[he quest for LFV through
Ov2[3 decays in Germanium:

for Neutrinoless 33 Decay

G. Salamanna (Roma Tre University & INFN)
_IPA, September 2022




* Stems from previous achievements with Germanium (see D. [edeschi and

E.Bossio’s talks) and puts together their best in terms of technology and know-how

* Two-staged approach with a "'stepping stone” of ~200 kg (Legend-200) towards

the full-fledged experiment with one-ton scale (Legend-1000)

2 What's to “demonstrate”?! Development of large Point-contact detectors, layout can be scaled up,

bkg reduction can be taken even farther aggressively
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How far can we go!

"°Ge (91% enr.)

L-1000
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Unc. from
NME
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!

(FWHM: Full Width at
Half Maximum; 2.355 o
for a Gaussian peak)
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* Value of T, for which a 76Ge-enriched experiment has a 50% chance to observe a signal above

background with 30 significance

* [ess than one background count expected in a 40 Region of Interest (ROI) with 10ty exposure



LEGEND-200 site: LNGS

e | -200 uses GERDA infrastructure
TR, at LNGS
600 m.w.e. | , _~+ — * Ge detectors “dipped"” in LArin
' #. pre-existing cryostat
e Mountain provides screening
against cosmic rays

e N G
"y Gran Sasso Mountains -

——

| QO

Gran Sasso
Laboratory e Expected sources of external bkg

include y from U/Th decays,
neutrons, remaining cosmic rays
(prompt and delayed)

* |ntrinsic: radioactive surface
contamination, 3?Ar decays,
cosmogenic activation of isotopes



i) | !
‘ ’H lmm
‘\ |AJ‘,

|
1 | Lok wa = =y
) i/

|

m A
0
= -~
s i .
kf | \|
7 v i g
o s ——%
7 ~
1 | 1 i 3,
(W | I
i | !
| Il | 1 |
i I I
[H
s
¥
|}

high-purity germanium (HPGe) detectors enriched in 76Ge to (86—88)%: source + detector
detectors mounted on low-mass holders (to minimize radioactive bkg)

embedded in liquid argon (LAr): cryogenic coolant and detector against external radiation
ultrapure water tank: buffer around cryostat as additional absorber + Cherenkov veto




A heart of (High Purity) Germanium

Speed [cm/us]

with paths and isochrones
General concept w

* p-type diodes with point-contact
* Charge collection at p* electrode (Boron-implanted),
polarization potential applied to n* electrode (diffused Li)

R. Cooper et al., NIM A665,

|CPC 25 (2011)]

e ~60% of |.-200 detectors are of this type

e larger mass (1.5-2.0 kg, up to <2.5> kg for L-1000)

* but retaining similar charge drift times across volume
(important for Pulse Shape Discrimination, see later) o NN
e Reduced surface-to-volume ratio (a and 3): less dirty Radial position [mm]
cables, pre-amps

e | ower cost per kg, higher efficiency

Axial position [mm]

well —

n* contact

Bulk (p-type) -

groove \

p+ contact




The big Germanium
“mozzarella”

Practice crystal for test of
grinding, etChing, etc_ grown by PHDs Company, in Knoxville, Tennessee.

For more on bigger Ge diodes in view of L1000:
https://indico.phy.ornl.gov/event/128/contributions/541/




Z [mm)])

Origin of radioactive bkgs

® d mainly from 2/0Po (T=138 days) coming from 238U chain on diode surface and
attracted to migrate towards p* electrode by its strong field

® Vycomes from

® various branches of U and Th chain on materials (FETs, cables, Cu mounts, plastics);

® and from AAZAr — 402K = 4042C3" decays (K 1on drifted by LAr convective
motion and electric field lines towards n* dead layer = SSE)

® [3 mainly from 4942K " decays close to diodes, same as above

Ov[3P3 signal candidate (single-site) v-background (multi-site)
Weighting Potential and Charge Drift Generated Signal Weighting Potential and Charge Drift Generated Signal
%1 Acceptance Window Charge signal 19?1 Acceptance Window e
80 /
800 A /
S S5 /
5 3 @6 .
3 | accepted N B O
O
@
- [ | 0 #/#//

0 20 200 400 600 800 1000 —-40 -20 0 20 40 0 200 400 600 800 1000 1200 1400 1600
Radius [mm)]) Time [ns) Radius [mm] Time [ns]



-xpected bkg budget -200

Ge Internal - U, Th Chains
[ Atmospheric Ar
[ Ge Cosmogenics
[ ] Surface «

Cosmic Rays

[ ] Total

Detector Mounts

Front Ends & Mounts

Cables

Nylon Shrouds

Optical Fibers
Preamplifiers

2K p-decays

68
Ge

60
Co

o~-emitters

u-induced (3400 mwe)

ALL BACKGROUNDS

1074 10

10°° 1077 10°° 107° - (
[counts/(keV kg y)’

~ 2-3 times lower Bl than GERDA

e ———




| Ar active detector

® Retain a crucial element of GERDA: instrument LAr volume
to read out light from scintillation

® ) shrouds of optical fibers for enhanced coverage coated in TBP as
WLS + SIPM with new FE electronics

® Reflective foil around outer shroud to increase light collection

® \Veto radiogenic backgrounds but can also measure energies
and identify processes (see later)

® Self-vetoeing from radioactivity of fibers + high-activity (3
decays of sub-dominant isotope 37Ar [1.41 Bq/l (eg NIMA 574 83)]




Benefit of active veto (lesson from GERDA)

Counts /5 keV
(@)
o
o
(@)

N
o
o
o

40K(EC, 1460 keV vy)
no energy in LAr

2000

3000

All detectors - 103.7 kg-yr

Prior liquid argon veto
| Atter liquid argon veto

2vpp decay (T, =1.93 x 10%'yr)

1460 1480

N R
1500 1520 1540
Energy (keV)

s

600 800 1000 1200 1400
Energy

* Ov2[3 decay signal efficiency: eiar = (98.2 + 0.1)% after upgrade
* Accidental coincidences give |.8% dead time after upgrade
* Factor 6 bkg reduction in the ROI (1930 keV to 2190 keV) on top of PSD

-

GERDA 20-06

1600
(keV)

“2K(B")

B- energy in LAr
suppresses 42Cay |
line (E=1524 keV)
by factor ~5

Eur. Phys. J. C (2018) 78: 388




At present...
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60 kg taking data since June

* Taking data during summer for
commissioning and performance
evaluation

* Rest to be assembled in autumn to reach

200 kg
* Then start physics data taking
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Fresh! Inrtial commissioning performance

’ LEGEND.
3.75 1 =
* * Preliminary energy resolution
5907 H from August commissioning runs
3, 3 of 60 kg in full set-up
g . * Resolution does not depend on
S 3007 ¢ ¢ 7 detector mass, heavier detectors
> . sport excellent reso
T 2.75 - ' : :
g e . o * Work on-going on read-out/noise
2.50 - ° o S to Improve reso on some
. ° S ¢ 2 channels
2.25 - ¢ o ® z
L O
¢ 3
200 I T I T T T
S 5 S 5 S < S 3
Mass (k) 225Th Source Calibration
10° 4
1 1 After quality cuts
After quality cuts and pulse shape discrimination cut LEG EN D
e 228Th sources (T12=1.9 yr, 107
A~5 kBg/source) ?
| |
| okl \
e Response checked at various Chl L
energies about once a week A k
é 103 6000 -
e Used for resolution and to extract 1000 4
benchmark performance of PSD on 2 Jo00
. . 10~ 4
radiogenic backgrounds ] .
0 I I I I
1580 1600 1620 1640
L0t LEGEND-200 Commissioning, Summer 2022 (preliminary)
1000 12I00 14I00 1GI00 18I00 20I00 22I00 24IOO 26I00

Energy (keV)



Preliminary SIPM perfo in 60 kg runs

14900 - raw waveform. Ch: 60
Event 0
14850 A
X
14800_ T T T T T T T
0 20 40 60 80 100 120 time. us
15000 4 rg\\;veﬁ/ta\éeform. Ch: 60
14900 A
X
14800 - : : : ‘ . X . :
0 20 40 60 80 100 120 time. us
SiPM ID: 41
10°
] — i~ data
=N L "\ —— Gaussian Fits
* Single and pile-up events of a typical channel 3
in events within [-1,10] us of a Ge detector g
1o? - trigger o
] . Of
] * Excellent baseline (few tens of uV) N
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[-200 = L-1000

Ge Internal

Detector Mounts
Front Ends & Mounts
Cables

Nylon Shrouds
Optical Fibers
Preamplifiers

42K p-decays

68
Ge

60
Co

a~emitters

B U, Th Chains
[ Atmospheric Ar
[ Ge Cosmogenics
[ Surface «

[ ] Cosmic Rays

[ ] Total

u-induced (3400 mwe)

1078 107 10°° 107 10 1
[counts/(keV kg y)]
Ge Internal - U, Th Chains

Detector Mounts
Front-Ends & Mounts
Cables

Optical Fibers
Preamplifiers

2K B-decays

68
Ge

60

Co

a-emitters

u-induced (6000 mwe)

11

[ Underground Ar
[ Ge Cosmogenics
[ Surface o

[ ] Cosmic Rays

[ ] Total

108 10”7 10°®

10° 107

1
[counts/(keV kg y)]

03
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e Largest reductions are on
42|<’ Q, U

* Need specialised work to

“kill” cosmogenic bkg, esp. it
at LNGS

*+ “trimming’ here and
there on radio-purity of
materials, esp. cables

~ 50 times lower Bl than GERDA

et




https://arxiv.org/abs/
2107.11462

- 1000 preliminary design  =usee
-

L B g — *  String concept replicated in 4 payloads,
T | 48 | @ s in total ~400 detectors

*  Dedicated Underground Ar cryostat,
~3m3 in volume

*  Modest-sized LAr cryostat in “water
tank” (6 m & LAr, 2-2.5 m layer of

water) or large LAr cryostat w/o water
O m Q)

[l
01 N

e  Other options still remain under
investigation in order to achieve max
bkg reduction (esp. cosmogenic)

Site yet TBD (LNGS? SNO?): both offer some advantages and some limrtations
Staged data-taking in payloads (2025-2030?) as detector production progresses

R&D on-going on several crucial improvements: larger |CPC, electronics, UGEF Cu,
PEN, neutron veto, use of UG Ar, radio-cleaner fibers


https://arxiv.org/abs/2107.11462
https://arxiv.org/abs/2107.11462

2 examples of remedies against bkg

® UGEFCu used in L200 b/c of its high radio-purity

(£ 0.1 YBg/kg Th/U chains, very low in cosmogenic
0Co)

® Advancements in the understanding of post

machining contamination of plastics and metals for
L-1000

Low (5-7 g) mass geometry
optimized for L-200

PEN — Poly(ethylene 2,6-
naphthalate) is a scintillating plastic
(1/3 LY of conventional plastic
scintillators)

Meets radio-purity req. < | YBg/
piece for Ra/Th, it's self-vetoing



(Approx) timeline

GERDA/
MID

Purchase/enrich
Ge
Fabricate detectors

Install and commission [-200

-200 data taking

US portfolio
review and int’l
Interactions on

ton-scale

L -1000 baseline + R&D

L-1000 construction, staged
data taking



Back-up



MO separation
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Connection with mass ordering

" normalorder. [ inverted ordering

" normalorder. [ inverted ordering

| GERDA .08

me [eV]

| GERDA

0.06

usually in |
scale, here zoo
around 1O

0.04

0.02
O | | | | | | | | | O T
0.05 0.1 0.15 0.05 0.1 0.15 0.2 0.25
Might [eV] 2 [eV]

(Mee) = |U621ml + UZ,mqe™™ + U623m3ew|

* Limits on mee from above, can try to rule out IH

e electron flavour: mix of mass eigenstates, entering <mee> differently for the two MO
* nuclear matrix element uncertainties: biggest spoller in the conversion (shaded area)




Counts per keV

Simulated example spectrum, after cuts,
from 10 years of data

N

OVBB (Ty/, = 10°° yr)

1940 1960 1980 2000 2020 2040 2060 2080

Energy (keV)



Ov2[3 decays

Double Beta Decay

germanium 76

* Two 3 decays at the same time
* Only a few isotopes able to undergo 23

2VBB: (A, Z) > (A, Z+2) + 2¢ + 2V

2nd order process, observed, T,, ~ 1019-1024 yrs

%Ge: T,, ~10%" yrs

TABLE V. Isotopic abundance and Q-value for the known
25 emitters [175].

[sotope isotopic abundance (%) Qs [MeV]
BCa 0.187 4.263
CGe 7.8 2.039
%2Ge 9.2 2.998
A 2.8 3.348
100\ 9.6 3.035
16cq 7.6 2.813
130Te 34.08 2.527
136X e 8.9 2.459
150N 5.6 3.371

Qpg = M(Z+2)-M(Z) -2me




Ov2[3 decays

P - P_ OVBB - (A.7) — (A. Z+2) + 2¢

e = * & If neutrinos are Majorana fermions

(Majorana mass term)
L

Prosaically: v = v
* Not only process avallable, but the one

with the highest sensitivity
* BSM (SM only Dirac terms with L-R

fermions)
0y |~ . Oy 4 0v[2 \m ce/ \ Z 2
(.TIIZ G ( QBB' Z) ‘M M, _‘ Uei’ni
m, ,.
nuclear matrix element effective Majorana
phase space factor neutrino mass

NB: experiments measure T
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Comparing ¢
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S
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Values of mee correspording
to a count rate of | evt/t/yr

Mod. Phys. Lett. A, Vol. 28, No. 8 (2013)
1350021

1
2 3 4 5 617

o

' éé1'
Matrix element squared

T T T T T 11
2 3 4 5 6 789
10

(T?/\é)_l = G (0. 2) ‘MOV‘Z (

phase space factor

Y
{m,,)

\ — 2
\M,, / _‘Z Uei m;
i

m,

nuclear matrix element effective Majorana

neutrino mass

flerent 1sotopes

e No Isotope
“theoretically’” better than
another

e Phase Space and NME
inversely correlated. Tend

to compensate In rate

Choice informed mostly by
experimental/practical criteria
* Enrichment cost

* Energy resolution

* Background levels of related
material and design at Q-value
* Scalability




cxperimental sensitivity

® [hisis essentially a counting exercise in the
presence of background

® Sensitivity Is dominated by Poisson counting
around the Q-value (RO

M-t
S~ Ef\ run non-zero background

S: sensitivity t.,; measurement time
e: efficiency | BI: background index
f: abundance of Ovpp isotope AE: energy resolution at QBB

M: detector mass




Nuclear Matrix Element values from various nuclear models

Rept.Prog.Phys. 80 (2017) 4,046301
ga unquenched
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* Various models predict quite different values, throughout the isotope A range
* Affects the conversion from T2 10 Mee



Other BSM physics opportunities

TABLE II. A non-exhaustive listing of recent and proposed BSM physics searches by Ge-based experiments.

Physics Signature Energy Experiment
Range

Bosonic dark matter Peak at DM mass < 1 MeV MAJORANA|[65],
GGERDA

Electron decay Peak at 11.8 keV ~ 10 keV MAJORANA

Pauli exclusion principle Peak at 10.6 keV ~ 10 keV MAJORANA

violation

Solar axions Peaked spectra, daily < 10 keV MAJORANA[65] [67]

modulation

Majoron emission 2v (33 spectral distortion < Qpp GERDA

Exotic fermions 2v3 3 spectral distortion < Qg (proposed) [69] [70]

Lorentz violation 233 spectral distortion < Qpp (proposed)

Exotic currents in 2v33 decay  2v(3[3 spectral distortion < Qpp (proposed) [74]

Time-dependent 2v 33 decay Modulation of 2v33 spectrum < Qpp (proposed)

rate

WIMP and related searches Exponential excess, annual < 10 keV CDEX

modulation

Baryon decay Timing coincidence > 10 MeV MAJORANA

Fractionally charged cosmic-rays Straight tracks few keV MAJORANA

Fermionic dark matter Nuclear recoil /deexcitation < few MeV (proposed)

Inelastic boosted dark matter Positron production < few MeV (proposed)

BSM physics in Ar Features in Ar veto spectrum ECEC in *°Ar GERDA [81]

https://arxiv.org/pdf/2107.11462.pdf



z (mm)

P S D | n G e : C O n C e p-t See also: Nucl Instrum.Meth.A 891 (2018) 106-110

BEGe — p+ contact n+ contact
301
201
101
0; | Lo b b by b ; ' '
B L B L . o, e Markedly different Q and A spectra according
r{mm ~“~ ~~,' \\ . .
to where energy deposition occurs in crystal
anodle Tt s , , - , , ,
ca[hode I 1 I | | | | -
electrons
-------- holes 5 -
©) interaction point o )
; : ! P
=14}
3 -
_ .
u —
] | | N
I 1 I | | | | |
200 -
"""" 3 150 A
5 100 | -
e Uniform configuration of weighting potential in PC ° 50t -
enhances (>90%) “ " type wrt others 0 T ———— e

0 100 200 300 400 500 600 700 800

time [ns]

e |f all ionization happens in single site (SSE), Q and A proportional and compatible with single
cluster

* [f jonization is diffused (Bethe-Bloch or Compton, MSE), total Q is split in smaller peaks of A




Charge / current (a.u.)

Why is PS

GERDA Background Estimate:

D Important?

210pg

Th&U
chains

0.3} SSE

0.2

Peteastensts

: NBE )
C) :

‘“llllli } ?
A\ L

" VAPV S

55 6 "4 45

Time (us)

o+ ¥

55 6 4 45 5 55 6
Time (us) Time (us)



Origin of radioactive bkgs

® d mainly from 2/0Po (T=138 days) coming from 238U chain on diode surface and
attracted to migrate towards p* electrode by its strong field

® Vycomes from
® various branches of U and Th chain on materials (FETs, cables, Cu mounts, plastics);

® and from AA2Ar — 4042 — 40MM2C3" decays (K 1on drifted by LAr convective
motion and electric field lines towards n* dead layer = SSE)

® [3 mainly from 4942K " decays close to diodes, same as above
O
12.360 h FRn
2 0 X
32.9y T Lo
= 2 T 19K g? & &
2 12 B o o
~ J5Ar Q,=35254  §%57 & L%
™ 18 é‘oé\éséb &4\2}/ VQO,%%?
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4+ 19 SO G ST 215241 B0
0.05% 9.0, 2+ v T IOQT é\‘ibco_éy' 242417 1401
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1 9K
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Active veto optical parameters
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TABLE XV. The relevant properties of PEN.

Property Value

Atomic composition [C14H1004]x

Density: ¢ 1.35g/cm?

Melting point 270°C

Peak emission A 445+5nm

Light yield ~ 4000 photons/MeV

Decay constant 34.91 ns

Attenuation length ~ Hcm

Young’s modulus: E [GPa] 1.855+0.011 (296 K) 3.708+0.084 (77K)

Yield strength: o.; [MPal 108.6+2.6 (296 K)  209.4+2.8 (77K)



L Ar active veto, related specs

® A excmer scintillates at 128 nm (VUV), LY O(10k photons/MeV

deposited), singlet and triplet states mix in fast (~few ns) and slow (~ 1.5 ps)
components

® triplet attenuation highly depends on recombination with
impurities (N, O, Xe ppm-to-ppb) sneaking at Ar distillation

® ‘class 5.5" LAr from plant + in place at LNGS ad-hoc
system to purify LAr as it flows between tank and cryostat

® [xpected to result in Aat = I m, small wrt cryostat radius

LLAMA device in LAr will
monitor in time attenuation
and triplet lifetime




Front-End electronics
® | ow-Mass (radio-pure) FE on ULTEM inert plastic (a la M|D)

feeding into "CC4" CSA pre-amp (a la GERDA)

® | MFE: production tested in “Post-GERDA" tests last year, ok -> production/
shipment to LNGS being finalized

o (CC4 ~2./V output to flange/air, production complete, random screening to
be performed

LMFE in ULTEM mount

Harwin pins

200 pum thick

ULTEM mount « **
L P

W
(

SN
1] - e~

wire bond / ff
s, 1

Flange connection VFE connection




UG electro-formed copper

® Applies experience of M|D, which used |.2 tons of UGEFCu

because of its radio-purity (< 0.1 uBg/kg Th/U chains, very
low In cosmogenic ¢0Co)

® 3 new EF baths were constructed at SURF to supply clean
Cu for detector housing components

® Advancements in the understanding of post machining

contamination of plastics and metals will feed into L-1000
effort

LEGEND-200 at LNGS

EFCu can be placed next to
detectors, in LAr: improves signal/
noise and, consequently, PSD




PEN plates: veto yourselt !

Low (5-7 g) mass geometry optimized for L-200

PEN — Poly(ethylene 2,6-naphthalate) is a scintillating
plastic (/3 LY of conventional plastic scintillators)

® wavelength-shifts to ~450 nm the 28 nm
photons from LAr

Mechanically stronger than silicon, stronger than Cu at
cryogenic temperatures (1=8/ K)

Meets radio-purity req. < | UBg/piece for Ra/Th

Replaces Si plates (GERDA)

PEN holders deployed in LEGEND
"post-GERDA test” at LNGS in first
half of 2020 (despite COVID...)

On-going further R&D for additional
cleanliness and improved optical
properties for L-1000

A7 |

Plates fitting read-out electronics




UGAr to reduce “2Ar/42K

2K from [3 decay of “2Ar resulting from cosmogenic activation in various
ProCesSSES [e.g. PRD 100, 072009 (2019)]

® |ow fraction in atmospheric Ar, but high enough activity

Underground Ar significantly less subject to CR activation — highly depleted
IN such isotopes (down by factors ~10%)

Proposed to use part of the production from the ARIA plant, estimated need
2| tons (from 2023): use only in payload cryostats, AAr in outer volume

lon collection depends on n* dead-layer thickness: to be optimized
Use of nylon cylinders around strings for further screening under discussion

® shields, but only partially; self-vetoes, but only partially

® could be good enough (after PSD and LAr veto), several studies done and on-going for
GERDA and L-1000 [e.g. EPIC 75, 506 (2015)]

° Else PEN? Encapsulated detectors (no LAr)? Xe-doped LAr for charge-exchanges!



The Baseline Design: Underground Liquid Argon

* L1000 needs 20-25 t of UGLAr
* Builds on pioneering work of DarkSide collaboration

*  UGAr will be mined at Urania facility (U.S.) 95 t/y

* Logistics and storage technology under development by
DarkSide/ARGO collaboration for LNGS and SNOLAB

* Expression of interest from INFN president! and DarkSide leadership
* UGAr production for LEGEND-1000 in 2023 (after DS-20k)

S
4

(95T/year)

\ "/, UG Sorage “Zfbiﬁ

Urania r? >
330kg/day é
o o

g ) (\-\ —
Credit: DarkSide / ARGO collaboration

UGAr is depleted in 42Ar (3°Ar)

Iso- @ Abun- Half-life Decay @ Pro-
tope dance (t1/2) mode @ duct

Ar | 0.334% stable

37Ar | syn 35d | € 3¢

3BAr  0.063% stable
T ——

40Ar | 99.604% stable

“Ar  syn | 109.34 min | B~ 4K
-4:21:\5::5@::::::32:9-?: =EE ::"EK:

L% .we are confident that the production of the required UAr can be completed in a time scale useful for the accomplishment of the LEGEND-1000

experiment.. The present statement is an expression of interest and availability from INFN...”

Stefan Schonert | LEGEND | 2021-09-30
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Cosmic muons

While “prompt” events in time with muon passage can be effectively rejected (95 to 99%) by
water or LAr veto, delayed effects can generate disturbance

Particularly production of Ge isotopes from capture of spallated neutrons (7/mGe)

At SNO depth w/o further shielding expect ~5 108 cts/kev/kg/yr (19 of desired Bl)

e at LNGS x100, but gain “virtual” depth operating the LAr active veto with an
independent trigger for delayed detection of n capture on “0Ar (factor of x 10 reduction in y-

induced 7/mGe decays?) [Eur.Phys.J.C78 (2018) no.7, 597]

® developments (using also ML) will be tested at L-200

U Event ®Ge (n,y) ""™Ge 40Ar (n,y) Y1Ar
A\ ' E.‘ :
[ \“ Ge
........ 1 S~ ~ — '~.....- -
\NNY t
[\LAr
8
W t
Water
' ; o
tli <10 us tprompt ~ 270 ps tdelayed t



Alpha

® [hose A depositing on diode surface making it through the p*
electrode or the this-surfaced insulating grooves

® most of the surface is a n*, too-thick for a

® Hard to estimate rate a priori (consider upper limits from previous
experiments)

o PS5D, PSD and yet improved PSD...

complementary techniques in GERDA and M|D more or less effective
depending on charge diffusion in detector geometry (BEGe vs PPC)

therefore, design the LEGEND-1000 |CPC detector electrode
geometry based on the relative size of the detector's passivated surface



Selection of additional R&D

|arger mass detectors: different configurations with similar weighting
botential being still pursued as alternatives to baseling, but need time

Material:

® clean manufacturing of alloys and plastics by laser-excitation additive “3-D
printing” (SLA)

® |n-house synthesis of more radio-pure PEN

FE: Reduced front-end substrate and connector mass, related to new
ASIC radio-pure boards iNstis po9o22)

All signal cables in re-entrant tube from clean Kapton (incl Diode HV)

Active veto: variants include Xe-doped LAr; walls of SIPM instead of
“dirtier” fibres



Preliminary SIPM perfo in 60 kg runs

pe =0.06*x+-0.01 Charge, PE-equivalent
2 4 6 8 10 12
DAQ ch.: ch061
ﬂ SiPM ID.: 41
800 - Hardware Status: OK

Software Status: On
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