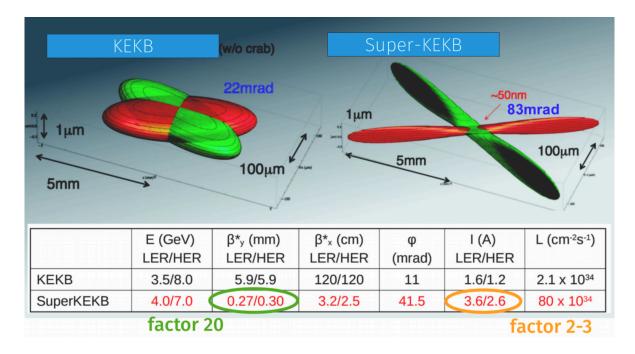
Tau Physics at Belle II

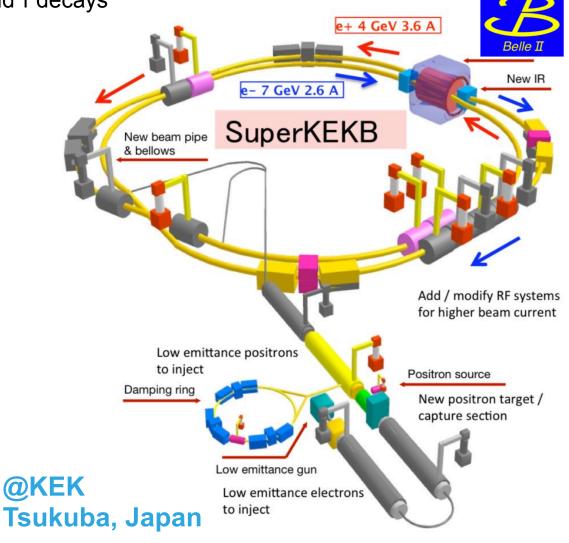
Petar Rados (DESY)

HEPHY Seminar

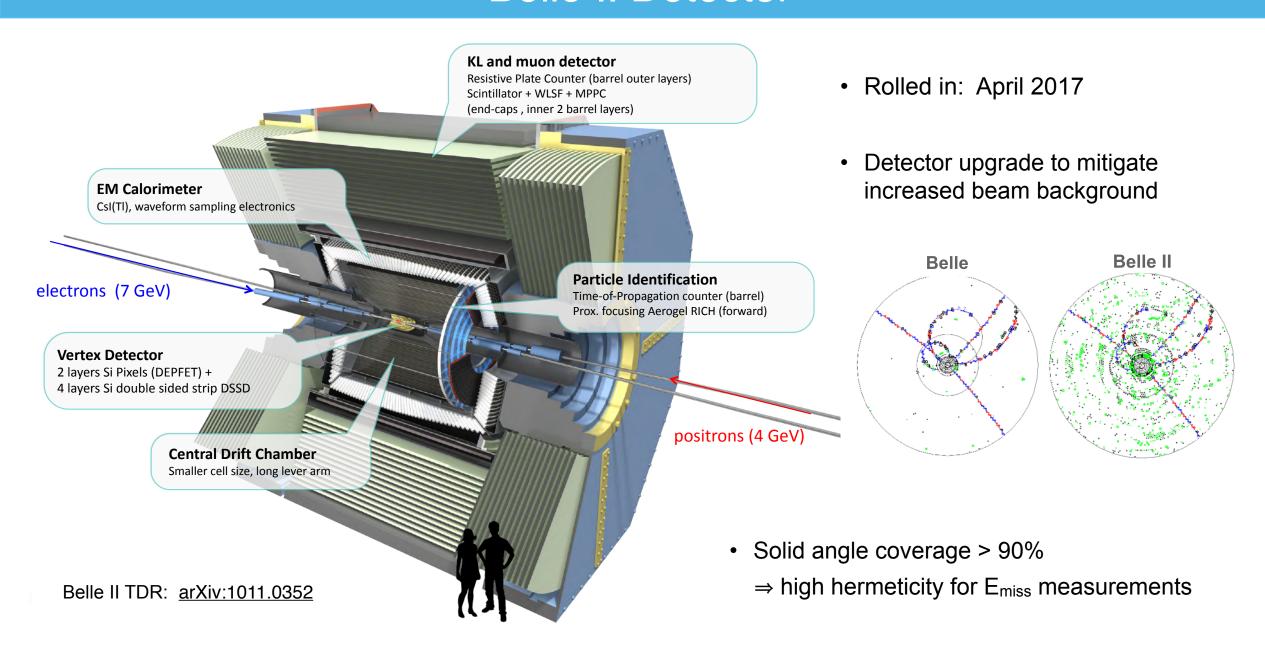
13th October 2020


Outline

- (1) Overview of SuperKEKB accelerator and Belle II detector
- (2) How we reconstruct τ-pair events
- (3) Performance studies with taus
- (4) First results and prospects for Tau Physics at Belle II
- (5) Summary and outlook

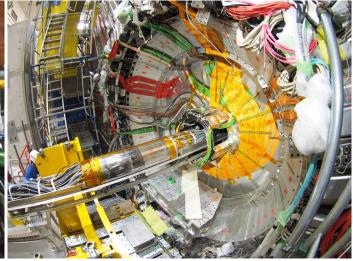

SuperKEKB Accelerator

New facility to search for new physics by studying B, D and τ decays


Electron-positron collisions at √s ≈ 10.6 GeV

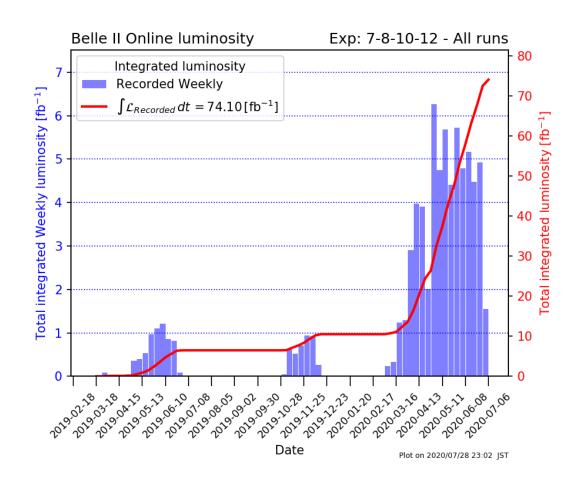
- Unprecedented design luminosity of ~6×10³⁵ cm⁻²s⁻¹
- First beams/commissioning in 2016. Broke the world lumi record in June 2020! (2.4 × 10³⁴ cm⁻²s⁻¹)

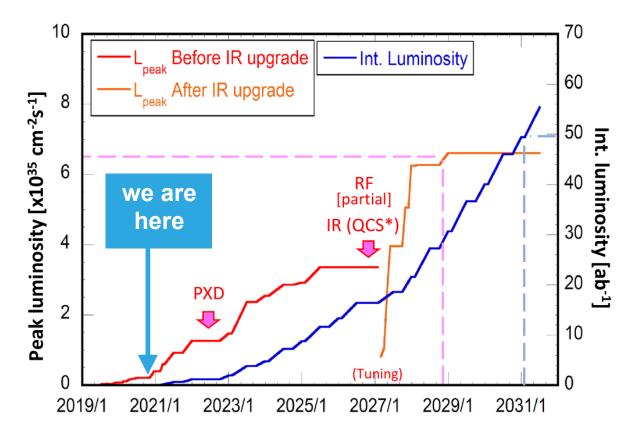
Belle II Detector



First collisions @ Belle II

- First collisions recorded by Belle II on 26th April 2018
- During Phase 2 (April-July 2018)
 recorded ~0.5 fb⁻¹ of data
- Data taking was performed with all subsystems, excluding the full vertex detector

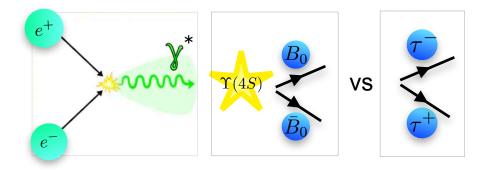


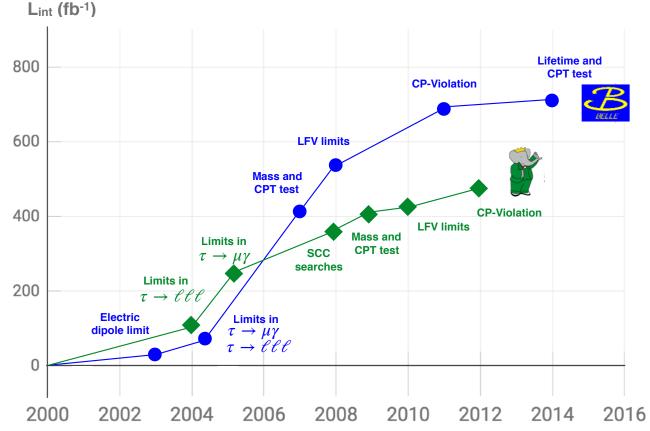


- Since then, the vertex detector including one pixel layer has been installed
- Phase 3 ongoing since March 2019
- Overall good performance of the detector subsystems

Luminosity status and goals

- So far we have collected ~**74 fb**-1 during Phase 3, with the 2020c data taking period starting this month.
- Aiming for 50 ab⁻¹ over the next ~10 years (50 x Belle dataset)




Belle II as a τ -factory

• B-factories are also τ -factories!

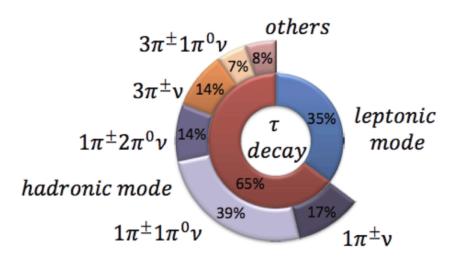
- $\sigma(e^+e^- → Y(4s)) = 1.05 \text{ nb}$
- $\sigma(e^+e^- \to \tau^+\tau^-)$ = 0.92 nb

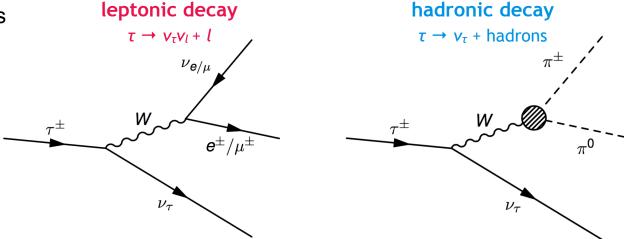
 Last generation B-factories provided a variety of very interesting τ physics results in the last two decades

 Over its lifetime Belle II will collect by far the worlds largest sample of τ-pair events (~4.6×10¹0)

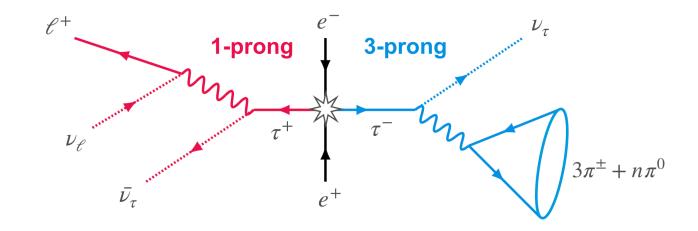
a unique environment to study τ physics with high precision!

τ-pair reconstruction

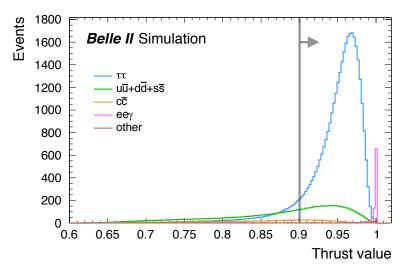

 Tau leptons will decay before reaching the active regions of the Belle II detector


• Identified via decay products:

- 1-prong: 35.2% leptonic, 49.5% hadronic

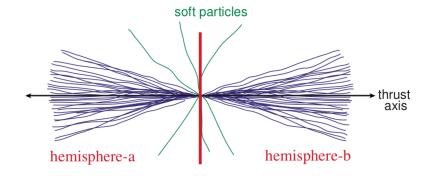

- 3-prong: 15.2% hadronic

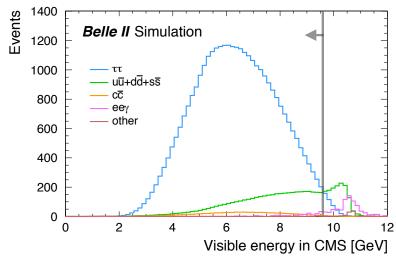
 Wide variety of low multiplicity signatures involving e[±], μ[±], π[±], π⁰ and neutrinos (missing energy)



• T-pairs reconstructed as 1x3 (4 track) or 1x1 (2 track) events

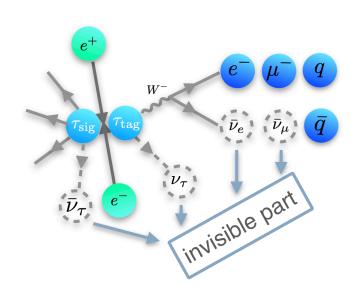
τ-pair reconstruction

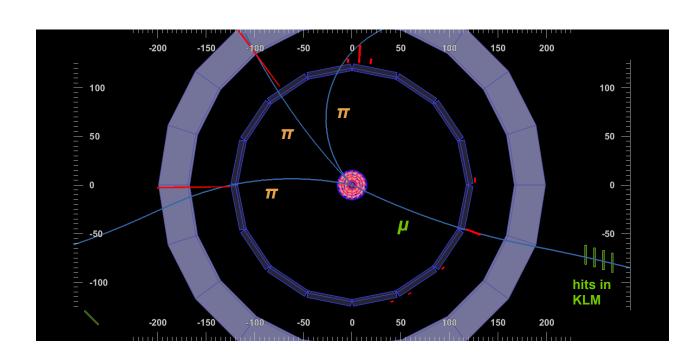

• We exploit the unique topology and kinematic of τ -pair events to suppress the main $q\overline{q}$ and $ee\gamma$ backgrounds

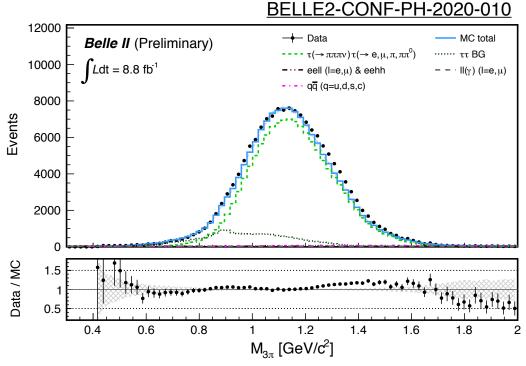


thrust value =
$$\sum_{h} \frac{\overrightarrow{p_h} \cdot \hat{T}}{|p_h|}$$

thrust axis $(\check{\mathbf{T}})$ is maximising the event shape variable

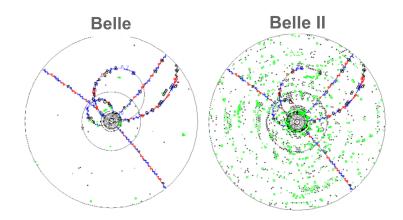



⇒ Undetected neutrinos in T events

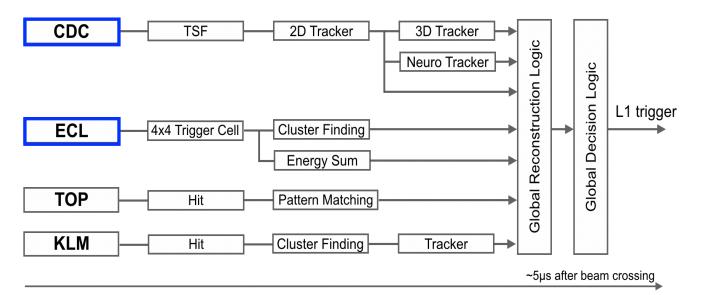

visible energy =
$$\sum_{h} E_{h}$$

e⁺e⁻ data allows for precise determination of the missing energy

τ-pair reconstruction in early data

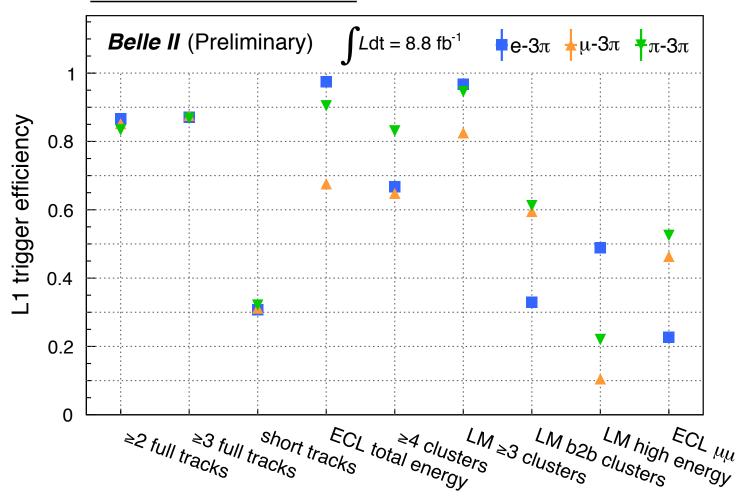


- Clear evidence of τ-pair production in the early Belle II data
- Clean sample with high statistics
- T-pair events provide an ideal testbed of the Belle II performance!


- trigger efficiency
- tracking efficiency
- particle identification
- π⁰ reconstruction

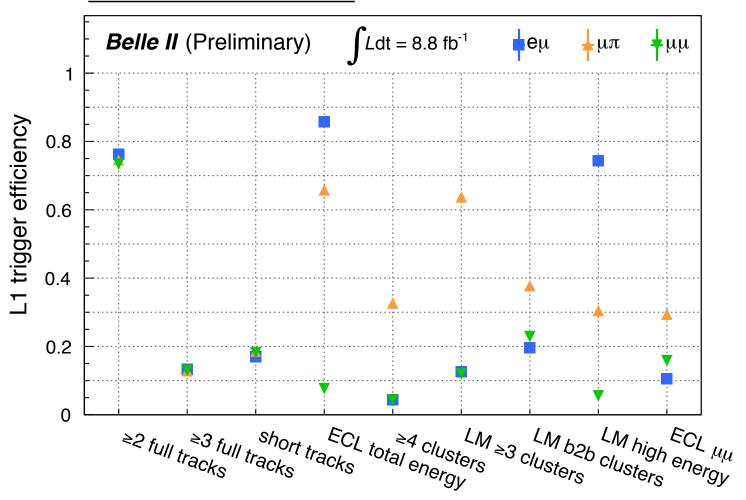
L1 Trigger System

- Good L1+HLT performance is critical to achieving tau physics goals!
- Total physics rate at SuperKEKB design luminosity is ~20 kHz
- Beam background increases this rate significantly!
- L1 trigger must reduce physics + bkg rate to a maximum of 30 kHz
- Requirements
 - high efficiency for high and low multiplicity physics
 - trigger latency ~5µs, timing precision ≤ 10 ns
 - two event separation ≥ 200 ns
- Two primary components: CDC and ECL triggers
 - CDC 2D (r-φ space) track finding
 - ECL total energy and cluster finding, Bhabha veto



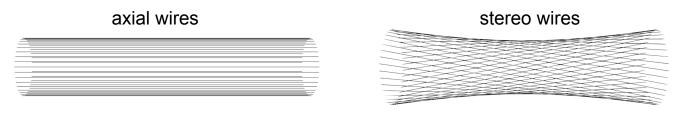
Physics process	Cross section (nb)	Rate (Hz)
$\Upsilon(4{ m S}) o Bar{B}$	1.2	960
$e^+e^- \rightarrow \text{continuum}$	2.8	2200
$\mu^+\mu^-$	0.8	640
$ au^+ au^-$	0.8	640
Bhabha $(\theta_{\rm lab} \geq 17^{\circ})$	44	350 ^a
$\gamma\gamma~(\theta_{ m lab} \ge 17^{\circ})$	2.4	19^{-a}
2γ processes b	~ 80	~ 15000
Total	~ 130	~ 20000

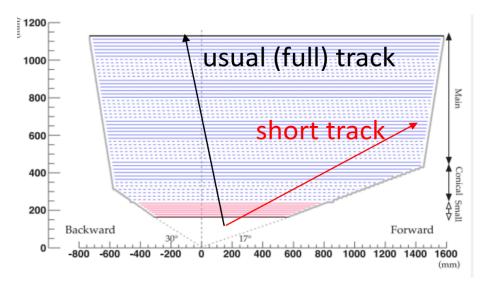
Trigger efficiency for 1x3 prong


BELLE2-NOTE-PL-2020-015

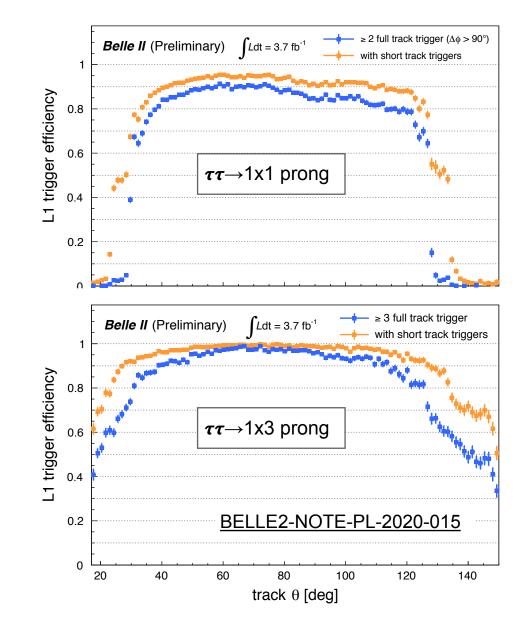
- Main trigger types for tau and other lowmultiplicity physics
 - CDC number of 2D full tracks
 - CDC number of 2D short tracks
 - ECL total energy threshold
 - ECL number of isolated clusters
 - ECL low multiplicity
 - ECL di-muon
- Trigger decision is made independently using only CDC or ECL information. Allows measurement of L1 efficiency in data.
- Efficiency of a CDC/ECL trigger:

Trigger efficiency for 1x3 prong

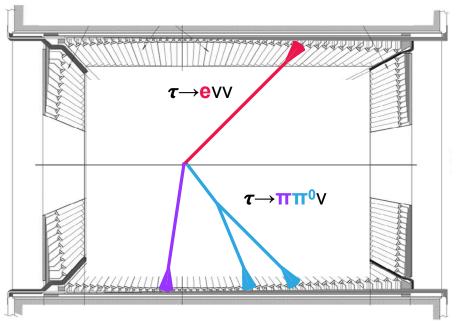

BELLE2-NOTE-PL-2020-015

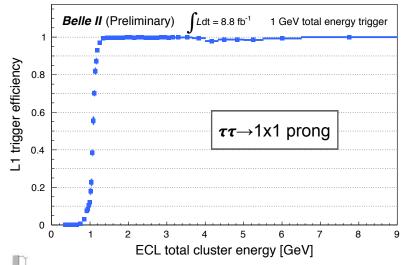

- Main trigger types for tau and other lowmultiplicity physics
 - CDC number of 2D full tracks
 - CDC number of 2D short tracks
 - ECL total energy threshold
 - ECL number of isolated clusters
 - ECL low multiplicity
 - ECL di-muon
- Trigger decision is made independently using only CDC or ECL information. Allows measurement of L1 efficiency in data.
- Efficiency of a CDC/ECL trigger:

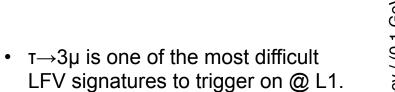
Full and short track triggers

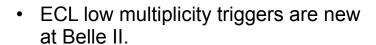

"full tracks" pass through all axial CDC superlayers and reach the barrel

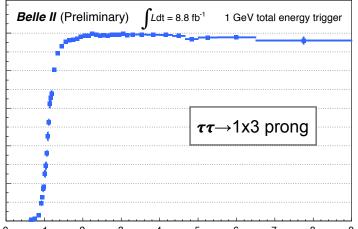
- Full track triggers have low efficiency in endcaps, putting limitations on tau and other low multi physics
- To help compensate, the CDC trigger also searches for "short tracks" that pass through inner most 5 axial + stereo SLs. Operational since Oct 2019.

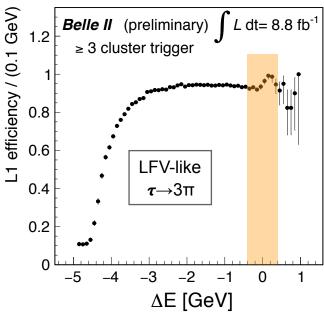



- Short track triggers provide a significant gain in efficiency for endcaps / low p_T!
- **neural-z triggers** might become active in 2020c
- ⇒ we keep a close eye!


ECL triggers


- Unprescaled total energy trigger has a 1 GeV threshold. Sum over L1 Cells. \Rightarrow 4x4 tower of CsI(TI) crystals.
- Performs well for ee→TT events that have high EM energy deposition (e.g. $\tau \rightarrow \text{evv}$, $3\pi\pi^0 \text{v}$, $\pi\pi^0 \text{v}$)





Most performant for LFV-like events is the >3 ECL isolated cluster trigger

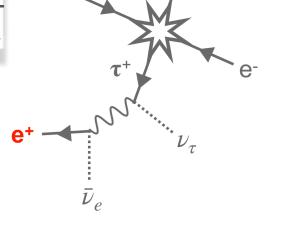
ECL total cluster energy [GeV]

BELLE2-NOTE-PL-2020-015

- Track-finding efficiency is another key performance driver for tau physics @Belle II
- Real detector != simulated detector.

<u>Goal</u>: asses systematic uncertainty, based on the measured discrepancy in the tracking efficiency between simulation and data

- Tag-and-probe method on ee→tt→1x3 prong
 - large т-pair cross section
 - low multiplicity but high track density (boosted τ→3πν)
 - wide momentum range: 0.2 < p_T < 4 GeV

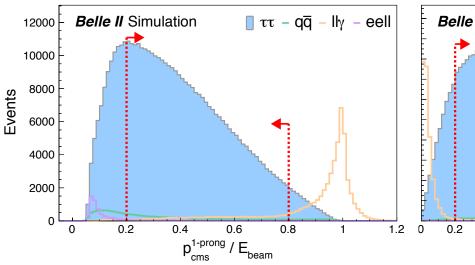

Method

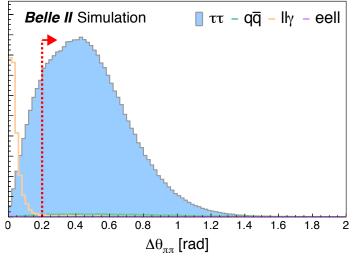
- ▶ tag = 3 good quality tracks with $\sum q = \pm 1$
- probe = look for 4th track that passes loose selections, and conserves charge (∑q = 0)
- ► Count number of events where the probe track is found (N₄) and not found (N₃):

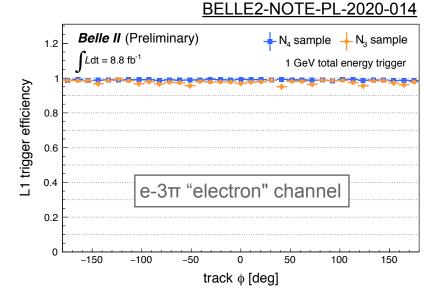
$$\epsilon \cdot A = \frac{N_4}{N_3 + N_4}$$

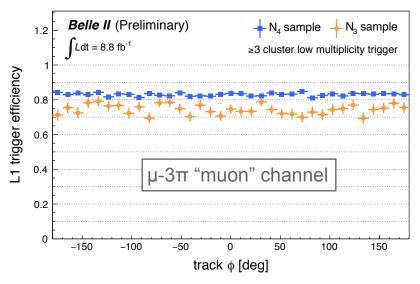
where:

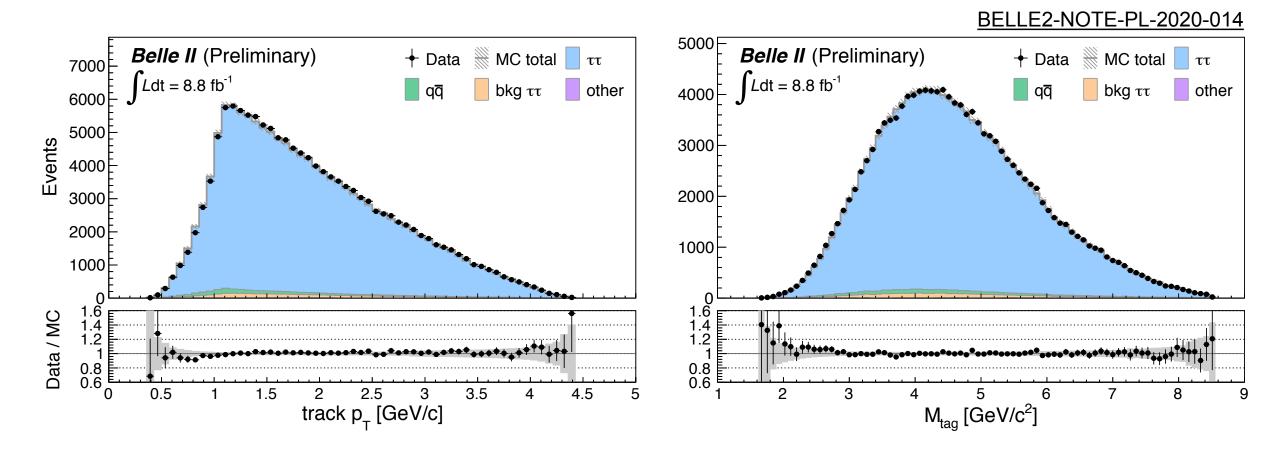
- ∈ is tracking efficiency
- A is geometric acceptance


- Tag tracks: |dz| < 3cm, dr < 1cm, $p_T > 200$ MeV, $e/\mu/\pi$ PID
- Probe track: p_T and PID dropped

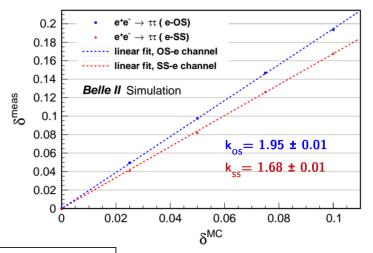

• Trigger: hie (e-3 π), ImI0 (μ -3 π)

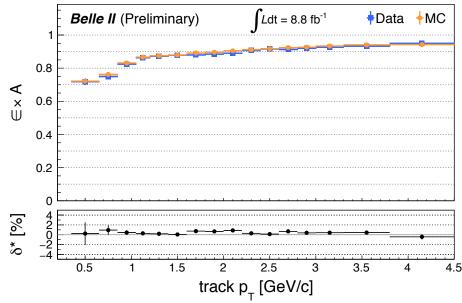

background suppresion


- Angular isolation b/w 1-prong track and each π (cos(θ) < -0.5)
- vertex fit (Rave) to tag π ($\chi^2 > 0.01$)
- ▶ 1-prong $p_{cms}/E_{beam} \in [0.2, 0.8]$


- tag π, $\Delta\theta_{\pi\pi}$ > 0.2 (0.05) for e (μ)
- mass cuts: $m_{tag} < 8.5 \text{ GeV}$, $m_{\pi\pi} < m_{a1}$
- ▶ eey* veto for electron-OS channel
 - $p_{miss} \theta_{cms} \in [40^\circ, 135^\circ]$
 - missing M² > 20 GeV²

After trigger and all offline selections, good agreement between data and MC


P. Rados


Clean sample with high statistics

• Data-MC discrepancy:

$$\delta^* = 1 - \epsilon_{Data}^* / \epsilon_{MC}^* = \frac{1}{k} (1 - \epsilon_{Data}^{meas} / \epsilon_{MC}^{meas})$$

- k-factors from calibration procedure
 - combinatorial effects
 - impact of bkg suppression cuts

$$\delta_{\text{overall}}^* = 0.13 \pm 0.16 \text{ (stat)} \pm 0.89 \text{ (sys) } \%$$

- Includes systematics related to:
 - trigger efficiency

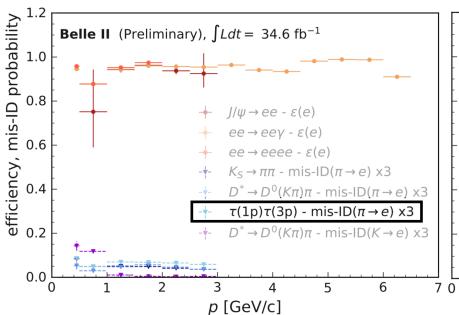
- background subtraction
- charge dependence (dominant)
- luminosity

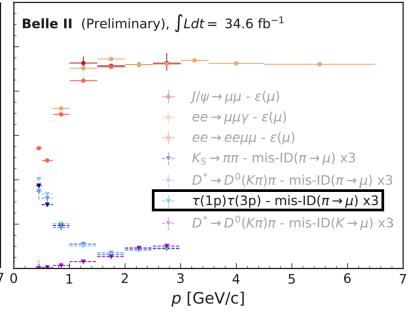
- calibration procedure
- Aiming for tracking performance paper in early/mid 2021

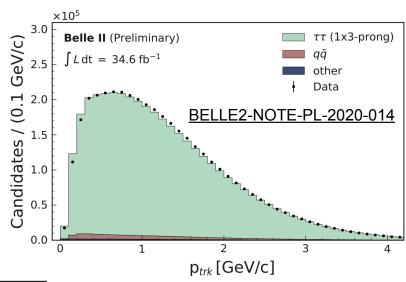
Particle ID with taus

• ~95% of $\tau \rightarrow$ 3-prong decays contain $3\pi \Rightarrow$ powerful handle on πID efficiency and $\pi \rightarrow e/\mu$ misID rates

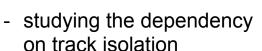
$$\epsilon_{\text{data}} = \frac{N_{\text{pid}} - \sum_{i} N_{\text{pid}}^{\text{bkg},i} \cdot r_{\text{mis-id}}^{i}}{N_{\text{total}} - \sum_{i} N_{\text{bkg},i}} \quad i \in \{\mu, e, K, p, d\}$$


 $1.13 \le \theta < 1.57 \text{ rad, electronID} > 0.9$

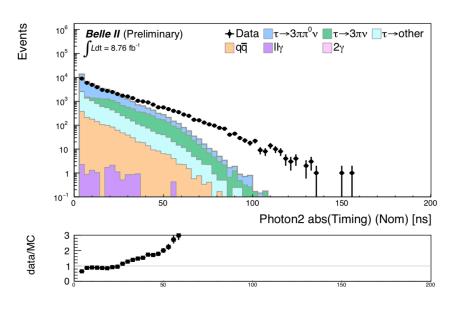

$$\epsilon_{\rm MC} = \frac{N_{\rm pid}}{N_{\rm total}}.$$

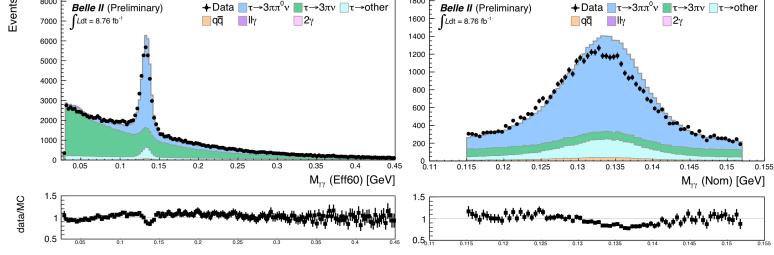

calculated using truth-matched MC

- ▶ N_{pid}: probe selection
 - π efficiency \Rightarrow pionID > x
 - π → μ misID \Rightarrow muonID > x
 - π →e misID \Rightarrow electronID > x


 $0.82 \le \theta < 1.16 \text{ rad, muonID} > 0.9$

• Ongoing work (from Paul \bigcirc)


- improve systematics
- studies of sub-detector performance
- Aiming for PID performance paper in early/mid 2021


π⁰ reconstruction with taus

• π^0 efficiency corrections can be measured by taking the double ratio:

$$\eta_{\pi^0} = rac{\mathit{N^{data}}(au
ightarrow 3\pi\pi^0
u_{ au})}{\mathit{N^{MC}}(au
ightarrow 3\pi\pi^0
u_{ au})} \div rac{\mathit{N^{data}}(au
ightarrow 3\pi
u_{ au})}{\mathit{N^{MC}}(au
ightarrow 3\pi
u_{ au})}$$

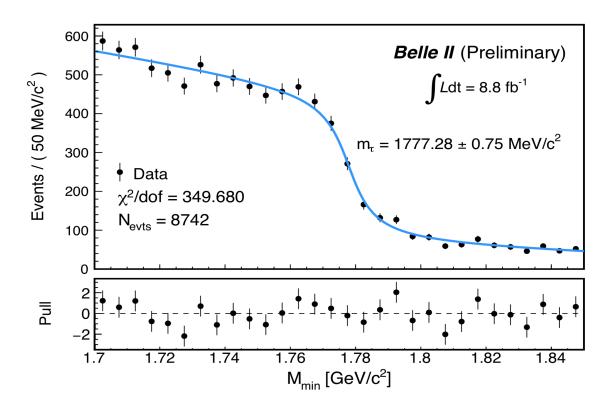
 \Rightarrow covers π^0 momentum from 0.2 - 4.5 GeV, and is complimentary to the studies of π^0 from B decays

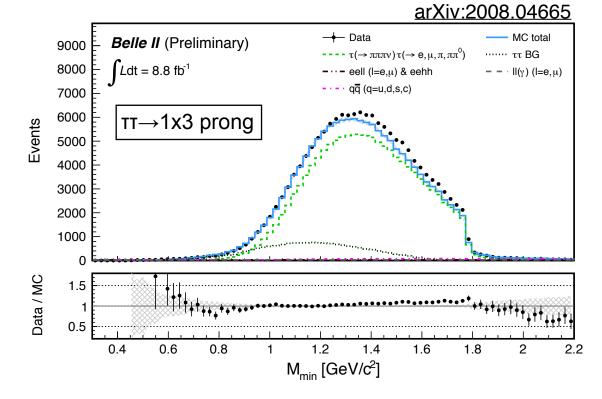
Current nominal π^0 reco in Tau Group:

- \rightarrow E_v > 100 MeV \rightarrow -0.8660 < cosθ < 0.9563
- b clusterNHits > 1.5 → 115 < M_{yy} < 152 MeV
 </p>
- ~2 MeV shift observed in data, also seen in B decay modes
- ⇒ will by mitigated by improved γ energy calibration
- Studies in early stages. Ongoing work to reduce fakes in data using γ timing cuts, and development of BDT based π^0 ID.
- Aiming for Neutrals performance paper in early/mid 2021

Tau Physics Program

- Belle II will provide the world's largest sample of τ-pair events, enabling a rich program of new physics searches and precision tests of the Standard Model
 - tau mass measurement
 - **•** search for lepton flavour violating decays: $\tau \rightarrow l\gamma$, III, lh(h), $l\alpha$, ...
 - lepton universality tests
 - search for heavy neutral leptons
 - CP violation in $\tau \rightarrow K_s \pi v$
 - and much more!
 - electric dipole moment (CP/T violation)
 - Dalitz analysis
 - т lifetime (3x3 prong)
 - v_T mass


- |V_{us}| and g_τ/g_l from τ→ Kv, πv
 - Y(nS)→τμ decays
 - search for second class currents in τ→πην
 - ...

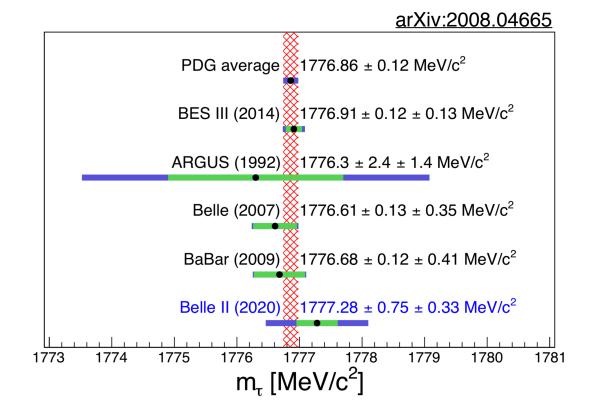

Tau Mass Measurement

- Tau mass measurement in early Belle II data (8.8 fb⁻¹)
- Using a pseudomass technique on $\tau \rightarrow 3\pi v$ decays

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})}$$

 sharp threshold behaviour in region close to m_T

 M_{min} is fitted to an empirical mass function (P₁ ⇒ m_τ) within a 1.7-1.85 GeV window:

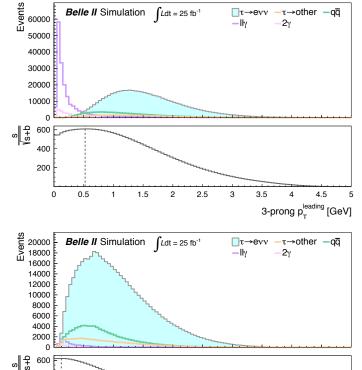

$$F(M, \overrightarrow{P}) = (P_3 + P_4 M) \cdot \tan^{-1}[(M - P_1/P_2)] + P_5 M + 1$$

$$m_{\tau} = 1777.28 \pm 0.75 \text{ (stat)} \pm 0.33 \text{ (sys)} \text{ MeV}$$

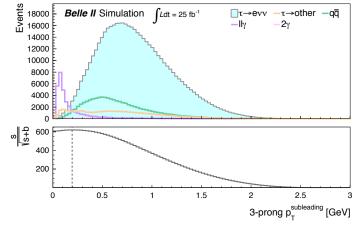
Tau Mass Measurement

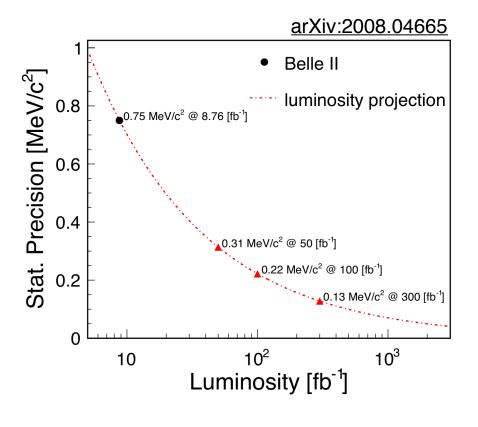
- Belle II in good agreement with previous measurements
- Current best result comes from BES III from pair production at threshold energy
- Best measurement from psuedomass technique comes from Belle

Systematic uncertainty	MeV/c^2
Momentum shift due to the B-field map	0.29
Estimator bias	0.12
Choice of p.d.f.	0.08
Fit window	0.04
Beam energy shifts	0.03
Mass dependence of bias	0.02
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Tracking efficiency	≤ 0.01



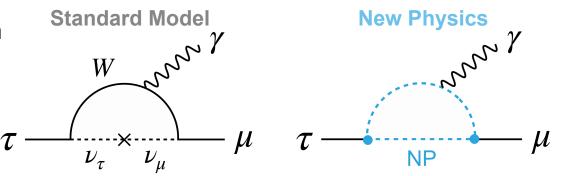
- Belle II currently has similar systematic error as last generation B-factory results
- B-field maps will be updated soon, significantly reducing the dominant uncertainty


Tau Mass Prospects

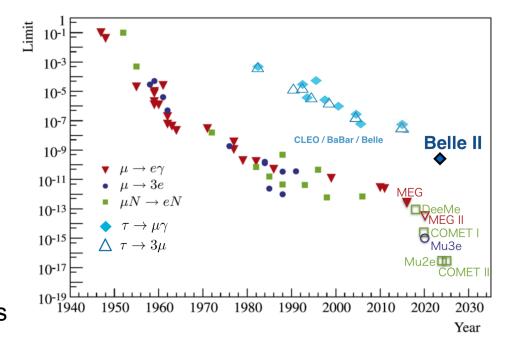

- Goal: achieve at Belle II the best tau mass precision amongst the pseudomass techniques
- Current analysis will reach Belle precision with ~300 fb⁻¹

P. Rados

0.8


- Recent studies indicate that with a more optimal 3-prong selection (E/p cuts → asymmetric p_T cuts) we can get a 2-3x higher efficiency at ~same purity
- ⇒ Belle II could become competitive with Belle in the near future!

400 200


Searches for charged LFV

- LFV has been established for the neutrinos, but what about their charged partners (e, μ and τ)?
- In the SM, charged LFV decays via neutrino oscillation are highly suppressed and immeasurably small:

$$Br(\ell_1 \to \ell_2 \gamma)_{SM} \propto \left(\frac{\delta m_{\nu}^2}{m_W^2}\right)^2 \sim 10^{-54}\text{-}10^{-49}$$

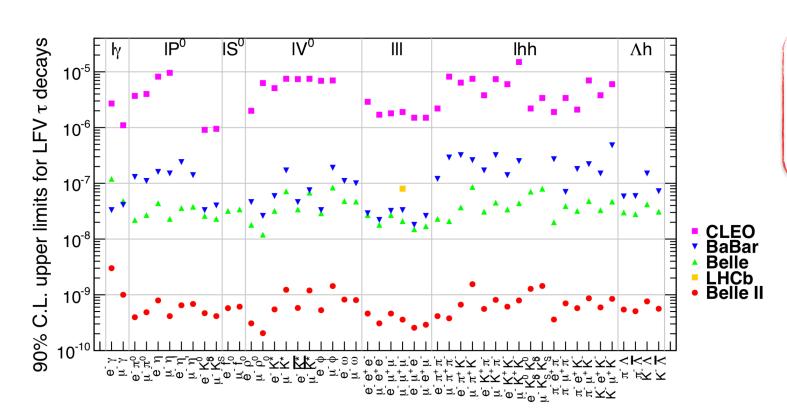
- Observation of charged LFV would be a clear signature for New Physics!
 - Br enhanced in many NP models (10-10-10-7)
 - SUSY, extended Higgs sector, seesaw, leptoquarks, nonuniversal Z', and many more
 - µ→e: stringent bounds exist from MEG
 - $\tau \rightarrow \mu/e$: weaker bounds (Belle, BaBar and CLEO)
- As heaviest lepton, NP can have preferential τ LFV couplings

Prospects for τ LFV

• Due to their large mass, τ leptons provide a wide variety of LFV (and LNV) decay modes to study:

- radiative: $au o \ell \gamma$

- leptonic: $au o \ell\ell\ell$

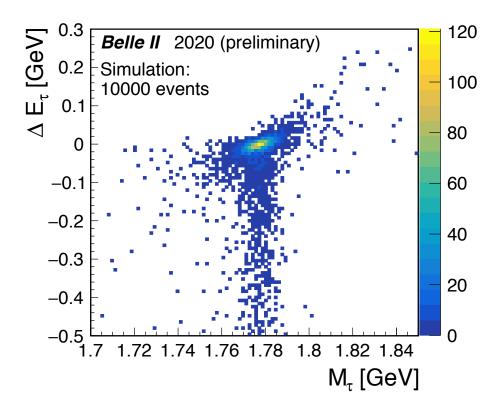

- semileptonic: $\tau \to \ell h(h)$

- "golden channels" for discovery: $\tau \rightarrow \mu \mu \mu$, $\tau \rightarrow \mu \gamma$
- complementary: semileptonic modes allow us to test LFV couplings b/w quarks and leptons, and better discriminate b/w NP models

Extrapolating from Belle results (50 ab⁻¹):

Belle II will push the current bounds forward by at least one order of magnitude!

- This only accounts for ↑ luminosity
- Equally important will be improvements in signal detection efficiency
 better trigger, tracking, vertexing, PID, π⁰ reconstruction, more refined analysis techniques, ...


Search for LFV τ→μμμ

- tag side: generic 1-prong decay, signal side: fully reconstructed t→3µ
- Consider two independent variables:

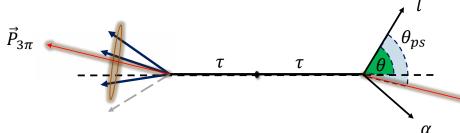
$$M_{\tau} = \sqrt{E_{\mu\mu\mu}^2 - P_{\mu\mu\mu}^2}$$
 $\Delta E = E_{\mu\mu\mu}^{CMS} - E_{\mathrm{beam}}^{CMS}$

$$\Delta E = E_{\mu\mu\mu}^{CMS} - E_{\text{beam}}^{CMS}$$

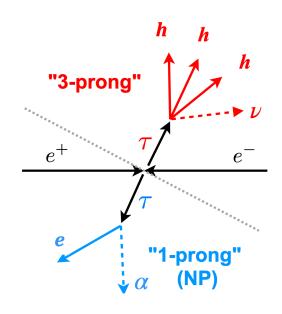
- Signal extraction in $M_{3\mu}$ - ΔE plane (or rotated plane to reduce correlation)
- Side-bands to study / evaluate background contributions

 Good µID performance is critical to achieving the necessary level of background suppression (mainly SM TT)

- p_{μ} < 0.7 GeV \Rightarrow μ does not reach the KLM
- 0.7 < p_u < 1 GeV ⇒ reaches KLM but not many layers crossed

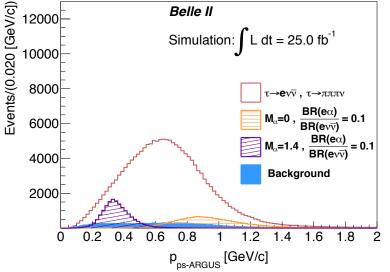

LFV mode

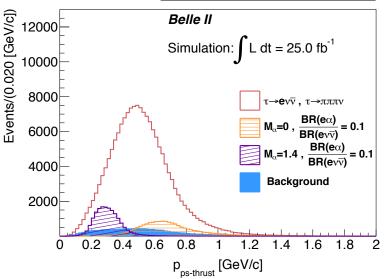
generic τ decay


- $p_u > 1 \text{ GeV} \Rightarrow \text{ reaches KLM with many layers}$
- Can avoid tag μ -veto and $p_{\mu} > 0.6$ GeV requirements used @Belle. New low-multi 3-cluster triggers (>95% efficiency for $\Delta E \sim 0$).
 - ⇒ higher efficiency foreseen @Belle II compared to Belle/BaBar!

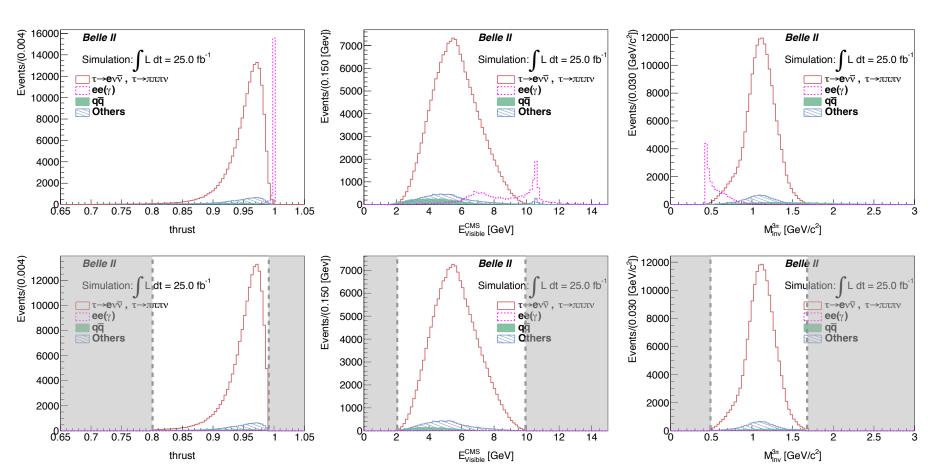
Search for LFV $\tau \rightarrow l\alpha$

- Search for two body decay $\mathbf{T} \rightarrow \mathbf{e}/\mathbf{\mu} + \mathbf{\alpha}$, where α is unobserved (missing energy)
- LFV process that appears in several NP models (Goldstone boson, LFV Z', light ALP, ...)
- Previously studied at MARK III (9.5 pb⁻¹) and ARGUS (476 pb⁻¹)




 Signal will manifest as a peak in the τ rest frame, against the SM τ→lvv background

 $-\vec{P}_{3\pi}$



- cannot access τ rest frame directly due to neutrino
- approximate with the following assumptions:
 - \rightarrow E_T = $\sqrt{s/2}$
 - ARGUS method: $\overrightarrow{p_{\tau}} \approx -\overrightarrow{p_{3\pi}}$
 - Thrust method: $\overrightarrow{p_{\tau}} \approx \overrightarrow{T}$

Search for LFV $\tau \rightarrow l\alpha$

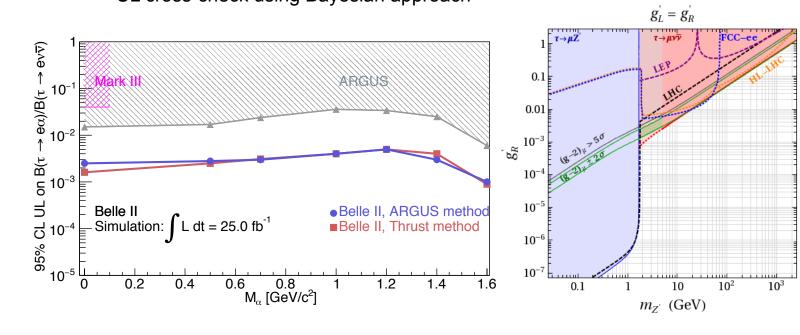
- Follows τ-pair 1x3 prong reconstruction criteria described earlier (4 good tracks, thrust-based hemisphere separation)
- Dominant background is SM $\tau \rightarrow lvv$ (irreducible). Since we don't know M_{α} , we optimise for the SM.

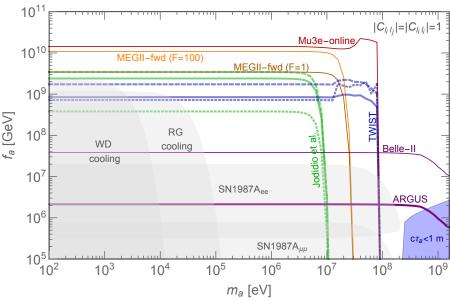
Cut-based selection

$$FOM = \frac{S_{SM}}{\sqrt{S_{SM} + B}}$$

- ▶ 0.8 < thrust < 0.99
- ▶ 2.0 < E_{vis}^{CMS} < 9.9 GeV</p>
- $ightharpoonup 0.48 < M_{3\pi} < 1.66 \text{ GeV}$

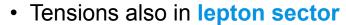
Search for LFV $\tau \rightarrow l\alpha$

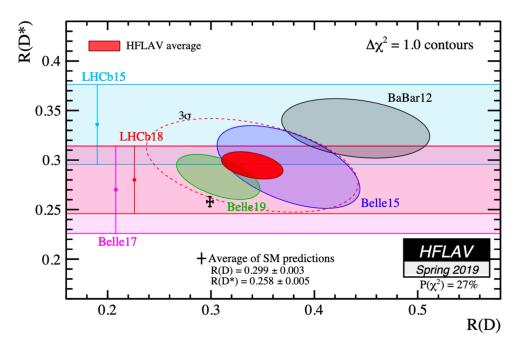

• UL estimation for the ratio $Br(\tau \rightarrow e\alpha)$ / $Br(\tau \rightarrow evv)$ was shown at ICHEP (no systematics)


BELLE2-NOTE-PL-2020-018

- With only 25 fb-1 we can push forward current bounds by an order of magnitude! Aiming for a paper in early-mid 2021.
- Current status of the analysis:
 - including systematics uncertainties
 - include τ→μα channel
 - development of BDT, and better 3-prong selection (see earlier)
 - UL cross-check using Bayesian approach

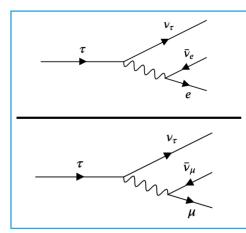
Can set strong constraints on NP models, e.g.


- LFV Z' \Rightarrow strong bound already set from ARGUS for $m_{Z'} \lesssim m_{\tau} m_{\mu}$
- light ALP ⇒ exploring regions of parameter space not reachable by other experiments



Tests of Lepton Flavour Universality

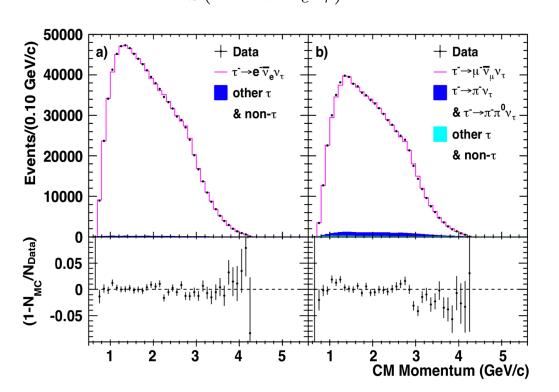
- LFU refers to the SM property that the electroweak (gauge) bosons have the same coupling to all lepton generations
- Anomalies in quark sector
 - R(D)-R(D*) plane (~3.9σ)
 - R(K) and R(K*0) (\sim 2.2-2.5 σ), also P₅' in B \rightarrow K* $\mu\mu$ (\sim 3.4 σ)
 - and more...



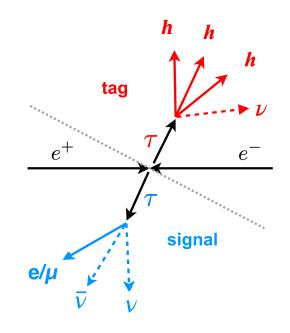
- anomalous magnetic moment of μ (~3.8 σ) and e (~2.5 σ)

- Are these hints of a new fundamental interaction that violates LFU?
- If so, then we should also see hints in the $tau\ sector$, where the most stringent test of μ -e universality comes from the ratio:

$$\frac{\mathcal{B}(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau)}{\mathcal{B}(\tau^- \to e^- \overline{\nu}_e \nu_\tau)}$$



Tests of LFU in τ decays


$$\left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^{2} = \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \overline{\nu}_{e} \nu_{\tau})} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})}, \quad \text{where } f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2} \underline{\log} x$$

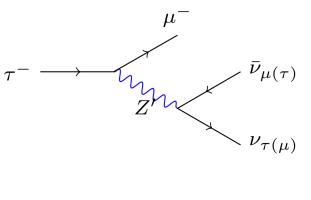
• Most precise measurement from **BaBar** (467 fb⁻¹): Phys.Rev.Lett.105:051602 (2010)

$$R_{\mu} \equiv \frac{\mathcal{B}(\tau^{-} \to \mu^{-} \overline{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^{-} \to e^{-} \overline{\nu}_{e} \nu_{\tau})} = 0.9796 \pm 0.0016 \text{ (stat)} \pm 0.0036 \text{ (sys)}$$

	-	
\mathbf{N}^{D}	731102	
Purity	97.3%	
Total Efficiency	0.485%	
Particle ID Efficiency	74.5%	
Systematic uncertainties:		
Particle ID	0.32	
Detector response	0.08	
Backgrounds	0.08	
Trigger	0.10	
$\pi^-\pi^-\pi^+$ modelling	0.01	
Radiation	0.04	
$\mathcal{B}(\tau^- \to \pi^- \pi^- \pi^+ \nu_{\tau})$	0.05	
$\mathcal{L}\sigma_{e^+e^- o au^+ au^-}$	0.02	
Total [%]	0.36	

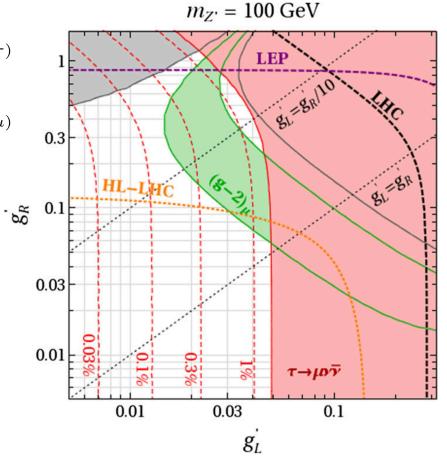
Can we do better at Belle II?

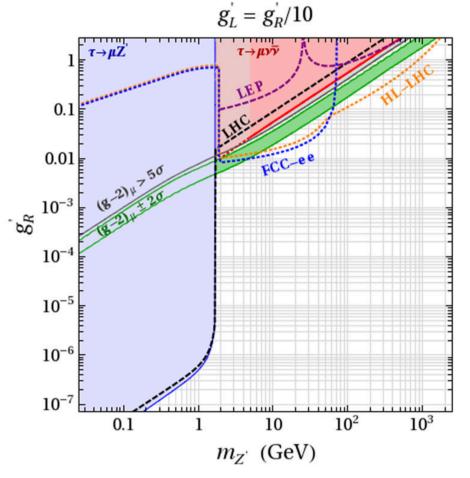
⇒ Yes!


More data and higher signal reconstruction efficiency.

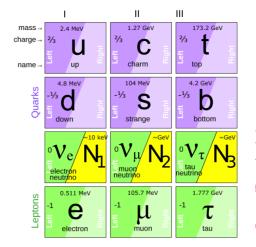
PID uncertainties should scale well with luminosity and higher stat MC samples.

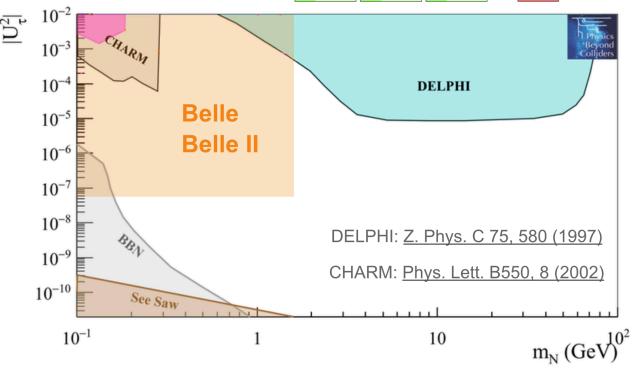
Tests of LFU in τ decays


• R_{μ} can put strong constraints on lepton flavour violating Z' models


Physics Letters B 762 (2016) 389–398

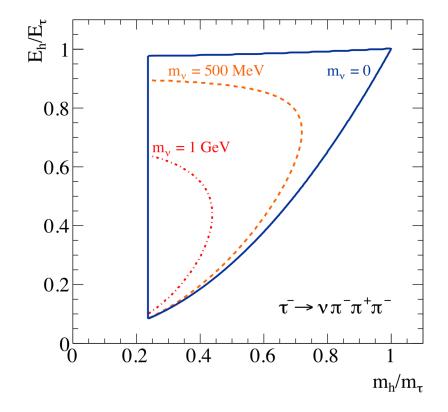
 BaBar has already excluded a significant region of parameter space


 Sensitivity @Belle II will depend on how well we can control the systematics

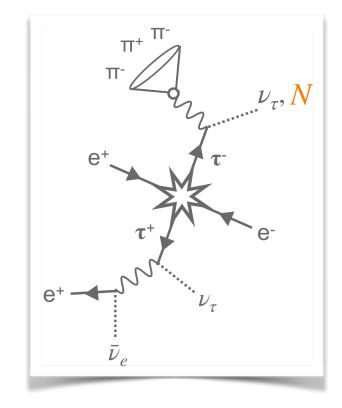


Search for Heavy Neutral Leptons

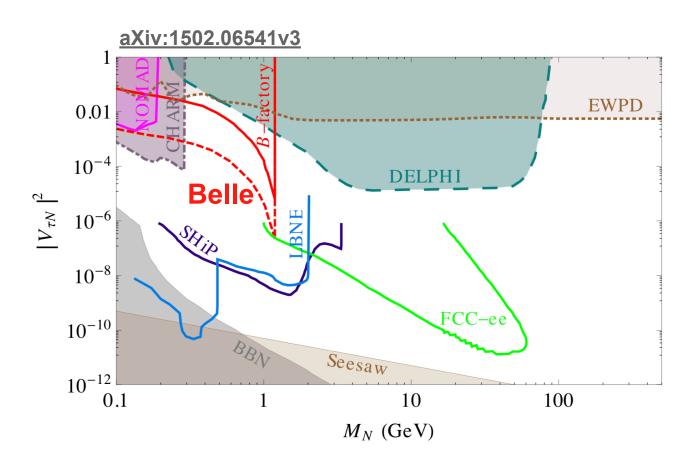
- Neutrino masses can be incorporated into the SM by introducing sterile RH (Majorana) neutrino(s)
- For example, the vMSM model introduces three RH singlet HNLs. Can solve:
 - origin and smallness of v_{SM} mass (with GeV scale N_{1,2} and see-saw mechanism)
 - dark matter (N₁ with mass ~keV)
 - BAU: leptogenesis due to Majorana mass term
- HNL interacts with v_{SM} via N↔v_{SM} mixing.
 Long lifetime due to small M_N and small mixing.
- Tight limits already exist on HNL mixing with v_e and v_μ . Weaker limits on $|\mathbf{U}_{\tau N}|^2$, motivating $|\mathbf{U}_{\tau N}|^2 \gg |\mathbf{U}_{eN}|^2$, $|\mathbf{U}_{\mu N}|^2$
- By studying τ decays at Belle II, we can significantly improve existing limits for M_N < M_T
- ⇒ No measurement was done at Belle/BaBar!



HNL in t decay kinematics


- Proposed search for HNL in $\tau \rightarrow 3\pi v$ decays <u>arXiv:1412.4785v2</u>
- Phase space of 3π-system could be superposition of massless neutrinos and HNL

$$\frac{d\Gamma_{\text{tot}}(\tau^{-} \to \nu h^{-})}{dm_{h}dE_{h}} = \left(1 - |U_{\tau 4}|^{2}\right) \frac{d\Gamma(\tau^{-} \to \nu h^{-})}{dm_{h}dE_{h}} \Big|_{m_{\nu}=0} + |U_{\tau 4}|^{2} \frac{d\Gamma(\tau^{-} \to \nu h^{-})}{dm_{h}dE_{h}} \Big|_{m_{\nu}=m_{4}}$$

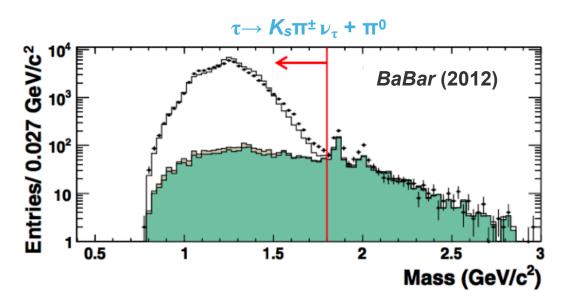

- Kinematics of τ decay will contain info on whether 3π recoiled against HNL
- General idea

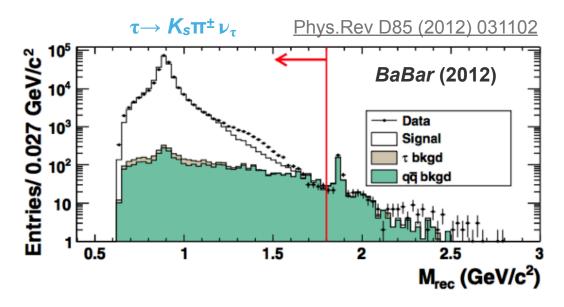
Measure a crescent-shaped endpoint in the $E_{3\pi}$ - $M_{3\pi}$ plane

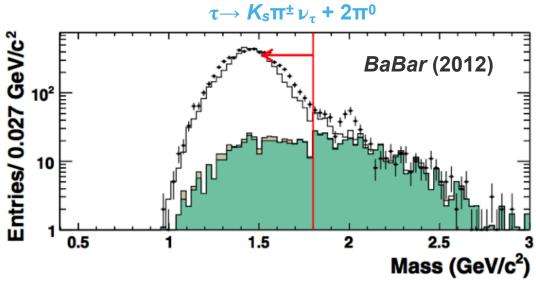
- Method is insensitive to details of HNL decay, lifetime or whether it is Majorana/Dirac
- Would require large data statistics and excellent E/M resolution
 - ⇒ Possible at Belle and definitely at Belle II!

HNL in τ decay kinematics

- Sensitivity estimate based on pseudo-data study
- MC sample of ee $\rightarrow \tau \tau$ with $\tau \rightarrow 3\pi v$ decay(s)
 - assuming Belle lumi
 - smearing to mimic typical Belle resolution
 - both optimistic and conservative scenarios wrt systematics
- Belle may be able to place stringent limits on |U_{TN}|² as low as O(10-7 - 10-3) for 100 MeV ≤ M_N ≤ 1.2 GeV

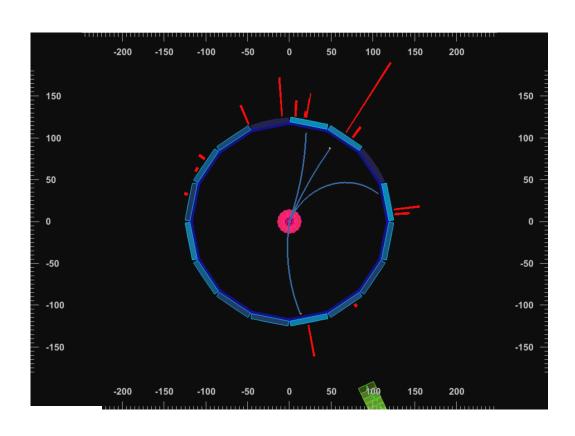

⇒ In the coming years Belle II will be able to push these limits even further!
Other players in the game will be SHiP, LBNE and FCC-ee


CP violation in $\tau \rightarrow K_s \pi^{\pm} \nu_{\tau} + n \pi^0$

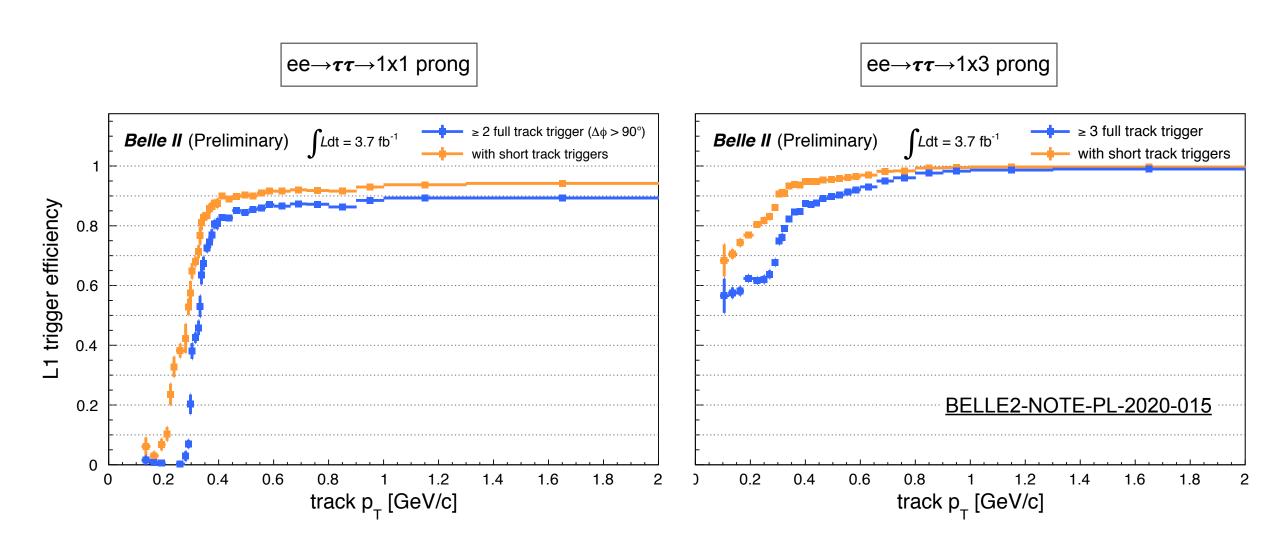

• Due to CP violation in the kaon sector, $\tau \rightarrow K_s \pi^{\pm} v_{\tau}$ decays in the SM have a nonzero decay-rate asymmetry:

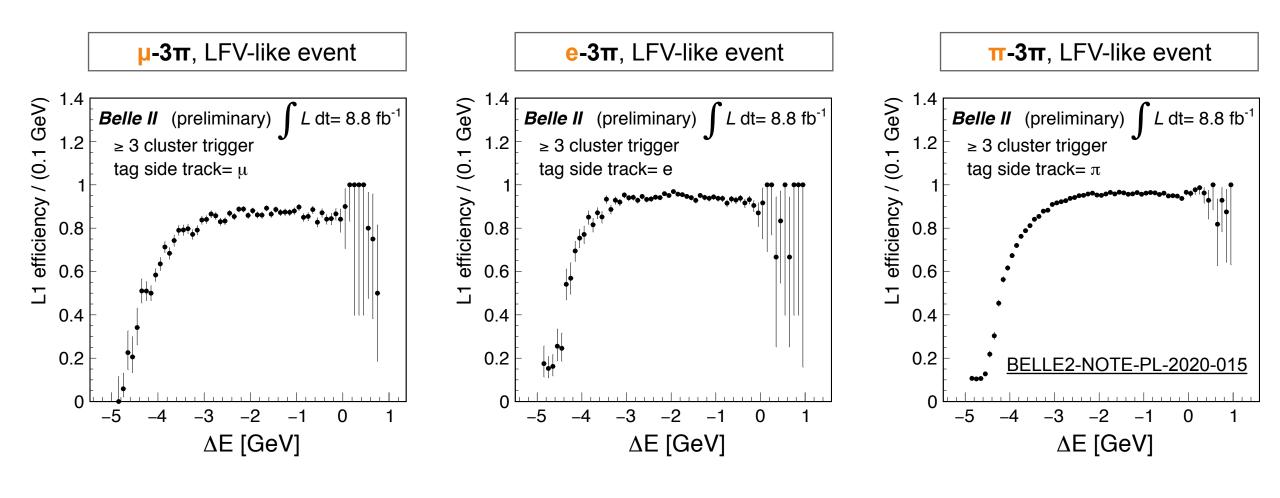
$$A_{\tau} = \frac{\Gamma(\tau^{+} \to \pi^{+} K_{s}^{0} \bar{\nu_{\tau}}) - \Gamma(\tau^{-} \to \pi^{-} K_{s}^{0} \nu_{\tau})}{\Gamma(\tau^{+} \to \pi^{+} K_{s}^{0} \bar{\nu_{\tau}}) + \Gamma(\tau^{-} \to \pi^{-} K_{s}^{0} \nu_{\tau})}$$

- ▶ SM prediction: $(3.6 \pm 0.1) \times 10^{-3}$
- ▶ BaBar measurement: $(-3.6 \pm 2.3 \pm 1.1) \times 10^{-3}$ (2.8 σ)
- An improved A_{τ} measurement is a priority at Belle II

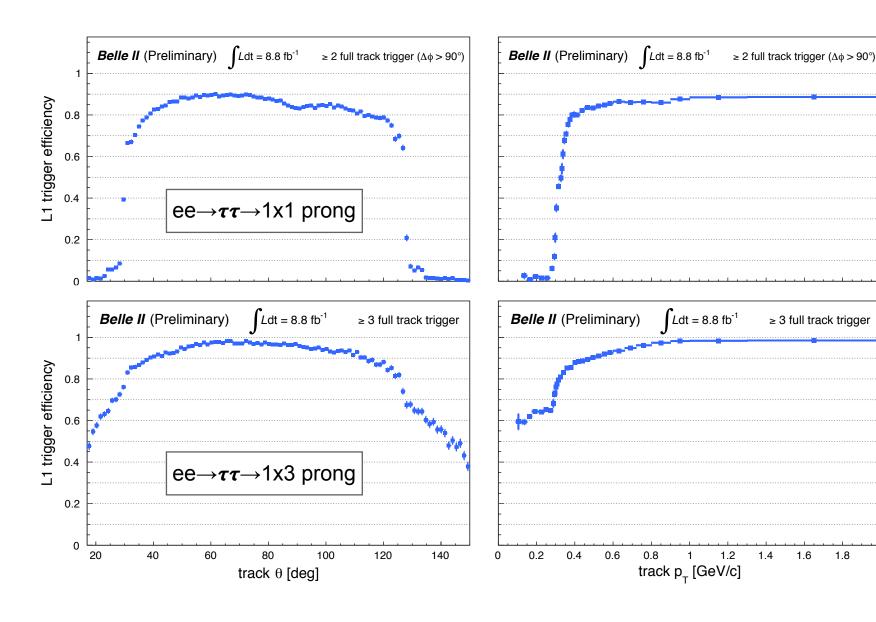


Summary and Outlook


- Belle II is now well into the Phase 3 data taking period, breaking the peak luminosity world record in June and collecting ~74 fb⁻¹ of data so far.
- On target to deliver the world's largest sample of τ-pair events in the coming years, enabling a rich program of both performance and physics results.


- Tau physics goals/highlights:
 - Most precise τ mass measurement amongst the pseudomass techniques.
 - Searches for LFV τ decays, with a potential first paper on τ→lα coming early/mid 2021.
 - Pushing the limits of LFU with the world's leading measurement of R_μ.
 - ▶ Search for HNLs through a novel probe of $N \leftrightarrow v_\tau$ mixing
 - ▶ and <u>much</u> more!
 - ⇒ Exciting times ahead!

BACKUP


Full and short track triggers

Trigger efficiency for τ LFV

Full track triggers

- L1 requirement
 - >2 full tracks
 - track pair with Δφ>90°
 - ECL Bhabha veto
 - ⇒ low efficiency in endcaps, puts limitations on tau + other low multi physics

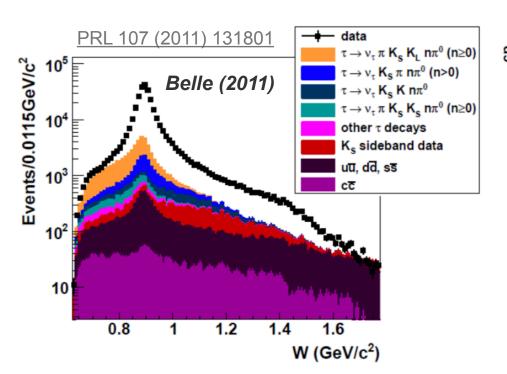
- L1 requirement
 - ≥3 full tracks
- ⇒ less sever drop in endcaps and at low p_T (due to one track redundancy)

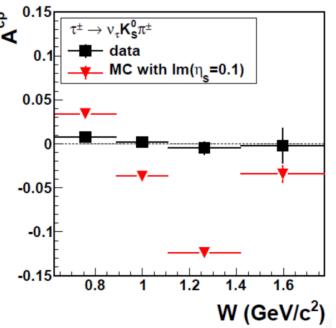
Trigger definitions

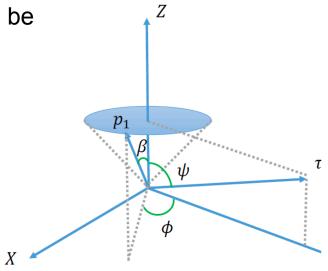
- ffo : ≥ 2 full tracks, track pair with $\Delta \phi > 90^{\circ}$ and not an ECL Bhabha.
- fff : ≥ 3 full tracks.
- fso : ≥ 1 full tracks, ≥ 1 short tracks, track pair with $\Delta \phi > 90^{\circ}$ and not an ECL Bhabha.
- sso : ≥ 2 short tracks, track pair with $\Delta \phi > 90^{\circ}$ and not an ECL Bhabha.
- ffs : ≥ 2 full tracks and ≥ 1 short tracks.
- fss : ≥ 1 full tracks and ≥ 2 short tracks.
- sss : ≥ 3 short tracks.
- hie: total energy above 1 GeV and not an ECL Bhabha.
- c4: ≥ 4 isolated clusters with energy above 100 MeV and not an ECL Bhabha.
- eclmumu : cluster pair each with $E^* < 2$ GeV, $165^\circ < \sum \theta < 190^\circ$ and $160^\circ < \Delta \phi < 200^\circ$.

Trigger definitions

- lml0 : \geq 3 clusters with at least one having $E^* > 300$ MeV, $1 < \theta_{ID} < 17$ (corresponding to $18.5^{\circ} < \theta < 139.3^{\circ}$, full ECL) and not an ECL Bhabha.
- lml1 : exactly 1 cluster with $E^* > 2$ GeV and $4 < \theta_{ID} < 14$ (32.2° $< \theta < 124.6$ °)
- lml2 : ≥ 1 cluster with $E^* > 2$ GeV, $\theta_{ID} = 2$, 3, 15, or 16 (18.5° $< \theta < 32.2$ ° or 124.6° $< \theta < 139.3$ °) and not an ECL Bhabha.
- lml4 : ≥ 1 cluster with $E^* > 2$ GeV, $\theta_{ID} = 1$ or 17 ($\theta < 18.5^{\circ}$ or $\theta > 139.3^{\circ}$) and not an ECL Bhabha.
- lml6 : exactly 1 cluster with $E^* > 1$ GeV, $4 < \theta_{ID} < 15$ (32.2° $< \theta < 128.7$ °, full ECL barrel) and no other cluster with E > 300 MeV anywhere.
- lml7 : exactly 1 cluster with $E^* > 1$ GeV, $\theta_{ID} = 2$, 3 or 16 (18.5° $< \theta < 31.9$ ° or 128.7° $< \theta > 139.3$ °) and no other cluster with E > 300 MeV anywhere.
- lml8 : cluster pair with $170^{\circ} < \Delta \phi < 190^{\circ}$, both clusters with $E^* > 250$ MeV and no 2 GeV cluster in the event.
- lml9 : cluster pair with $170^{\circ} < \Delta \phi < 190^{\circ}$, one cluster with $E^* < 250$ MeV with the other having $E^* > 250$ MeV, and no 2 GeV cluster in the event.
- lml10 : cluster pair with $160^{\circ} < \Delta \phi < 200^{\circ}$, $160^{\circ} < \sum \theta < 200^{\circ}$ and no 2 GeV cluster in the event.
- lml12 : \geq 3 clusters with at least one having $E^* > 500$ MeV, $2 < \theta_{ID} < 16$ (corresponding to $18.5^{\circ} < \theta < 139.3^{\circ}$, full ECL) and not an ECL Bhabha.

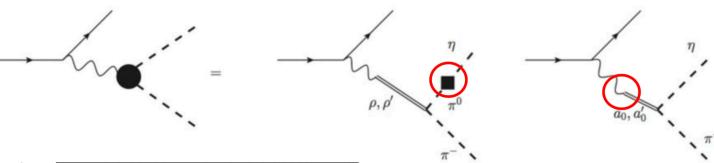

CP violation in $\tau \rightarrow K_s \pi^{\pm} v_{\tau}$


• CP violation could also arise from a charged scalar boson exchange. It would be detected as a difference in the decay angular distributions:


$$A_{i}^{CP} = \frac{\int\!\!\!\!\int_{Q_{1,i}^{2}}^{Q_{2,i}^{2}} \cos\beta \cos\psi (\frac{d\Gamma_{\tau^{-}}}{d\omega} - \frac{d\Gamma_{\tau^{+}}}{d\omega}) d\omega}{\frac{1}{2}\int\!\!\!\!\int_{Q_{1,i}^{2}}^{Q_{2,i}^{2}} (\frac{d\Gamma_{\tau^{-}}}{d\omega} + \frac{d\Gamma_{\tau^{+}}}{d\omega}) d\omega}$$

$$\simeq \langle \cos\beta \cos\psi \rangle_{\tau^{-}}^{i} - \langle \cos\beta \cos\psi \rangle_{\tau^{+}}^{i},$$

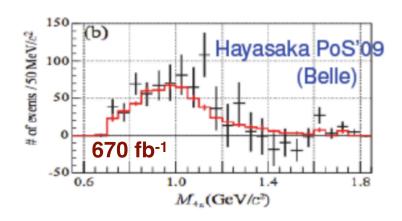
$$d\omega = dQ^{2} d\cos\theta d\cos\beta$$

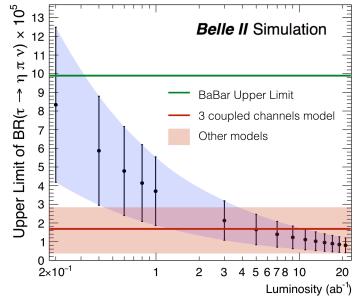

 With 50 ab⁻¹ of data, Belle II is expected to provide a x70 more precise measurement:

$$|A_{CP}| < (0.5-3.8) \times 10^{-4}$$

(assuming central value $A^{CP} = 0$)

Second class currents in $\tau \rightarrow \eta \pi \nu$


- Hadronic currents classified as first or second class according to their spin, parity and G-parity quantum numbers
 - Second Class Current (SCC): $J^{PG} = 0^{+-} (a_0), 0^{-+} (\eta), 1^{++} (b_1), 1^{--} (\omega) \Rightarrow \text{yet to be observed!}$
 - In the SM, $\tau \rightarrow \eta \pi \nu$ decays proceed via SCCs (isospin-violating) with tiny BRs $\lesssim \mathcal{O}(10^{-5})$

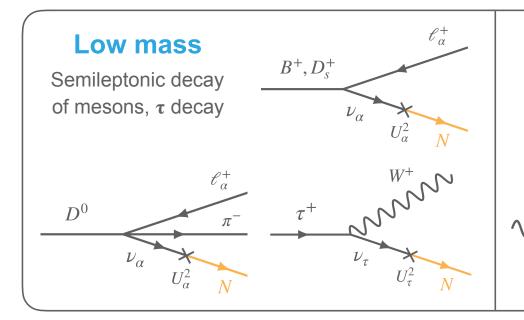


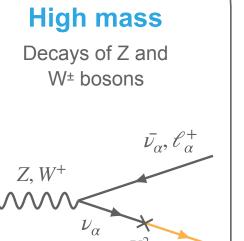
Searched for at last-gen B factories:

- Belle: $Br < 7.3 \times 10^{-5}$

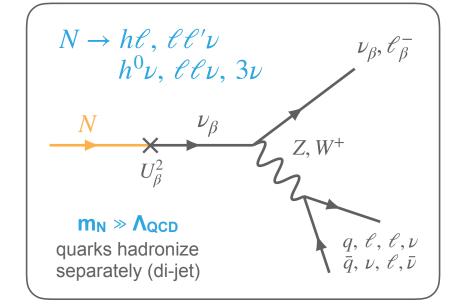
- BaBar: Br < 9.9 x 10⁻⁵

- The observation of SCC via
 τ→ηπν decay is a priority at
 Belle II
- SM predictions can be tested for the first time with the first years data taking (1 ab⁻¹)
- Clear signal could suggest New Physics!

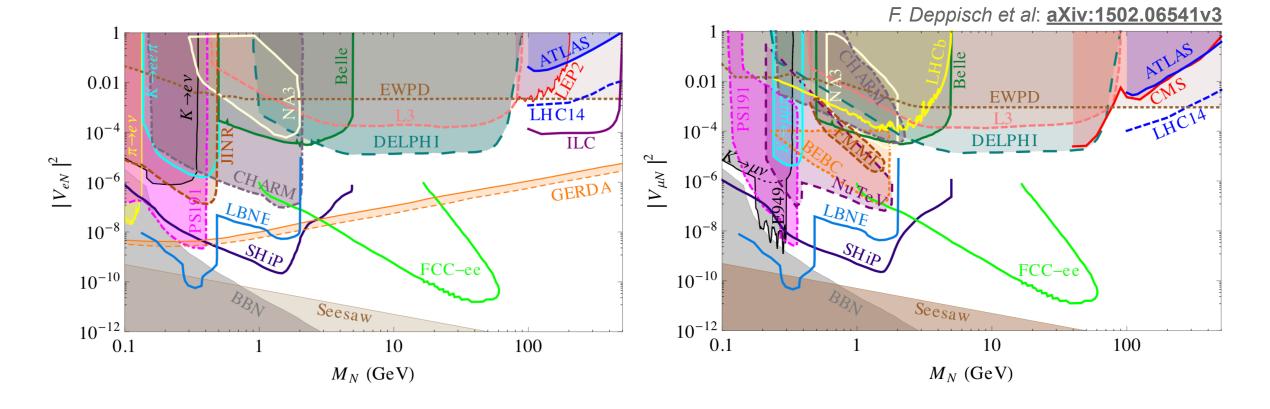

HNL Production and Decay


 Neutrino flavour and mass eigenstates need not coincide, but may be related through a unitary transformation

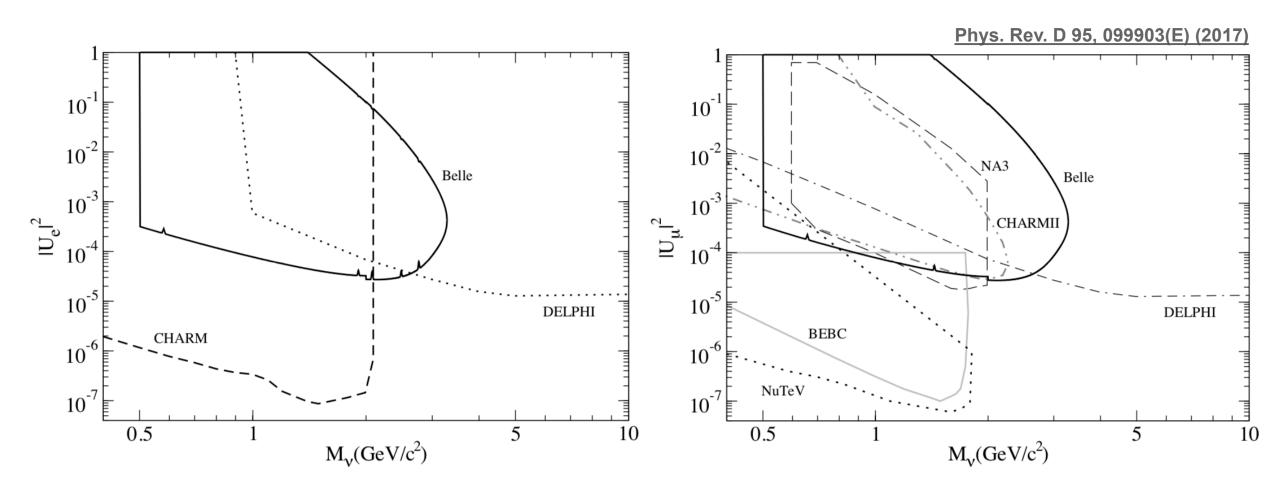
$$\nu_{\alpha} = \sum_{i} U_{\alpha,i} \nu_{i}, \quad \alpha = e, \mu, \tau, ..., \quad i = 1,2,3,4, ...$$


- HNL production can occur through mixing with the SM neutrinos ⇒ suppressed by factor of U_{α²}
- They can then decay (after long flight length) by mixing again with SM neutrinos ⇒ additional U_α²

Production

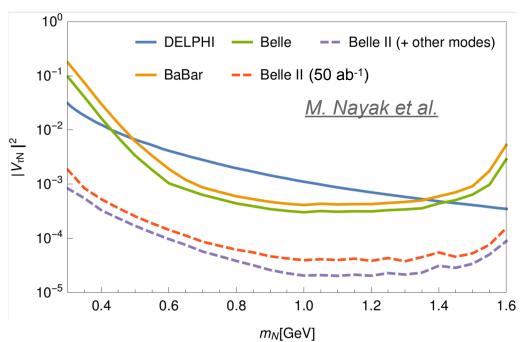


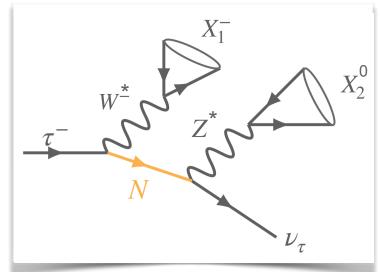
Decay



Status of Direct Searches for HNL

- Existing experiments have explored M_N from 100 MeV up to almost 1 TeV
- M_N > M_Z
 direct search @LHC (pp→Nl±)
- $M_N < M_{Z,W}$ DELPHI ($Z^0 \rightarrow VN$) ATLAS/CMS ($W^{\pm} \rightarrow NI^{\pm}$)
 - M_N < M_{B,D,K}
 beam-dump, NA62, etc.
 LHCb, <u>Belle</u>, soon also <u>Belle II</u>

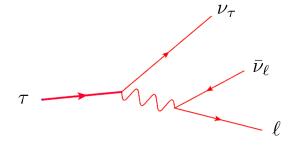

Comparison with other experiments



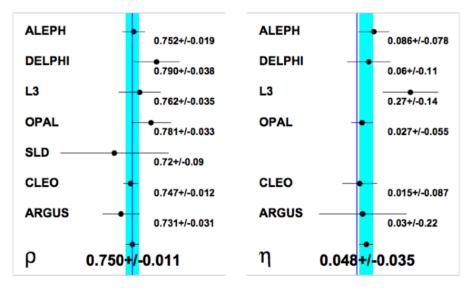
• Results are shown from Belle, CHARM, CHARMII, DELPHI, NuTeV, BEBC and NA3

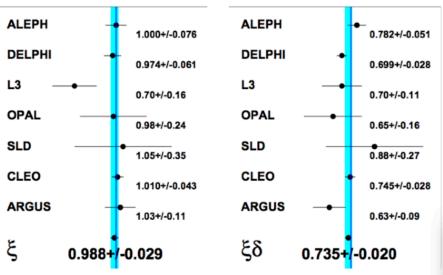
Search for HNL vertex with taus

- Proposed search for displaced HNL vertex in ee $\to \tau \tau \to 1x3$ prong
- For $|U_{\tau N}|^2 \gg |U_{eN}|^2$, $|U_{\mu N}|^2$ and $m_N < m_{\tau}$, decay occurs via $N \rightarrow v_{\tau}(Z^* \rightarrow X^0)$
- For this preliminary sensitivity study:
 - X_1 restricted to π or $\pi\pi^0$
 - X_2 restricted to $\mu\mu$ or ee (hadronic X_2 could enter final analysis)
- Long lifetime $(c\tau \propto |U_{\tau N}|^{-2} m_{N}^{-5}) \Rightarrow$ tiny background but low signal efficiency



- Bkg suppression driven
 by N→ee/µµ vertex-based constraints and flight length > 10 cm
- Signal yields extracted from fit to reconstructed M_N distribution
- Assumption of zero background search
 - achievable based on studies with official Belle II MC
 - more comprehensive bkg studies are ongoing


In this channel alone, Belle or Belle II could exceed DELPHI limits!


Michel Parameters

- In SM, τ lepton decay is due to the interaction with a charged weak current
- Leptonic decays are of particular interest since absence of strong interaction allows precise study of EW Lorentz structure

- When spin of τ lepton is not determined, only four bilinear combinations of the coupling constants are experimentally accessible:
 - ightharpoonup
 ho, η , ξ and δ
 - in SM: 3/4, 0, 1 and 3/4
- With full dataset (50 ab⁻¹), the stat uncertainty is expected to be ~10⁻⁴
- Systematic uncertainties will be challenging at Belle II (~10-3)

