

BELLE II PIXELDETECTOR CLUSTER ANALYSIS USING NEURAL NETWORK ALGORITHMS

Katharina Dort on behalf of the Belle II group at the University of Giessen

(katharina.dort@cern.ch)

Vienna 13/01/20

SPONSORED BY THE

OUTLINE

- Motivation
- Recap: The Belle II Pixel Detector
- Highly Ionizing Particles
- Analysis Strategy
 - Offline Analysis
 - Online Analysis
- Summary and Outlook

THE BELLE II PIXEL DETECTOR

BELLE II DETECTOR

PIXEL DETECTOR

2 layer* DEPFET Pixel Detector (PXD)

• R = 1.4 cm / 2.2 cm

√ Close to the IP

• Thickness: 75 μm

√ Low material budget

• Pixel size: 50 μ m - 85 μ m \checkmark High spatial resolution

*Only one layer installed so far

PIXEL DETECTOR READ-OUT

JUSTUS-LIEBIG-UNIVERSITÄ GIESSEN

- Data rate from PXD is drastically higher than rate from all other subdetectors combined
- → Online data reduction is required

- Challenge: only particles leaving a reconstructable track in the outer tracking detectors are detectable
- CDC and others PXD read-out SVD FEE PXD DHHC ×40 ~20 GB/s DATCON ONSEN **Event ROIs** Merger Selector **Builder 1** HLT <1 GB/s T. Geßler et al, The ONSEN Data Reduction System for the Belle II Pixel Event Detector, IEEE Trans. Nucl. Sci., Builder 2 62:1149-1154

 Solution: a cluster rescue system deployed on the ONSEN would mitigate the loss of particles without a reconstructable track

HIGHLY IONIZING PARTICLES

WHAT ARE HIGHLY IONIZING PARTICLES?

- Energy deposition of particles in matter increases with
 - decreasing momentum of projectile
 Example: slow pions
 - increasing mass of projectile
 Example: deuterons, heavy exotic particles

WHAT ARE HIGHLY IONIZING PARTICLES?

- Energy deposition of particles in matter increases with
 - decreasing momentum of projectile
 Example: slow pions
 - increasing mass of projectile
 Example: deuterons, heavy exotic particles
 - non-Bethe-Bloch energy loss
 Example: magnetically charged particles

WHAT ARE HIGHLY IONIZING PARTICLES?

- Energy deposition in metal increases with
 - decreasing momentum of projectile
 Example: slow pions
 - increasing mass of projectile
 Example: deuterons, heavy exotic particles
 - non-Bethe-Bloch energy loss
 Example: magnetically charged particles

RANGE IN VERTEX REGION

- Maximum range in vertex region illustrate strong confinement of highly ionizing particles
- Signal is discarded by ONSEN due to lack of reconstructed particle tracks

11

CLUSTER RESCUE

Detection/identification of highly ionizing particles solely by PXD data

Offline Analysis

- Data recorded by using random triggers (mainly phase 2)
- Focus on unsupervised learning techniques to perform modelindependent, unbiased analysis

Online Analysis

- Implemented on and therefore optimized for FPGAs
- Extension to the ONSEN
- Similar efforts from Karlsruhe and Munich

Taking advantage of state-of-the-art machine learning techniques

ANALYSIS STRATEGY

ANALYSIS STRATEGY

FROM PARTICLES TO PXD CLUSTERS

• Interaction of particle with PXD yields cluster

FROM PARTICLES TO PXD CLUSTERS

- Interaction of particle with PXD yields cluster
- <u>Basic</u> cluster properties used for PID:
 - Cluster size (+ size in u/v direction)
 - Cluster charge (+ maximum/minimum pixel charge)
- Considered but not used: cluster length, cluster angle

FROM PARTICLES TO PXD CLUSTERS

- Interaction of particle with PXD yields cluster
- <u>Basic</u> cluster properties used for PID:
 - Cluster size (+ size in u/v direction)
 - Cluster charge (+ maximum/minimum pixel charge)
- Considered but not used: cluster length, cluster angle

17

CLUSTER PROPERTIES EXAMPLES

High energy deposition of magnetic monopoles yields large high-charge clusters

CLUSTER SHAPE ANALYSIS

- <u>Objective</u>: Generate *new* cluster observables which help in discriminating signal from background
- Expansion of pixel charge distribution in terms of orthogonal polynomials:
 - Image moments by Flusser: invariant under scaling, rotation, skewness, kurtosis
 - Zernike moments (up to 3rd order): invariant under rotation

PIXEL CHARGE DISTRIBUTION

- Alternative to cluster properties: pixel charge distribution (image of cluster)
- Exploit existing image recognition techniques (most notably convolutional neural network)

20

PIXEL CHARGE DISTRIBUTION EXAMPLES

Background

Magnetic Monopoles m = 3 GeV

Average pixel charge distribution of background and magnetic monopoles

PRE-PROCESSING: PRINCIPAL COMPONENT ANALYSIS

- Principal component transformation generates linear combination which maximizes variance of a given input data set
- Allows to filter out redundant information and generate variables with higher discriminative power

- Principal component transformation grouped basic input variables in size-like and charge-like
- Reduction from 6 to 4 input variables possible with information loss of only ~2.5%

22

OFFLINE ANALYSIS

SUPERVISED LEARNING

FEED-FORWARD NEURAL NETWORKS

- Supervised learning in order to separate
 HIPs from beam background*
- Implemented with PyTorch and trained on CPU and GPU

Feed-Forward Network Parameters

4 layers / 2 hidden

> 50 nodes per layer

ReLu Activation Function

CrossEntropy Loss Function

Stochastic Gradient Descent (SGD) Optimizer

Batch Size: 256

Learning Rate: 0.0001

Momentum: 0.9

*beam background

- Official mixed MC beam background
- Includes luminositydependent and beam-induced background

FEED-FORWARD NEURAL NETWORKS

- Loss and accuracy is monitored during training (~8h)
- Cut on classification axis determines accuracy of neural network

ROC-CURVES

ROC curves for anti-deuteron identification

- Neural networks perform better than linear cut
- Using pixel distribution yields better results compared to cluster properties

PxIDis = Pixel charge distribution

27

FEED-FORWARD NEURAL NETWORKS

- Studied influence of charge, momentum, mass and cluster size
- Feed-Forward Networks are highly successful but they require supervised learning
 - Labeled data has to be available/ reliable
 - Unsuited for model-independent search for new physics
 - However: often accuracy is traded off in order to perform unsupervised learning

Results for magnetic monopoles

Input set	Mass [GeV]	Training [%]	Testing [%]	AUC [%]
ClsPrp	1 - 4	99.0	99.0	99.932
PxlDis	1 - 4	98.8	98.8	99.873
ClsPrp	1	98.6	98.6	99.877
PxlDis	1	98.8	98.7	99.890
ClsPrp	4	99.7	99.8	99.966
PxlDis	4	99.8	99.7	99.972

Training & Testing evaluated at point marked with a star on previous slide

ClsPrp = Basic cluster observables (charge and size)

PxlDis = Pixel charge distribution

Results for anti-deuterons

$p_{\rm max} \; [{ m GeV}]$	Input set	Cluster types	Training [%]	Testing [%]	AUC [%]
1	ClsPrp	all	97.5	97.4	99.24
1	ClsPrp	multi pixel	97.3	97.4	99.26
1	ClsPrp	single pixel	97.7	97.7	98.82
3	ClsPrp	all	82.2	82.1	90.19
3	ClsPrp	multi pixel	83.1	83.2	91.34
3	ClsPrp	single pixel	78.7	78.7	85.94
1	PxlDis	all	97.7	97.7	99.27
1	PxlDis	multi pixel	97.7	97.7	99.32
1	PxlDis	single pixel	97.7	97.7	98.81
3	PxlDis	all	82.6	82.6	90.58
3	PxlDis	multi pixel	83.6	83.6	91.70
3	PxlDis	single pixel	78.7	78.7	86.09

28

UNSUPERVISED LEARNING

HOPFIELD NETWORKS

- Recurrent binary neural network (associative memory)
- Network learns pattern associated with background/signal input vector -> stored in weight matrix
- Weight between neurons determines energy of the entire network
- Stable state is reached when energy of network is minimized (similar to spin-spin interaction in quantum mechanical many-body systems)
- Incomplete or distorted patterns are recognized

HOPFIELD NETWORKS

- So far, Hopfield network is trained to store
 4 patterns (2 background, 2 signal)
- Custom activation function (instead of binary activation) is used to feed additional information into the network
- Local, global properties and Zernike moments used in final analysis

$$\left(\begin{array}{ccc}
w_{11} & \cdots & w_{n1} \\
\vdots & \ddots & \vdots \\
w_{1n} & \cdots & w_{nn}
\end{array}\right)$$

Zernike Moment A00

Separation of magnetic monopoles from beam background

3D	local prop.	global prop.	Zernike mom.	accuracy
√	X	X	X	63.0 %
✓	\checkmark	X	X	76.5 %
√	\checkmark	✓	X	95.7 %
✓	\checkmark	✓	\checkmark	97.7 %

Local prop - cluster size + cluster size in x/y + max. charge + cluster charge

Global prop. - local prop + global position

Zernike mom. - global prop + Zernike moments

ELASTIC MATCHING (EM) NEURAL NETWORK

- EMs are employed for pattern recognition problems (i.e. handwriting/gesture/face/... recognition)
- Focus on a subset of pixels displaying features which correspond between tested image and target (template matching)
- Crucial impact of distance measure

No results yet - project currently under preparation

2D-2D mapping \boldsymbol{F} (2D warping)

S. Uchida. "A survey of elastic matching techniques for handwritten character recognition." IEICE transactions on information and systems 88.8 (2005): 1781-1790.

I. Talmi et al. "Template matching with deformable diversity similarity." IEEE Conference on Computer Vision and Pattern Recognition. 2017.

SELF-ORGANIZING MAPS (SOMS)

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

- Unsupervised model-agnostic learning technique which requires no training with ground truth information
- Separation of HIPs and beam background in multidimensional space with subsequent transformation to two dimensions for evaluation purposes
- Implemented on CPU

Self-Organizing Maps Parameters

15 x 15 Nodes

Neighborhood function: Gaussian

Width of Gaussian: 7

Learning Rate: 0.01

SELF-ORGANIZING MAPS (SOMS)

- Training time approx. 10x shorter compared to FFNs
- Monitoring of training process not trivial
- Trained map can be evaluated by a defining classification regions or on a bin-by-bin basis
- In our case: convergence more difficult to achieve compared to FFNs

Results for magnetic monopoles

Input set	Mass [GeV]	Training [%]	Testing [%]	AUC [%]
ClsPrp	1 - 4	99.0	99.0	99.932
PxlDis	1 - 4	98.8	98.8	99.873
ClsPrp	1	98.6	98.6	99.877
PxlDis	1	98.8	98.7	99.890
ClsPrp	4	99.7	99.8	99.966
PxlDis	4	99.8	99.7	99.972

Classification

KATHARINA DORT 34

10-4

ANOMALY DETECTION WITH AUTO-ENCODERS

- Learn encoding + decoding of data in unsupervised manner
- Auto-encoder can only reconstruct what it has been trained on -> loss function increases for *unknown* input

ANOMALY DETECTION WITH AUTO-ENCODERS

CHALLENGES

Analysis-specific

Sparsity of input matrix / limited amount of information

- Equivocal assignment of clusters to category
- Humongous imbalance of background to signal clusters in data
- Estimation of uncertainties

Belle II-specific

 No cluster information in mdst/ cdst files -> largely confined to Phase II data and data for background studies

From J. Bennett's talk at the Belle II summer school July 2019

ONLINE ANALYSIS

NEURAL NETWORKS ON FPGA

- Field programmable gate arrays (FPGAs) have prominent role in data acquisition for Belle II
- Highly parallel processing architecture make
 FPGAs ideal candidates for machine learning tasks
- DSP slices can be used for saving resources and speed up computation

Parallel Computation Using DSP Slices in FPGA, S. Unnikrishnan et al., Procedia Technology 24 (2016) 1127-1134

- Communication with DSP slices and adaptation of neural network to FPGA architecture currently tested
- In future, neural networks could be directly integrated into the ONSEN which would also require online cluster finding on DHH or ONSEN (not implemented yet)

SUMMARY / OUTLOOK

- Identification of particles with high energy deposition at Belle II PXD has seen considerable progress in the last year
- Different data pre-processing and analysis techniques were/are explored and compared
- Focus primarily on model-agnostic unsupervised learning techniques which exploit pattern recognition/matching
- Networks are benchmarked by identifying magnetic monopoles and/or anti-deuterons : accuracies well above 97% are achieved

 Online applications of neural networks running on FPGAs (particularly for the ONSEN) are investigated

40

OUTLOOK

- Exploiting hardware acceleration (GPUs, FPGAs) for faster processing and online applications
- Getting permission to analyze Belle II Phase II data and Phase III background data

- Close contact to other groups working on ML (in particular theory department and groups from the Technische Hochschule Mittelhessen)
- ML seminar with external experts planned for end of February

BACK - UP

NETWORK ARCHITECTURE

- Input: 9x9 pixel matrix around seed pixel
- 3 layers in encoder/decoder with descending/ascending number of nodes per layer
- Bottleneck layer: 16 nodes
- Learning rate: 1E-5
- Batch size: 256
- Loss function: mean square error
- Optimizer: Adam

SIGNAL VS BGD

 Response of bottleneck layer can yield information about differences in background/signal clusters -> no black box

Node 4

Node 5

