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• Motivation  

• Recap: The Belle II Pixel Detector 

• Highly Ionizing Particles 

• Analysis Strategy 

• Offline Analysis 

• Online Analysis 

• Summary and Outlook
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THE BELLE II PIXEL 
DETECTOR
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BELLE II DETECTOR
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Plan for post-LHC physics?
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PIXEL DETECTOR

2 layer* DEPFET Pixel Detector (PXD) 

• R = 1.4 cm / 2.2 cm 

• Thickness: 75 μm 

• Pixel size: 50 μm - 85 μm  

✓Close to the IP 

✓Low material budget  

✓High spatial resolution 
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*Only one layer installed so far
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Plan for post-LHC physics?
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PIXEL DETECTOR 
READ-OUT
• Data rate from PXD is drastically 

higher than rate from all other sub-
detectors combined  

➡ Online data reduction is required

T. Geßler et al, The ONSEN Data 
Reduction System for the Belle II Pixel 
Detector, IEEE Trans. Nucl. Sci., 
62:1149-1154
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• Challenge: only particles leaving a 
reconstructable track in the outer 
tracking detectors are detectable

• Solution: a cluster rescue system deployed on the 
ONSEN would mitigate the loss of particles without 
a reconstructable track
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HIGHLY IONIZING 
PARTICLES
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WHAT ARE HIGHLY 
IONIZING PARTICLES?
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• Energy deposition of particles in 
matter increases with 

• decreasing momentum of projectile
Example: slow pions

• increasing mass of projectile
Example: deuterons, heavy exotic 
particles
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• Energy deposition of particles in 
matter increases with 

• decreasing momentum of projectile
Example: slow pions

• increasing mass of projectile
Example: deuterons, heavy exotic 
particles

Beryllium

dE/dxmpl ≈ β2 ⋅ dE/dxBethe−Bloch

• non-Bethe-Bloch energy loss
Example: magnetically charged particles
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• Energy deposition in metal 
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particles
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• non-Bethe-Bloch energy loss
Example: magnetically charged particles
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Anti-D
euterons

Monopoles m = 3 GeV

RANGE IN VERTEX 
REGION

•  Maximum range in vertex region 
illustrate strong confinement of highly 
ionizing particles

•  Signal is discarded by ONSEN due to lack of 
reconstructed particle tracks 
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CLUSTER RESCUE

Detection/identification of highly ionizing 
particles solely by PXD data
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• Data recorded by using random triggers 
(mainly phase 2) 

• Focus on unsupervised learning 
techniques to perform model-
independent, unbiased analysis 

Offline Analysis Online Analysis

• Implemented on and therefore 
optimized for FPGAs 

• Extension to the ONSEN 

• Similar efforts from Karlsruhe and Munich

Taking advantage of state-of-the-art 
machine learning techniques 
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ANALYSIS 
STRATEGY
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ANALYSIS STRATEGY

14

Identifying input 
variables

Pre-processing of 
input variables

Training machine 
learning classifier

Testing machine 
learning classifier 

Comparison of 
different classifiers

Running classifier 
on Belle II data

Optimizing selection 
of input variables for 

faster training

Optimizing selection 
of input variables for 

higher accuracy



15

15

FROM PARTICLES TO 
PXD CLUSTERS

KATHARINA DORT                   

•  Interaction of particle with PXD yields cluster 
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FROM PARTICLES TO 
PXD CLUSTERS
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•  Interaction of particle with PXD yields cluster  

• Basic cluster properties used for PID: 

• Cluster size (+ size in u/v direction)  

• Cluster charge (+ maximum/minimum pixel charge )

•  Considered but not used: cluster length, cluster angle  
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•  Considered but not used: cluster length, cluster angle  
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CLUSTER PROPERTIES 
EXAMPLES

 High energy deposition of magnetic monopoles yields 
large high-charge clusters 
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CLUSTER SHAPE 
ANALYSIS 

•  Objective: Generate new cluster observables 
which help in discriminating signal from 
background

• Image moments by Flusser: 
invariant under scaling, rotation, 
skewness, kurtosis   

•Zernike moments (up to 3rd 
order): invariant under rotation 

• Expansion of pixel charge distribution in 
terms of orthogonal polynomials:
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PIXEL CHARGE 
DISTRIBUTION

•  Alternative to cluster properties: pixel charge distribution (image of 
cluster) 

• Exploit existing image recognition techniques (most notably 
convolutional neural network)

KATHARINA DORT                   
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PIXEL CHARGE 
DISTRIBUTION EXAMPLES

Average pixel charge distribution of background and 
magnetic monopoles 

Magnetic Monopoles m = 3 GeVBackground
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PRE-PROCESSING: PRINCIPAL 
COMPONENT ANALYSIS

•  Principal component transformation generates 
linear combination which maximizes variance of a 
given input data set  

• Allows to filter out redundant information and 
generate variables with higher discriminative power

•  Principal component transformation 
grouped basic input variables in size-like 
and charge-like 

• Reduction from 6 to 4 input variables 
possible with information loss of only ~2.5%
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OFFLINE 
ANALYSIS
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SUPERVISED  
LEARNING 
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FEED-FORWARD 
NEURAL NETWORKS

•  Supervised learning in order to separate 
HIPs from beam background*   

• Implemented with PyTorch and trained on 
CPU and GPU

*beam background 

•  Official mixed MC 
beam background   

• Includes luminosity-
dependent and 
beam-induced 
background

Feed-Forward Network Parameters 
4 layers / 2 hidden 

> 50 nodes per layer 
ReLu Activation Function 

CrossEntropy Loss Function 
Stochastic Gradient Descent (SGD) Optimizer 

Batch Size: 256 
Learning Rate: 0.0001 

Momentum: 0.9
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FEED-FORWARD 
NEURAL NETWORKS

• Loss and accuracy is monitored during 
training (~8h) 

• Cut on classification axis determines 
accuracy of neural network
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•  Neural networks perform better than 
linear cut  

• Using pixel distribution yields better 
results compared to cluster properties

Diagonal: random guessing

Box function: perfect classification ROC curves for anti-deuteron identification
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PxlDis = Pixel charge distribution 

 ClsPrp = Basic cluster observables (charge and size) 
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FEED-FORWARD 
NEURAL NETWORKS

•  Studied influence of charge, 
momentum, mass and cluster size  

• Feed-Forward Networks are highly 
successful but they require supervised 
learning 

Results for magnetic monopoles

Results for anti-deuterons

Training & Testing evaluated at point marked with a star on previous slide 

 

KATHARINA DORT                   

•  Labeled data has to be available/
reliable 

• Unsuited for model-independent 
search for new physics  

• However: often accuracy is traded off in 
order to perform unsupervised learning 

ClsPrp = Basic cluster observables (charge and size) 

 
PxlDis = Pixel charge distribution 

 



UNSUPERVISED 
LEARNING 
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HOPFIELD NETWORKS
• Recurrent binary neural network (associative memory) 

• Network learns pattern associated with background/signal 
input vector -> stored in weight matrix 

• Weight between neurons determines energy of the entire 
network  

• Stable state is reached when energy of network is minimized 
(similar to spin-spin interaction in quantum mechanical many-
body systems)  

• Incomplete or distorted patterns are recognized
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HOPFIELD NETWORKS

Separation of magnetic monopoles from beam background

Local prop - cluster size + cluster size in x/y + max. charge + cluster charge 

Global prop. - local prop + global position 

Zernike mom. - global prop + Zernike moments 

 

• So far, Hopfield network is trained to store 
4 patterns (2 background, 2 signal) 

• Custom activation function (instead of 
binary activation) is used to feed 
additional information into the network 

• Local, global properties and Zernike 
moments used in final analysis 
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Zernike Moment A00

Fit to signal:
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• EMs are employed for pattern recognition 
problems (i.e. handwriting/gesture/face/… 
recognition) 

• Focus on a subset of pixels displaying features 
which correspond between tested image and 
target (template matching) 

• Crucial impact of distance measure 
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No results yet - project currently under preparation

I. Talmi et al. "Template matching with deformable diversity similarity." IEEE 
Conference on Computer Vision and Pattern Recognition. 2017.

S. Uchida. "A survey of elastic matching techniques for 
handwritten character recognition." IEICE transactions on 
information and systems 88.8 (2005): 1781-1790.

ELASTIC MATCHING (EM) 
NEURAL NETWORK
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SELF-ORGANIZING 
MAPS (SOMS)

•  Unsupervised model-agnostic learning technique 
which requires no training with ground truth 
information 

• Separation of HIPs and beam background in multi-
dimensional space with subsequent transformation 
to two dimensions for evaluation purposes 

• Implemented on CPU

Self-Organizing Maps Parameters 
15 x 15 Nodes 

Neighborhood function: Gaussian 
Width of Gaussian: 7 
Learning Rate: 0.01

KATHARINA DORT                   
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SELF-ORGANIZING 
MAPS (SOMS)

• Training time approx. 10x shorter compared to FFNs 

• Monitoring of training process not trivial  

• Trained map can be evaluated by a defining 
classification regions or on a bin-by-bin basis  

• In our case: convergence more difficult to achieve 
compared to FFNs
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Results for magnetic monopoles



KATHARINA DORT                    

ANOMALY DETECTION 
WITH AUTO-ENCODERS
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• Learn encoding + decoding of 
data in unsupervised manner  

• Auto-encoder can only 
reconstruct what it has been 
trained on -> loss function 
increases for unknown input
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Identify anomalies

Real Belle II background Train autoencoder

Belle II 
unclassified data 

Fast background 
simulation?

Train SOM with 
anomalous clusters

Input Identification Classification

Analyse SOM 
regions/cluster

ANOMALY DETECTION 
WITH AUTO-ENCODERS
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CHALLENGES

•Sparsity of input matrix / limited amount of 
information 

•Equivocal assignment of clusters to category 

•Humongous imbalance of background to signal 
clusters in data 

•Estimation of uncertainties 
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Analysis-specific

Belle II-specific
• No cluster information in mdst/

cdst files -> largely confined to 
Phase II data and data for 
background studies

From J. Bennett’s talk at the Belle II summer school July 2019
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ONLINE ANALYSIS
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NEURAL NETWORKS 
ON FPGA

• Field programmable gate arrays (FPGAs) have 
prominent role in data acquisition for Belle II  

• Highly parallel processing architecture make 
FPGAs ideal candidates for machine learning tasks 

• DSP slices can be used for saving resources and 
speed up computation
Parallel Computation Using DSP Slices in FPGA, S. Unnikrishnan et al., 
Procedia  Technology 24 ( 2016 ) 1127–1134  
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• Communication with DSP slices and 
adaptation of neural network to FPGA 
architecture currently tested 

• In future, neural networks could be directly 
integrated into the ONSEN which would also 
require online cluster finding on DHH or 
ONSEN (not implemented yet)
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SUMMARY / OUTLOOK
• Identification of particles with high energy deposition at Belle II PXD 

has seen considerable progress in the last year  

• Different data pre-processing and analysis techniques were/are 
explored and compared 

• Focus primarily on model-agnostic unsupervised learning 
techniques which exploit pattern recognition/matching 

• Networks are benchmarked by identifying magnetic monopoles 
and/or anti-deuterons : accuracies well above 97% are achieved 
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• Online applications of neural networks running on FPGAs 
(particularly for the ONSEN) are investigated 
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OUTLOOK
• Exploiting hardware acceleration (GPUs, FPGAs) for faster 

processing and online applications 

• Getting permission to analyze Belle II Phase II data and 
Phase III background data 
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• Close contact to other groups working on 
ML (in particular theory department and 
groups from the Technische Hochschule 
Mittelhessen) 

• ML seminar with external experts planned 
for end of February 
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BACK - UP
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NETWORK 
ARCHITECTURE
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• Input: 9x9 pixel matrix around seed pixel 

• 3 layers in encoder/decoder with descending/ascending 
number of nodes per layer 

• Bottleneck layer: 16 nodes  

• Learning rate: 1E-5 

• Batch size: 256 

• Loss function: mean square error 

• Optimizer: Adam
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SIGNAL VS BGD
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• Response of bottleneck layer can yield information about 
differences in background/signal clusters -> no black box

Node 4 Node 5


