A13191)

Versioned Executable Logic and Data

Stefan Resch
stefan.resch@oeaw.ac.at

Austrian Centre for Digital Humanities and Cultural Heritage

Technical Concept: https://doi.org/10.5281/zen0d0.13322913

Formal Metadata Specification: https://github.com/acdh-oeaw/VELD_spec
Current collection of VELD repos: https://github.com/veldhub/

Demo: https://github.com/veldhub/veld_chain__demo_wordembeddings_multiarch

https://doi.org/10.5281/zenodo.13322913
https://github.com/acdh-oeaw/VELD_spec
https://github.com/veldhub/
https://github.com/veldhub/veld_chain__demo_wordembeddings_multiarch

CONTEXT

DEMO (execution)

IMPLEMENTATION: DESIGN PATTERN
IMPLEMENTATION: METADATA SCHEMA
DEMO (details)

SUMMARY

ROADMAP

QUESTIONS / FEEDBACK

CONTEXT

A design pattern, with a reference implementation based solely on:
¢ Git

* Docker

A metadata schema

Originated in the CLS (Computational Literature Studies) Infra project

Strong overlap between Computational Literature Studies and Data Science.
Therein, recurring pain points are:

Fragile Reproducibility of workflows
* Hidden dependencies
e Sprawling complexity
* Changing environments

High Integration costs / low reusability of implemented code
e Strong coupling of code and data lowers reuse across potential contexts
* Hardwired assumptions
* Leaky abstractions
* Poor interface designs

Encapsulating CLS / NLP tools to ease their usage, especially by less tech-savvy
scholars

Increase reuse, adaptability and interoperability of produced modules

Make data transformation paths, entire workflows, reproducible with as little
friction as possible

Focus on small to medium local workflows / tools

DEMO (execution)

shorter.me/94YkN

https://github.com/veldhub/veld_chain_ _demo_wordembeddings_multiarch

http://shorter.me/94YkN
https://github.com/veldhub/veld_chain__demo_wordembeddings_multiarch

IMPLEMENTATION:

Designh Pattern

Robert C. Martin's excellent architectural principles and how we implement them:

-> Encapsulation of arbitrary software complexity within docker container

-> Defining a consistent metadata schema across tools

-> Focus on atomic task-driven modules

-> modules can be aggregated

As a , VELD can be implemented in different ways and freely adapted,
andasa , itis based solely on:

 Git(submodules)
* Docker (compose)

Three kinds of git repositories representing VELD objects (called "veld"):
atomic unit containing static serialized data
atomic unit containing source code and docker compose files
aggregation of data and code velds

data veld

The data veld represents stand-alone data, and may also be used as input or
output for code or chain velds.

* Contains static serialized data

* Should also contain structured metadata, describing itself:
* Whatfile type? (e.g. txt)
* Whattopics? (e.g. NLP)
* Description? (e.g. its origin)

code veld

The code veld represents a generic atomic unit of computation. Its

implementation is abstracted away with docker, and it can be executed either on
its own or integrated into a chain veld.

 Contains source code and docker compose files

* Compose file also contains non-docker metadata, describing itself:

* What file types does it take as input/ output? (e.g. input: txt & output: conllu)
* Where inside the container does it expect input and output? (e.g. ~ /veld/input/)
* What parameters does it expect? (e.g. hyperparameters for NLP training)

* Docker compose file acts as single execution point of code

chain veld

The chain veld acts as the aggregation of specific code and data. It persists the
entire context of a workflow and makes it reproducible with one execution point.

 Contains data and code velds, aggregated as git submodules (or non-veld data /
code)

* Also contains docker compose files, butthose extend the code velds:
* Reuses functionality from a code veld

 Canoverride volume mounts, which is the main way of loading data into code
velds

 Canoverride configuration to adapt functionality to a given workflow

Composition: submodules

A chainis a composition of its modules via git submodules

git repository E
——pp °)).,
git commit ~ /

R
=

[I1]

|

Flexibility: modular data and code units

By splitting workflows into these three types, reuse of the atomic modules (data and
code) across different contexts can be increased

e)
)) m)

git commit

~12DDD)

Stability: superstate chain and its history

Since a chain integrates data and code velds with git submodules, their respective
states (expressed as commits) are aggregated into a cohesive superstate with full
history of itself and its modules.

- - CO-v4
git repository CH-v3

|

git commit

CO-v3
CH-v2

CO-v2
CH-v1

cOo-v1

DA-v1

st}

IMPLEMENTATION:

Metadata Schema

* Aveldobjectis described with a veld yaml file (hamed either

)

* Everyveld yamlfile must contain a section

x-veld:
<VELD TYPE>:
<METADATA>

or

Metadata schema: data veld

A data veld yaml only contains metadata.

x-veld: # metdata
data:
file_type: json

Metadata schema: code veld

A code veld yamlis a docker compose yaml file, that contains non-doclker metadata and a
single docker compose service.

x-veld: # metdata

code:
input:
volume: /veld/input/
file_type: json

services: # docker compose service
veld_code:
build: .
command: python /veld/code/run.py

Metadata schema: chain veld

A chain veld yamlis a docker compose yaml file, that contains metadata and one or
more docker compose services which may extend a service from a code veld.

x-veld: # metdata
chain:

services: # docker compose service
veld_chain:
extends: # extends acode veld
file: ./code_veld_sub_repo/veld.yaml
service: veld_code

volumes:
- ./data_veld_sub_repo/:/veld/input/ # mounting a data veld

Metadata schema: matching aggregation example

x-veld: x-veld:
data: code:
file_type: json input:

volume: /veld/input/

file_type: json

services:
veld code:
build: .

command: python /veld/code/run.py

LD

x-veld:

chain:

services:
veld_chain:
extends:
file: ./code_veld_repo/veld.yaml
service: veld_code
volumes:

- /data_veld_repo/:/veld/input/

DEMO (details)

Demo: overview of velds

veld_step_3_train_fasttext
MP veld_step_4_train_glove veld_step_6_analyse_vectors

veld_step_1_download

veld_step_2_preprocess

) ao) he) £

veld_step_5_train_word2vec

SUMMARY

Necessary skill set for VELD (rough estimation)

docker

90%

More suitable in a context ("many small things")
* Workflows that can be executed on local hardware

* Hetereogenous organization

* Decentralized infrastructure

* High fluctuation of code stacks and employees / collaborators

Less suitablein a context ("few big things")

* Workflows that inherently require cloud services or enormous hardware
* |nahomogenous organization

* Centralized infrastructure

* Low fluctuation of code stacks and employees / collaborators

Advantages
(usually contrary characteristics!)
* Dockeris (in my biased experience) for encapsulating complexity in
* Isolating complexity inherently drives focus on interface
 Basedon awidely used and mature stack, carry-over effect to other tasks
* Increased security through sandboxing

* Flexible opt-in design

Disadvantages
, with an inherent learning curve regarding the tools
* Gitsubmodules are a bit tricky
* Some inherent conflicts between docker compose syntax and VELD pragmatics

* No VELD client which would help with integration

ROADMAP

CLS Infra is coming to an end, where we have implemented a reasonable amount of
VELD objects

We will extend usage of VELD internally at our institute, applying it at other Data
Science projects

In parallel, we look into creating a platform (maybe called "veldhub") where VELD
metadata is aggregated to facilitate discovery and interoperability of VELD objects
and projects

We also welcome guinea pigs *wink wink*

THANK YOU!

QUESTIONS / FEEDBACK?

	Slide 1
	Slide 2: VELD: outline
	Slide 3: CONTEXT
	Slide 4: What is VELD?
	Slide 5: What problems are addressed by CLS Infra and VELD?
	Slide 6: What are the goals of CLS Infra / VELD?
	Slide 7: DEMO (execution) shorter.me/94YkN https://github.com/veldhub/veld_chain__demo_wordembeddings_multiarch
	Slide 8: IMPLEMENTATION: Design Pattern
	Slide 9: What is VELD's guiding architectural philosophy?
	Slide 10: Design Pattern
	Slide 11: data veld
	Slide 12: code veld
	Slide 13: chain veld
	Slide 14: Composition: submodules
	Slide 15: Flexibility: modular data and code units
	Slide 16: Stability: superstate chain and its history
	Slide 17: IMPLEMENTATION: Metadata Schema
	Slide 18: Metadata schema: across all velds
	Slide 19: Metadata schema: data veld
	Slide 20: Metadata schema: code veld
	Slide 21: Metadata schema: chain veld
	Slide 22: Metadata schema: matching aggregation example
	Slide 23: DEMO (details)
	Slide 24: Demo: overview of velds
	Slide 25: SUMMARY
	Slide 26: Necessary skill set for VELD (rough estimation)
	Slide 27: Suitable contexts for VELD
	Slide 28: Weighing advantages and disadvantages
	Slide 29: ROADMAP
	Slide 30: Roadmap
	Slide 31: THANK YOU! QUESTIONS / FEEDBACK?

