Similarity Learning for Text Classification

R Vamosi

Overview

- 1. Why similarity
- 2. My use case
- 3. Method
- 4. Current state

Why Similarity

- Similar objects are objects with common properties
- Vector v,w in a feature space. Similarity can be defined by
 - $\cos(\operatorname{angle}(v,w)) = v^{T}w/|v||w|$
- Vectors look similar:
 - principal components (from PCA method, principal component analysis)
 - \circ number of dimensions.

What about words?

Towards Similarity: Words

Inter-relation (model) between words: summer ~

- heat, temperature, sun
- -winter, -cold

Towards Similarity: Words

Similarity measure is done by the sub-space projection method, e.g. word2vec

The output space, neural latent space, poses following characteristics:

- similarity
- some meaning in the vector space:
 e.g.: winter rain + sun + heat ~ summer

Some "magic" of unsupervised learning

Towards Similarity: Words

What do we need?

• word_k \rightarrow w_n=(k₁, k₂, ..., k_{dim})

(word vectors)

• Some rule F:

 $F(w_n) = p_n$, a point in the output space word_n, word_k similar $\leftarrow \rightarrow metric(p_n, p_k)$ small

• dimensionality dim low compared to cardinality of input set

Towards Similarity: Text

n-gram = (token_k, token_{k+1}, ..., token_{k+n})
 = (this, is, a, meaningless, sentence, but, an, example, for, now, .)

Similarity within classes:

- documents
- books
- collections, journals

Similarity Learning: Text

Estimator for $F(w_n) = p_n$ with metric(p_n, p_k)

 $w_k = (word_k, word_{k+1}, ..., word_{k+n})$

- common and uncommon words
- permutation of these words
- length
- "style" = pattern

Similarity Learning

Metric space with

- n-grams together within class: similar
- different classes apart

Fig.: 2D projection of the projection space (output)

Similarity Learning

Estimators:

- short-range vs long-range
- short-sequence vs long-sequence
- corpus -> dictionary -> encoding

Fig.: linear and non-linear manifold in the output space

Similarity Learning: : Model

Estimator oftentimes artificial neural network (ANN):

- Feedforward
- CNN
- LSTM

Learning by triplets (xa,x+,x-) only:

- xa and x+ are n-grams of the same class
- x- is a sentence of a different class

Fig.: ANN transforms input x into F(x)

Overview

short-range window -> prediction of the document class such as:

- economics, technical, scientific, gossips, art, beauty, ...
- publication / publisher / author
- ?

BACKUP

- •