# The FASER experiment



## The quest for a dark sector

- DM could be just one of the many new particles belonging to a 'hidden' dark sector (DS)
- The mechanism of portals as the lowest canonicaldimension operators that mix new dark-sector states with gauge-invariant combinations of SM fields is often considered, with 4 notable examples:

| Portal                                | Coupling                                                                                                                                                |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vector (Dark Photon, $A_{\mu}$ )      | $-\frac{\varepsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$                                                                                               |
| Scalar (Dark Higgs, S)                | $(\mu S + \overset{\circ}{\lambda}_{HS}S^2)H^{\dagger}H$                                                                                                |
| Fermion (Sterile Neutrino, <i>N</i> ) | $y_N LHN$                                                                                                                                               |
| Pseudo-scalar (Axion, a)              | $rac{a}{f_a}F_{\mu u}	ilde{F}^{\mu u}, rac{a}{f_a}G_{i,\mu u}	ilde{G}_i^{\mu u}, rac{\partial_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^{5}\psi$ |

- The resulting new particles could be Long-Lived (LLP)
- Targeted searches for these BSM models have been identified as a priority by the European Strategy Updated and the Snowmass process





Still, dedicated experiments might complement them in terms of targeted phase space and mitigate issues - notably large background rates and difficulties in triggering

- Idea of FASER: a Forward Detector for low-mass LLPs
  - Background mitigated by rock/shielding
  - Simpler / no triggering needed





Detector is far from IP → target long lifetimes

LLPs produced in forward-peaked light hadron decays  $\rightarrow$  e.g. O(10<sup>14</sup>) pions within FASER angular acceptance  $\theta \simeq \tan \theta = \frac{p_T}{n} \sim \frac{m}{E} \ll 1$ 

Monica DOnofrio, IPA2022

### **FASER** location



- FASER is located at ~ 480 m downstream of the ATLAS interaction point (IP) in the TI12 an unused SPS maintenance tunnel intersecting collision axis
- The beam is highly collimated (mrad diameter) → only a small detector needed, with a magnet aperture of 20cm diameter
- Infrastructure & rock catches most collision products



## FASER(v) Physics reach

Designed for events of the kind

pp  $\rightarrow$  LLP, LLP travels ~480m, LLP  $\rightarrow$  ee,  $\gamma\gamma$ ,  $\mu\mu$ , ...

- Probes large range of BSM models in regions favoured according to muon g-2, DM hypotheses and anomalies
  - Dark photons, as well as ALPS, HNL, B-L
- Also sensitive to high-energy neutrinos produced along beamline
  - A dedicated component, FASERv, added in 2020









#### Expected number of CC interactions (150 fb<sup>-1</sup>)

| Generators        |                | $FASER\nu$            |                               |                                 |  |  |
|-------------------|----------------|-----------------------|-------------------------------|---------------------------------|--|--|
| Light hadrons     | Heavy hadrons  | $\nu_e + \bar{\nu}_e$ | $ u_{\mu} + \bar{\nu}_{\mu} $ | $\nu_{\tau} + \bar{\nu}_{\tau}$ |  |  |
| SIBYLL            | SIBYLL         | 901                   | 4783                          | 14.7                            |  |  |
| DPMJET            | DPMJET         | 3457                  | 7088                          | 97                              |  |  |
| EPOSLHC           | PYTHIA8 (Hard) | 1513                  | 5905                          | 34.2                            |  |  |
| QGSJET            | PYTHIA8 (Soft) | 970                   | 5351                          | 16.1                            |  |  |
| Combination (all) | )              | $1710^{+1746}_{-809}$ | $5782^{+1306}_{-998}$         | $40.5^{+56.6}_{-25.8}$          |  |  |
| Combination (w/o  | DPMJET)        | 1128+385              | 5346+558                      | $21.6^{+12.5}_{-6.9}$           |  |  |

## FASER(v) Physics reach

Designed for events of the kind

pp  $\rightarrow$  LLP, LLP travels ~480m, LLP  $\rightarrow$  ee,  $\gamma\gamma$ ,  $\mu\mu$ , ...

- Probes large range of BSM models in regions favoured according to muon g-2, DM hypotheses and anomalies
  - Dark photons, as well as ALPS, HNL, B-L
- Also sensitive to high-energy neutrinos produced along beamline
  - A dedicated component, FASERv, added in 2020



Monica DOnofrio, IPA2022



- Cross-section measurements possible for all neutrino flavours in E range from ~ 100 GeV to ~1 TeV
  - Unconstrained region of phase space

### Overview of the FASER detector



Angular acceptance  $|\theta|$  < 0.21 mrad region,  $\eta > 9.2$  FASERv extends  $|\theta|$  to 0.41 mrad and  $\eta \sim 8.5$ 

FASER Trigger rate: **650 Hz** expected (dominated by muons produced close to the IP) 2021 JINST 16 P12028 Very low radiation levels

Detector paper: <a href="https://arxiv.org/abs/2207.11427">https://arxiv.org/abs/2207.11427</a>

### Overview of the FASER detector

Monica DOnof

• 10 cm radius **Front Scintillator**  7 m long, 1.5 m decay volume veto system y TO ATLAS IP **Tracking spectrometer stations Scintillator** veto system Decay volume **Electromagnetic** Calorimeter **FASERy** emulsion Interface detector Tracker (IFT) **Trigger / timing** scintillator station FASER signatures for LLPs: **Magnets** Trigger / pre-shower Light, very high momentum, highly collimated decay products scintillator system  $e^+$ **Energy measurement Tracking** Decay volume Scintillator veto 8

### Overview of the FASER detector

• 10 cm radius **Front Scintillator** • 7 m long, 1.5 m decay volume veto system y TO ATLAS IP **Tracking spectrometer stations Scintillator** veto system Decay volume **Electromagnetic** Calorimeter  $\nu_{\tau}$ **FASERy** emulsion Interface detector Tracker (IFT) **Trigger / timing** scintillator station Magnets FASERy signatures for high Trigger / pre-shower energy neutrinos: scintillator system **FASERv** Spectrometer Veto **IFT** system **Emulsion**  $v_e$ Charge ID 0.55 T 0.55 T 0.55 T **Emulsion Tungsten** 9 Monica DOnofrio, IPA2022 film plate

## FASER Tracking: components and layout

Composed two distinct parts: the tracking spectrometer (3 tracking stations) and the Interface Tracker (1 tracking station), placed after the FASERv emulsion detector

Basic component: **SCT Module** 

→ Strip detector, pitch 80um and stereo-angle of 40mrad.

→ 8 modules per tracker plane







#### 3 Tracker planes per station (12 total)

#### Low material central region: 2.1% radiation length

| Component          | Material  | Number    | <i>X</i> <sub>0</sub> (%) |             |  |
|--------------------|-----------|-----------|---------------------------|-------------|--|
|                    |           | / station | Central region            | Edge region |  |
| Silicon sensor     | Si        | 6         | 1.8%                      | 1.8%        |  |
| Station Covers     | CFRP      | 2         | 0.3%                      | 0.3%        |  |
| SCT module support | TPG       | 3         | -                         | 0.6%        |  |
| C-C Hybrid         | C (based) | 3         | -                         | 2.2%        |  |
| ABCD chips         | Si        | 3         | -                         | 6.5%        |  |
| Layer frame        | Al        | 3         | -                         | 10.1%       |  |
| Total / station    | -         | -         | 2.1%                      | 21.5%       |  |

## FASER Tracking: tests and performance

**Extensive tests** have been carried out to evaluate performance, standalone and after installation:

- long-term stability and control checks (temperature, humidity, electronics)
- Quantification of noisy/dead strips
- Alignment and metrology of tracker planes

#### Commissioning with cosmic rays and LHC pilot run









purple line: combined track fit to the hits in the tracking stations during 900 GeV pilot beam

### FASER calorimeter, pre-shower and scintillator systems

- Four scintillator stations with multiple scintillator layers in each station
  - (a) FASER<sub>ν</sub> Veto, (b) Interface Veto, (c) Timing, & (d) Preshower
  - >99.98% efficiency, sufficient to veto all incoming muons
  - photo-multiplier tubes to detect the scintillation signals.

Note: Preshower scintillator to be replaced by silicon pixel detector (<u>tech.</u> proposal) in 2023/2024 To detect 2-photon axion-like particle signals

- Electromagnetic calorimeter made of spare LHCb modules
  - 66 layers of lead-scintillator plates read by 2x2 array of PMTs
  - calorimeter readout optimised to measure multi-TeV deposits w/o saturation







### FASER calorimeter, pre-shower and scintillator systems

- Four scintillator stations with multiple scintillator layers in each station
  - (a) FASER<sub>ν</sub> Veto, (b) Interface Veto, (c) Timing, & (d) Preshower
  - >99.98% efficiency, sufficient to veto all incoming muons
  - photo-multiplier tubes to detect the scintillation signals.

Note: Preshower scintillator to be replaced by silicon pixel detector (<u>tech.</u> proposal) in 2023/2024 To detect 2-photon axion-like particle signals

- Electromagnetic calorimeter made of spare LHCb modules
  - 66 layers of lead-scintillator plates read by 2x2 array of PMTs
  - calorimeter readout optimised to measure multi-TeV deposits w/o saturation









### FASER calorimeter, pre-shower and scintillator systems

- ► Four scintillator stations with multiple scintillator layers in each station
  - (a) FASERν Veto, (b) Interface Veto, (c) Timing, & (d) Preshower
  - >99.98% efficiency, sufficient to veto all incoming muons
  - photo-multiplier tubes to detect the scintillation signals.

Note: Preshower scintillator to be replaced by silicon pixel detector (<u>tech. proposal</u>) in 2023/2024 To detect 2-photon axion-like particle signals

- Electromagnetic calorimeter made of spare LHCb modules
  - 66 layers of lead-scintillator plates read by 2x2 array of PMTs
  - calorimeter readout optimised to measure multi-TeV deposits w/o saturation

$$\frac{\sigma_E}{E} = \frac{9.2\%}{\sqrt{E}} \oplus 0.2\%$$
 + expected 1% constant term

At 1 TeV, about 1.6% of electrons are expected to leak more than 3% of their energy





### FASERy detector

- 700 layers of an emulsion film and 1.1 mm tungsten plate: 25 cm×30 cm×1.1 m, 1.1 tons, 220 X<sub>0</sub>
- Pilot detector (30 kg) exposed in FASER location for 1 month
  - ightharpoonup Observed (2.7 $\sigma$ ) first collider v candidates!
- FASERv will be exchanged frequently during Run 3
  - First full detector (TS1): 26<sup>th</sup> July 13<sup>th</sup> Sept
  - Second detector (TS2): 13<sup>th</sup> Sept 8<sup>th</sup> Nov
- Frequently exchanged (~ every 3 months) to keep a manageable detector occupancy. Procedure:

#### Phys. ReV. D 1004, L091101







Replacements: ~ 3 times/yr in technical stops, every 30-50 fb<sup>-1</sup>

### **FASER Test Beam**

- TB @ CERN H2 beam (summer '21)
  - Electrons (5-300 GeV), muons (200 GeV) and pions (200 GeV)
- 6 ECAL modules (inc. spares)
  - Along with IFT and preshower
- Also used for tracking performance studies
  - Tracker cluster efficiency measured: 99.86 ± 0.04 %, agreeing well with MC and ATLAS (99.74±0.04 %)



Paper in progress!

#### Tracking resolution







Calo E resolution

Calo module

## FASERv detector commissioning

- ~30% of the full emulsion for commissioning
- MIP efficiency of the veto system was also measured in the test beam
- Better performance than the requirement (>99.98%) obtained.







### First data!

- Thousands of events were already collected with charged particle tracks traversing the detector even prior to official start on 5<sup>th</sup> of July
  - Great for performance studies, optimizing operation procedures, & commissioning reconstruction software.
- With 13.6 TeV beams, good events seen in the detector consistent with coming from collisions.





One of first event displays from collisions



#### Lessons learned from first 10 fb<sup>-1</sup> of data taken

- trigger rate broadly consistent with expectation
- beam background level low and easy to remove with timing
- detector working beautifully, no operational issues to date

### First data!

- Thousands of events were already collected with charged particle tracks traversing the detector prior to official start
  - Great for performance studies, optimizing operation procedures, & commissioning reconstruction software.

Tracks from the first FASERy emulsion films



## Data analysis readiness

- On-going tests on full production chain from generation all the way through to analysis
- Representative background and signal processes have been produced
  - ► Full FASER detector geometry implemented and validated in offline software
    - Calypso software package based on ATLAS framework (Gaudi and Athena)
  - Genie & FLUKA used for neutrinos studies and muon-induced background





Good tests for track reconstruction methods, momentum resolution and calorimeter deposits measurements

## Data analysis readiness

- On-going tests on full production chain from generation all the way through to analysis
- Representative background and signal processes have been produced
  - Full FASER detector geometry implemented and validated in offline software
    - Calypso software package based on ATLAS framework (Gaudi and Athena)
  - Genie & FLUKA used for neutrinos studies and muon-induced background





Neutrino events simulation also fully ready

## The forward future: FASER(v)2

- We might not see LLPs or NP in Run 3:
  - Extended coverage needs a bigger detector
- Thinking ahead: a scaled-up version of FASER with ~100 x active area
  - Magnets: Superconducting w/ B = 1 T
  - Tracker: much larger using e.g. SiFI/SiPM
  - Calo/Muon: enhanced PID & position resol.



| Benchmark Model              | FASER | FASER 2 |
|------------------------------|-------|---------|
| Dark Photons                 | √     | √       |
| B-L Gauge Bosons             | . V   | V       |
| $L_i - L_j$ Gauge Bosons     | _     | _       |
| Dark Higgs Bosons            | _     | √       |
| Dark Higgs Bosons with $hSS$ | _     | √       |
| HNLs with $e$                | _     | V       |
| HNLs with $\mu$              | _     | √       |
| HNLs with $\tau$             | √     | √       |
| ALPs with Photon             | √     | √       |
| ALPs with Fermion            | _     | √       |
| ALPs with Gluon              | √     | √       |
| Dark Pseudoscalars           | _     | V       |

Substantial increase in sensitivity for LLPs from B, D hadrons decays (e.g. Dark Higgs) thanks to larger radius, Broader scope including QCD physics





#### Probing up to higher mass



## Where: the Forward Physics Facility (FPF)

- Proposal to build a new dedicated forward physics facility
  - Hosting a suite of far-forward experiments at the HL-LHC



Detailed (429pp) paper submitted as part of Snowmass: <a href="https://arxiv.org/abs/2203.05090">https://arxiv.org/abs/2203.05090</a>

#### Current planned detectors

- FASER2
  - FASER scaled to r=1m
  - Light dark sector parts.
- FASERv2
  - ~20t emulsion + tungsten detector
  - Mainly v<sub>τ</sub>
- AdvSND
  - Off axis v detector
  - Fwd charm + low-x gluon
- FORMOSA
  - Scintillating bars
  - Millicharged particles
- FLArE
  - ~10t LAr TPC
  - DM + v physics

## Summary

- FASER gives access to light, weakly-interacting particles with significant lifetime, providing sensitivity to a wide range of BSM physics models (dark γ, ALPS and more) complementary to GPDs; FASERv can measure high energy neutrinos in a previously unconstrained region of phase space
- $\blacksquare$  FASER and FASER $\nu$  are now installed and fully operational
  - Test beam results show excellent tracker cluster efficiency and uniform calorimeter response within a few percent across different beam positions
  - Data collection has started with Run 3! More than 10/fb of data collected so far...
  - detector working beautifully, no operational issues to date
- Development of analysis and software tools ongoing
  - First results expected for Spring 2023 stay tuned!
- A forward look: proposal for FPF, a dedicated forward physics facility @ CERN, to take advantage of HL-LHC and build a FASER2
  - Would give a rich and broad physics programme

## Trigger and DAQ

FASER Trigger rate: **650 Hz** expected (*dominated by muons*)

- PMTs from scintillators and calorimeter provide trigger signals
- Trigger system run synchronously to the 40.08 MHz LHC clock
- Data Acquisition (DAQ): Configuration & readout
- Monitoring: checking data flow, detector conditions, and data quality to spot/resolve problems

Data Control & Safety (DCS): powers detector and protects it from unusual conditions

### FASER Trigger/DAQ Overview



### FASERn and SND@LHC

#### Comparison of neutrino rates

Expected number of CC interactions (150 fb<sup>-1</sup>)

F. Kling and L. Nevay, Forward Neutrino Fluxes at the LHC, Phys. Rev. D 104, 113008, arXiv:2105.08270

| Generators        |                | $FASER\nu$            |                               |                                 | SND@LHC               |                               |                                 |
|-------------------|----------------|-----------------------|-------------------------------|---------------------------------|-----------------------|-------------------------------|---------------------------------|
| Light hadrons     | Heavy hadrons  | $\nu_e + \bar{\nu}_e$ | $ u_{\mu} + \bar{\nu}_{\mu} $ | $\nu_{\tau} + \bar{\nu}_{\tau}$ | $\nu_e + \bar{\nu}_e$ | $ u_{\mu} + \bar{\nu}_{\mu} $ | $\nu_{\tau} + \bar{\nu}_{\tau}$ |
| SIBYLL            | SIBYLL         | 901                   | 4783                          | 14.7                            | 134                   | 790                           | 7.6                             |
| DPMJET            | DPMJET         | 3457                  | 7088                          | 97                              | 395                   | 1034                          | 18.6                            |
| EPOSLHC           | PYTHIA8 (Hard) | 1513                  | 5905                          | 34.2                            | 267                   | 1123                          | 11.5                            |
| QGSJET            | PYTHIA8 (Soft) | 970                   | 5351                          | 16.1                            | 185                   | 1015                          | 7.2                             |
| Combination (all) | )              | $1710^{+1746}_{-809}$ | $5782^{+1306}_{-998}$         | $40.5^{+56.6}_{-25.8}$          | $245^{+149}_{-111}$   | $991^{+132}_{-200}$           | $11.3^{+7.3}_{-4.0}$            |
| Combination (w/o  | O DPMJET)      | 1128+385              | 5346+558                      | $21.6^{+12.5}_{-6.9}$           | $195^{+71}_{-61}$     | $976^{+146}_{-185}$           | $8.8^{+2.7}_{-1.5}$             |