Δt + gt |Δt | zt)
zt ∼ TpN(0,1)

Use tangent
space and exp

map

Summary

• Each Manifold requires different design considerations for Generative Modeling

• Tip: Pick a parametrization that makes it “as close” as possible to

• Tip: Take into account that certain manifold operations might be numerically unstable, e.g.
close to the boundary.

• Tip: Diffusion seems harder to do on Manifolds than Flow Matching. Ask yourself, do you
really need an SDE on a manifold?

• There is no Canonical Gaussian distribution, choice of prior is a design decision.

ℝd

Part III:
Geometric Generative Models

Modern Applications of Geometric Generative Models

Scientific Data

SE(3) equivariant
protein + molecule

representations

Robotics Information Geometry

Fisher-Rao geometry
On the probability Simplex

SO(2) invariant
Block stacking

Climate Modeling

Spherical Geometry 𝕊2

Parametrizable manifolds

Modern Applications of Geometric Generative Models
non-parametrizable manifolds

3D surfaces Lidar imaging Data-driven manifolds

Euclidean to Riemannian Flow Matching

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := (1 − t)x0 + tx1

ut(xt |z) := x1 − x0

How do you define ?z, q(z), xt, ut(xt |z)

x0

x1

xt

Euclidean to Riemannian Flow Matching

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := (1 − t)x0 + tx1

ut(xt |z) := x1 − x0

How do you define ?z, q(z), xt, ut(xt |z)

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := expx0
(t logx0

x1)

ut(xt |z) := (logxt
x1)/(1 − t)

x0

x1

xt

x0

x1

xt

Euclidean to Riemannian Flow Matching

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := (1 − t)x0 + tx1

ut(xt |z) := x1 − x0

How do you define ?z, q(z), xt, ut(xt |z)

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := expx0
(t logx0

x1)

ut(xt |z) := (logxt
x1)/(1 − t)

x0

x1

xt

x0

x1

xt

Euclidean to Riemannian Flow Matching

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := (1 − t)x0 + tx1

ut(xt |z) := x1 − x0

How do you define ?z, q(z), xt, ut(xt |z)

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := expx0
(t logx0

x1)

ut(xt |z) := (logxt
x1)/(1 − t)

x0

x1

xt

x0

x1

xt

Euclidean to Riemannian Flow Matching

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := (1 − t)x0 + tx1

ut(xt |z) := x1 − x0

How do you define ?z, q(z), xt, ut(xt |z)

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := expx0
(t logx0

x1)

ut(xt |z) := (logxt
x1)/(1 − t)

x0

x1

xt

x0

x1

xt

Euclidean to Riemannian Flow Matching

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := (1 − t)x0 + tx1 = x0 + t(x1 − x0)

ut(xt |z) := x1 − x0 = (x1 − xt)/(1 − t)

How do you define ?z, q(z), xt, ut(xt |z)

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := expx0
(t logx0

x1)

ut(xt |z) := (logxt
x1)/(1 − t)

x0

x1

xt

x0

x1

xt

Reminder in Euclidean!

expa b = a + b

loga b = b − a

Euclidean to Riemannian Flow Matching

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := (1 − t)x0 + tx1 = x0 + t(x1 − x0)

ut(xt |z) := x1 − x0 = (x1 − xt)/(1 − t)

How do you define ?z, q(z), xt, ut(xt |z)

z := (x0, x1)

q(z) := q(x0)q(x1)

xt := expx0
(t logx0

x1)

ut(xt |z) := (logxt
x1)/(1 − t)

x0

x1

xt

x0

x1

xt

Reminder in Euclidean!

expa b = a + b

loga b = b − a

* Requires efficient and mapexp log

Likelihood computation

 log p1(x1) = log p(x0) + ∫
0

1
divg(ut(xt))dt

Log-likelihood computation

 xt = x1 + ∫
t

1
us(xs)ds

Allows calculation of the log likelihood by integrating divergence over time!

Riemannian Divergence

divg(X) = ∇ ∘ X =
1

det g

n

∑
i

∂
∂xi

(det gXi)

A Case Study:
The protein design problem
Given a set of desired properties, create a protein sequence that satisfies
those properties.

Why Design Proteins?

MEDICINE VACCINES CLIMATE

What might you want to design for?
• Structure
• Binding / Interaction affinity
• Strength
• Specificity
• Stability
• Flexibility
• Evading the immune system
• Activating the immune system

Property —> Structure + Sequence

What are proteins and
why do we care?
•Molecules found in all life
•Human DNA contains code for ~20k
unique types of proteins
•All stem from the same 20 “amino
acid” building blocks
•Sequence of amino acids determine
the 3D structure and therefore
function of the protein

Sequence:
MVKSYELIAGWFTPHQMVKS

Structure:

Protein
Representations
•Can be represented as a cloud of
atoms in
•Backbone is represented as elements
of (local orientations around

 atoms)
•Sidechains are represented as
elements of (torsion
angles)

ℝ(N×∼19.2)×3

SE(3)N

Cα

SO(2)N×7

Image credit: https://www.ipd.uw.edu/what-is-protein-design/

Protein
Representations
•Can be represented as a cloud of
atoms in
•Backbone is represented as elements
of (local orientations around

 atoms)
•Sidechains are represented as
elements of (torsion
angles)

ℝ(N×∼19.2)×3

SE(3)N

Cα

SO(2)N×7

Image credit: https://www.ipd.uw.edu/what-is-protein-design/

Backbone structure

20 amino acids

Protein
Representations
•Can be represented as a cloud of
atoms in
•Backbone is represented as elements
of (local orientations around

 atoms)
•Sidechains are represented as
elements of (torsion
angles)

ℝ(N×∼19.2)×3

SE(3)N

Cα

SO(2)N×7

Image credit: https://www.ipd.uw.edu/what-is-protein-design/

Backbone structure

20 amino acids

But Why?

Protein
Representations
•Can be represented as a cloud of
atoms in
•Backbone is represented as elements
of (local orientations around

 atoms)
•Sidechains are represented as
elements of (torsion
angles)

ℝ(N×∼19.2)×3

SE(3)N

Cα

SO(2)N×7

Image credit: https://www.ipd.uw.edu/what-is-protein-design/

Backbone structure

20 amino acids

Leverages prior knowledge on
bond lengths and amino acid
structure (order of atom types)

But Why?

AlphaFold 2

AlphaFold 2

Almost all structure design models follow this framework!

• Diffusion: RFDiffusion, FrameDiff, Genie
• Flow-based: FoldFlow, FrameFlow
• Improved flow-based: Proteus, MultiFlow, PepFlow, and PPFlow
• Sequence + structure: Genie 2 and FoldFlow 2

AlphaFold 2 —
Structure Module

AlphaFold 2 —
Structure Module
• “rigids” are elements of

and a concatenation of

• Translation

• Quaternion

• Directly parameterized

SE(3)

ℝ3

SO(3)

AlphaFold 2 —
Structure Module
“angles” are elements of
Projections on the unit circle of

SO(2)7

ℝ7×2

x0

x1

xt

s

Flow Matching on a Torus
What is the parameterization space?

x x
 interval[−π, π]2 x 2 Rotation matrices SO(2) Unit vectors in ℝ2

x

[cos θ −sin θ
sin θ cos θ]

Flow Matching on a Torus
What is the parameterization space?

x x
 interval[−π, π]2 x 2 Rotation matrices SO(2) Unit vectors in ℝ2

x

[cos θ −sin θ
sin θ cos θ]

Flow Matching on a Torus
What is the parameterization space?

x x
 interval[−π, π]2 x 2 Rotation matrices SO(2) Unit vectors in ℝ2

x

[cos θ −sin θ
sin θ cos θ]

Simplest but has a discontinuity

Flow Matching on a Torus
What is the parameterization space?

x x
 interval[−π, π]2 x 2 Rotation matrices SO(2) Unit vectors in ℝ2

x

[cos θ −sin θ
sin θ cos θ]

Simplest but has a discontinuity Higher dimensional but no
discontinuity

Practical conclusions in a Riemannian setting

• Flows preferred over diffusion due to ease of construction on manifolds

• Manifolds can be split into parametrizable and non-parametrizable

• Parametrization matters! Making it more like Euclidean is generally good.

Open problems in Geometric Generative Models

• Do you need equivariance?

• How does the parameterization of the model affects the learning dynamics?

• What are the guiding principles for when geometric generative models should
be used?

• What is the next paradigm for geometric generative models after flows /
diffusion?

• Efficient algorithms for non-parametrizable manifolds?

