
January 20 - 24, 2025

WinterSchoolAI

Today’s Program

14:15 - 15:45

● Overview

● Theoretical Basics

● Data

● Training

● Evaluation

● Design and Techniques

16:15 - 18:00

● Questions

● Setup

● Some coding

Part I: Introduction lecture

Part II: Hands-on

Introduction to
Deep Learning

Jan 20, 2025

Overview

Machine Learning as Artificial Intelligence

Artificial
Intelligence Machine Learning

Deep Learning
Any technique that

enables computers to
mimic human behaviour

Learn to perform tasks
from data without being
explicitly programmed

Extract patterns from data using
deep neural networks

Disciplines of Machine Learning

Labeled Training Data

Supervised Learning

Triangle
Triangle TriangleCircle

Square

Pentagon

Learning to label

Model

New Data Square!

Disciplines of Machine Learning

Labeled Training Data

Supervised Learning

Triangle
Triangle TriangleCircle

Square

Pentagon

Learning to label

Model

New Data Square!

Face recognition

https://www.theguardian.com/technology/2019/jul/29/
what-is-facial-recognition-and-how-sinister-is-it https://www.behance.net/gallery/71324093/The-Handwritten-A

Handwritten transcription

Speech recognition

https://support.apple.com/de-de/HT208336
https://www.wired.com/story/fmri-ai-suicide-ideation/

Medical diagnosis

Disciplines of Machine Learning

Unlabeled Training Data

Unsupervised Learning

Learning

Model

New Data

meaningful
representations

Disciplines of Machine Learning

Unlabeled Training Data

Unsupervised Learning

Learning

Model

New Data

Gene clustering

https://ernest-bonat.medium.com/building-machine-learning-clust
ering-models-for-gene-expression-rna-seq-data-d0e5af10416d

Image clustering

https://neurohive.io/en/state-of-the-art/deep-clustering-approach/

Language processing

https://www.superannotate.com/blog/what-is-natural-language-processing

Generation tasks
meaningful
representations

Disciplines of Machine Learning

Unlabeled Training Data

Reinforcement Learning

Learning to make decisions

Model

New Task:

 “build a pyramid
with suitable item”

best reward!

Disciplines of Machine Learning

Unlabeled Training Data

Reinforcement Learning

Learning to make decisions

Model

New Task:

 “build a pyramid
with suitable item”

best reward!

Game playing

https://deepmind.google/research/breakthroughs/alphago/ Robotics

https://www.sciencenews.org/article/reinforcement-learn-ai-humanoid-robots

Goal-oriented chatbots

https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinf
orcement-learning-part-i-introduction-and-dce3af21d383

Algorithmic trading

https://www.mathworks.com/videos/reinforcement-learning-in-finance-1578033119150
.html

Disciplines of Machine Learning

Labeled Training Data Unlabeled Training Data Unlabeled Training Data

Supervised Learning Unsupervised Learning Reinforcement Learning

Triangle
Triangle TriangleCircle

Square

Pentagon

Learning to label

Model

New Data

Learning to cluster

Model

New DataSquare!

Learning to make decisions

Model

New Task:

 “build a pyramid
with suitable item”

best reward!

Supervised Learning Tasks

Classification

Training: learn to predict a label out of a
discrete set

Regression

Training: predict a label as a continuous value
directly

Testing: accuracy as # of correctly
predicted

Testing: distance/similarity to actual outcomes

Unsupervised Learning Tasks

Clustering

Training: learn to identify groups

Generation

Training: create representations to sample realistic
outputs

Figure modified from: https://towardsdatascience.com/training-a-goal-oriented-chatbot-with-deep-reinforcement-learning-part-i-introduction-and-dce3af21d383

Testing? Depends on the availability of ground truth data / other measures of
performance…

Deep Learning

Input Hidden Output

Deep Neural Networks

Deep Learning

Input Hidden Output

Deep Neural Networks
Why this?

● Hierarchical processing: several levels
● All-in-one model: human out of the loop (?!)
● Extremely expressive: can learn “anything”

Deep Learning

Input Hidden Output

Deep Neural Networks

Why now?

● Unprecedented amount of available data
● Parallelization of computations by GPUs
● Many available toolkits

Why this?

● Hierarchical processing: several levels
● All-in-one model: human out of the loop (?!)
● Extremely expressive: can learn “anything”

Theoretical Basics

A Neural Network

Input OutputHidden

A Neural Network

Layer
Neuron

Perceptron

“Multi-layer Perceptron”

Input OutputHidden

Weight

A Neural Network

Perceptron

input output

A Neural Network

input weights sum non-linearity output

bias

Perceptron
The math

A Neural Network

input weights sum non-linearity output

bias

linear combination
of input biasactivation

Perceptron
The math…

A Neural Network

layerinput

Single Layer Network
The math…

A Neural Network

layerinput

Single Layer Network
The math…

A Neural Network

Single Layer Network

layer outputinput

The math…

A Neural Network

Multi-layer Network

A Neural Network

Multi-layer Network

A Neural Network

Multi-layer Network

A Neural Network

Multi-layer Network

network parameters
= weights

input

network output (“prediction”)

A Neural Network

Multi-layer Network

network parameters
= weights

input

network output (“prediction”)

Evaluation function Training function

has two faces
fixedfixed

Non-Linearities: Activation Functions

Biological motivation:
activate neuron if threshold b is exceeded

activate!

discard!

here:
threshold

Heaviside (step) function

Non-Linearities: Activation Functions

here:
threshold

the “default”

output within [0,1]

Supervised Learning Tasks

Classification Regression

→ probability distribution (soft-max) predict the value directly

Cat

Burger

Tree

Bed

°C, $, ...

“Expressive Power”

What can a neural network learn?

“Expressive Power”

anything

What can a neural network learn?

“Expressive Power”

“anything”

What can a neural network learn?

Universal Approximation Theorem

“Neural networks with a non-polynomial activation function
can approximate any continuous function arbitrary well”

Data

What is a dataset?

● An organized collection of data
○ One “unit” of data = an instance / data point
○ Information about a data point = Features
○ Labels or other annotations often included

→ Required for supervised tasks but not (necessarily) for unsupervised
○ Normalize it:

Properties of a (good) dataset

Training set Test set

Data

check performance of
finished(!) model

use during training

● What about dataset size…?
○ Defined entirely by the task (from dozens/hundreds to millions)
○ Only certainty is that “the more the merrier”, but also “the more

representative the merrier”

● Do not forget: the data split (~80/20%)

Training

Training

Goal: Optimize the weights such that for all of the samples in the training data.

 but also for samples outside!

Supervised learning:

Given samples of training data with corresponding labels

camel cat Pikachu

() = cat

() = cat

input (matrix with values)

 label (binary vector with a 1 at
the correct class)

camel

cat

Pikachu

Training

How to achieve this goal?

Loss function (error, cost) : how good is prediction compared to the true label

● Zero-one loss: - Is it exactly the same or not?

● Square loss (L2): - Euclidean distance

● Cross entropy loss: - maximize likelihood

Empirical risk minimization

→ non-linear, non-convex optimization problem!

→ minimizing the loss function will improve the prediction!

Training

Idea: Start with random weights

1) Take a sample and measure good bad the prediction is:

2) Update the weights to improve the prediction (i.e., loss decreases):

Repeat the process for every sample in the training data set.

Compute
Loss

Evaluate

Update
weights

true
labels

Initialize

if good
enough

go to next sample

() = Pikachu

() = cat

Training

→ non-linear, non-convex optimization problem!

And do it over the whole training set:

GOAL: find a weight update rule that produces a sequence that gradually decreases the loss.

As training progresses, later weights should result in smaller losses.

Find the weights which result in minimal loss over the whole training set.

Training

Lo
ss

Special Case: Linear Perceptron

Loss

Least squares problem!

Linear Regression!

Weight Updates: A simple optimization technique

Gradient Descent

Gradient of the loss: “how does the loss change, if a weight changes?”

→ points to steepest ascent (i.e., the direction to change the weights, so that there is maximal change in the loss)

Weight Updates: A simple optimization technique

Gradient

Gradient Descent

Gradient of the loss:

→ points to steepest ascent

Weight Updates: A simple optimization technique

Gradient Descent

Gradient of the loss:

go opposite direction of steepest ascent

→ points to steepest ascent

Weight Updates: A simple optimization technique

Gradient Descent

go opposite direction of steepest ascent

Gradient of the loss:

→ points to steepest ascent

Weight Updates: A simple optimization technique

Gradient Descent

go opposite direction of steepest ascent

Gradient of the loss:

→ points to steepest ascent

local minimum

global minimum

Weight Updates: A simple optimization technique

Gradient Descent

go opposite direction of steepest ascent

Gradient of the loss:

→ points to steepest ascent

Weight Updates: A simple optimization technique

Gradient Descent

Algorithm

Initialize

Until convergence:

 Compute gradient

 Update weights

Return weights

“learning rate”

Gradient of the loss:

→ points to steepest ascent

Training on Batches

Gradient descent is very expensive…

Example: A single step of gradient descent for AlexNet (neural network ~160M parameters) on ImageNet
(dataset ~1.2M images) requires ~2*10^14 flops!

Training on Batches

Gradient descent is very expensive…

Example: A single step of gradient descent for AlexNet (neural network ~160M parameters) on ImageNet
(dataset ~1.2M images) requires ~2*10^14 flops!

Train on small batches of the dataset!

“Training with large minibatches is bad for your health. More importantly, it’s bad for your
test error. Friends don’t let friends use minibatches larger that 32.”

-Yann LeCun

Evaluation

Training-Test

Training set Test set

after training:
check performance

during training: monitor loss/error

Data

Training-Test

Training set Test set

Data

Training

Evaluate on unseen data

Lo
ss

Training

after training:
check performance

during training: monitor loss/error

Bias-Variance Tradeoff

https://shapeofdata.wordpress.com

ground truth
deg = 2

Over- and underfitting

Example:
Learn a second-degree
polynomial from noisy
observations

Bias-Variance Tradeoff

https://shapeofdata.wordpress.com

ground truth
deg = 2

underfitting
deg too low

Over- and underfitting

Example:
Learn a second-degree
polynomial from noisy
observations

Simple model:
high bias,
good capturing of essentials,
bad fit

Bias-Variance Tradeoff

https://shapeofdata.wordpress.com

underfitting
deg too low

ground truth
deg = 2

overfitting
deg too high

Over- and underfitting

Example:
Learn a second-degree
polynomial from noisy
observations

Complex model:
high variance,
good fit to data,
too specific

Simple model:
high bias,
good capturing of essentials,
bad fit

Bias-Variance Tradeoff

https://shapeofdata.wordpress.com

underfitting
deg too low

ground truth
deg = 2

overfitting
deg too high

Over- and underfitting

Example:
Learn a second-degree
polynomial from noisy
observations

Trade-off between
model assumptions (bias) and
model complexity (variance)

Complex model:
high variance,
good fit to data,
too exact

Simple model:
high bias,
good capturing of essentials,
bad fit

Training-Validation-Test

Training set Test setValidation set

during training:
intermediate

performance check

Data

after training:
check performance

Training-Validation-Test

Training set Test setValidation set
Lo

ss

Training / Model complexity

Data

Training

Validation

high bias high variance

during training:
intermediate

performance check

after training:
check performance

Training-Validation-Test

Training set Test setValidation set
Lo

ss

high bias high variance

Stop here!

Training / Model complexity

Data

Training

Validation

during training:
intermediate

performance check

after training:
check performance

Metrics of performance

● Defined by the task: MSE, accuracy, mAP, etc…

● In case of classification:

Interpretability

● XAI: steering away from the black box
● Crucial in high-responsibility decision making, e.g. medicine
● TOOLS: explainable architecture, post-hoc analysis, etc.

Wu et al., 2023: Discover and Cure - Concept-aware Mitigation of Spurious Correlation

Bias

● Mitigating bias
○ Especially important in decision making with a social effect (e.g., granting parole [1])

● TOOLS: metrics to assess group fairness (demographic parity, equalized
odds, etc.), transparency about biases in the data collection process…

[1]: Angwin et al., 2016: Machine Bias

Design and Techniques

Common Techniques

Regularizing:

Dropout:

Stochastic Gradient Descent (SGD):

Batch normalization:

...often

use the gradient of a randomly selected subset

normalize the samples w.r.t. to the other samples in the batch

set weights to zero at random

regularization
term of the
network weights

Popular architectures

Convolutional neural networks: apply “filters” to extract spatial features, textures, patterns, etc.
● Popular choice in image processing.
● Examples: VGG-16, VGG-19, AlexNet, etc.

Popular architectures

Convolutional neural networks: apply “filters” to extract spatial features, textures, patterns, etc.
● Popular choice in image processing.
● Examples: VGG-16, VGG-19, AlexNet, etc.

Autoencoders: learn a compact statistical representation of the data and sample from it.
● Useful in dimensionality reduction, data generation, denoising, etc.
● Example: Variational Autoencoders (VAE)

Popular architectures

Convolutional neural networks: apply “filters” to extract spatial features, textures, patterns, etc.
● Popular choice in image processing.
● Examples: VGG-16, VGG-19, AlexNet, etc.

Autoencoders: learn a compact statistical representation of the data and sample from it.
● Useful in dimensionality reduction, data generation, denoising, etc.
● Example: Variational Autoencoders (VAE)

Residual neural networks: use shortcut connections to skip layers (helps with vanishing gradients).
● Useful in applications requiring large networks: image segmentation, object detection, etc.
● Example: ResNet

Popular architectures

Convolutional neural networks: apply “filters” to extract spatial features, textures, patterns, etc.
● Popular choice in image processing.
● Examples: VGG-16, VGG-19, AlexNet, etc.

Autoencoders: learn a compact statistical representation of the data and sample from it.
● Useful in dimensionality reduction, data generation, denoising, etc.
● Example: Variational Autoencoders (VAE)

Residual neural networks: use shortcut connections to skip layers (helps with vanishing gradients).
● Useful in applications requiring large networks: image segmentation, object detection, etc.
● Example: ResNet

Transformers: capture relationships in sequential data by considering the whole context.
● Useful in applications with sequential data (e.g., text), but also otherwise (vision transformers).
● Examples: GPTs, BERT, ViT, DINOv2

Today’s Program

14:15 - 15:45

● Overview

● Theoretical Basics

● Data

● Training

● Evaluation

● Design and Techniques

16:15 - 18:00

● Questions

● Setup

● Some coding

Part I: Introduction lecture

Part II: Hands-on

January 20 - 24, 2025

WinterSchoolAI

Exercises

Exercises

Using Google Colab and PyTorch.

Open the notebook Intro_WS_2025.ipynb.

Follow the instructions in the notebook.

