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What are Gravitational waves ?

Solution from General Relativity derived by A. Einstein in 1916

Far from sources then can be seen as a perturbation of the
metric

They are ripples of space-time produced by rapidly accelerating
mass distributions

Provide info on mass displacement
Weakly coupled — access to very dense part of objects
Main proprieties:

. Needs to have . .
o Propagate at speed of light « Compact object : R~Rs . [
o Two polarizations ‘+' and ‘X’ e Relativist :v~c . NS
o Emission is quadrupolar at lowest order asymmetric \ , AL



Advanced generation detectors

High quality

optics — 40 kg

Surface RMS ~nm

Radius of curvature : 2m on 1.5 km

Suspension wire

Standard filters

~

Michelson interferometer
Goal : (L,-L)/L, =102
Test
Mass
Feedback loops from
few Hz to few kHz
§ Fabry-Perot
1 cavities
§|>‘
Full system under
. o vacuum ~10-12 atm
High power laser
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Increase the detection
confidence

Source sky localization

* Source parameters inference
GW polarization
determination

Astrophysics of the sources

GW network

\ GEO, Hannover, 600 m

AdV, Cascina, 3 km

alIGO Livingston,



GW detections

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars
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LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Only found coalescing binaries so far



Coalescing binaries

Searching for objects containing black holes (BH) and
neutron stars (NS)

Possible electromagnetic emission if one object is a NS

Known waveforms from analytical model or numerical
relativity simulations

Waveform allow to retrieve :

o Masses : ratio (chirp mass) and total mass - ' [
o Spins : initials and final object(s) 0/_ _____ doufn
o Geometry of the system Q/_ '

o Distance J _/. O .
o Total energy dissipated _

Can be used to test GR

| — Numerical relativity

I Reconstructed (template)
| 1

A

_ (mi1x1 + maxz) - L

Xeff
my + mo

q = m2/m1



GWTC-3:
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GWTC-3 : candidates

Procedure :

Search method : Modeled searches (PyCBC
GstLal, MBTA ...) & Minimally modeled search
(CWB)

Candidates events identification

Validation by checking for evidence that they
were caused by one or more detector noise
artifacts following the same procedure as for
previous catalogs

Parameter estimation

Main list (35 events): candidates with a
probability of astrophysical origin (p-astro) > 0.5

Marginal list** (7 events): p-astro < 0.5 but FAR <
2 per year

Likely instrumental artifacts :

Main list : O
Marginal candidates list : 3

01 =3, 02 = 8, O3a = 44, O3b = 35, Total = 90
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Effective inspiral spin yeg

GWTC-3 : properties

Masses in the Stellar Gaveyard
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Astrophysical population

Population properties of 76 compact binary mergers detected with gravitational waves
below a false alarm rate of 1 per year through GWTC-3

o Masses, spins, distances of these events inferred from the
GW signal

o Several mass models, 3 spins models, one distance model Observations)
~3-5M

?

o}

® Which types of mergers are we seeing? In terms of > ¢ < Mg

formation Channels? Neutron star Black hole
® How many are happening in the Universe ?
® What is the mass distribution of BH and NS ?

Fundamental questions:

10



Astrophysical population - Rate

How many are happening in the
Universe ¢

Multiple models but consistent with the same results :

| R = 470550 Gpeyr~!
Rens = 2507530 Gpe ™ yr~!
Ryspu = 1707 Gpeyr~!

RBBH = 221’2 GPC—3 yr"
—————

10°

101

my [Mg) o

Rate density as a function of component masses
(from https://arxiv.org/pdf/2111.03634.pdf)
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Astrophysical population — NS properties
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Astrophysical population - BBH mass
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Astrophysical population — BBH vs redshift

The history of cosmic star formation (from

https://arxiv.org/pdf/1403.0007.pdf)
lookback time (Gyr)

0246 8 10 12
_04 T I T I T I T | T | T I ]

v -0.8 [ . o Merger rate density increases with redshift

= b 3 ~(1+z)?7 for z<1

LR :

> L )

=16 ¢ 7] o In most plausible formation scenarios : we do not
Y . expect R(z) to continue growing with arbitrarily high z.
0 .T_L {
. A B B PR B N : . . :

00 R4S A > 3 45678 Instead, we anticipate that R(z) will reach a maximum

e | - redshift beyond which it turns over and falls to zero.

—>not observed yet, maybe with Einstein Telescope ?

o Study formation scenarios
Constraints on the
evolution of the BBH
merger rate with
redshift (from
https://arxiv.org/pdf
[2111.03634.pdf)

| —— GWTC-3 (Power Law + Peak)
[ —=- Star Formation (Arbitrary Norm.)
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The missing piece — NSBH coalescence

GW200115
10°
2.75F i GW200105 100
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2.50F g 0 2 4 6 8 10 12 14 10
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g e :
— 2.00f B - % 100
f 1.75}F g .
= » — high spin 10 10
1.50F ---  low spin 103 10?
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N B GW200115 100 100
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GW190426_152155
. . " " 1 10
5 10 15 20 25 sy 10
my (M) ! i‘ime (se2conds) 1 ' 1 -15 71(21‘, (s d_s) 0
m2: Consistent with maximum
m1 m2 NS mass Note :
® Spectrograms do not always show the track of the
GW2001 8.9115Mo | 1.9103Mp ional
R0 | #7©1 m1: BH identified signa
GW200115 5.7538Mg | 1.5%3IMg o . ® To detect a CBC we use matched-filtering methods
| | GW200115 m1: 30% probability : .
¢ falline in th but the SNR is not always enough to estimate the
of falling in the mass gap significance of a trigger so we also compute the y*

https://iopscience.iop.org/article/10.3847/2041-8213/ac082e/pdf 15
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Intermediate mass BBH

GW190521 :

— Heaviest progenitor: 85 Msun + 66 Msun — 142 Msun

— Cosmological distance: 5.3 Gpc

Mass gap predicted by pair-instability (PI)
supernova theory : 65 — 120 Msun

— Low likelihood for the primary black holes to
originate from stellar collapse

Final black hole = intermediate mass
(100 — 105 Msun)
— First detection in this mass range
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Testing GR

The model waveform is constructed using the predictions of
General Relativity.

Gravitational-wave sources offer us unique testbeds for
probing strongfield, dynamical and nonlinear aspects of
gravity

Tests predictions of General Relativity by introducing small
modifications to our currently available waveform models
and compare the data with these "distorted” waveforms

Three theory-agnostic tests (parameterized tests, inspiral-
merger-ringdown consistency tests, and gravitational-wave
propagation tests)

17



Residual Test

Parametrized test

3 -
‘/'I’N(f)=2ﬂffc—qjc—£+ ()"

4

Testing GR — examples

Question to answer

Are the residual consistent
with detector noise?

Description

Subtracts the best-fit GR
waveform from the data
and asks whether there is
any statistically significant
residual power.

https://arxiv.org/pdf/2112.06861.pdf

Results

oy
=}

== Null hypothesis /)
~—— GWTC-3 Measurement Y

o o o
= (=2} o
n ; :

Cumulative fraction of events
N

=

)
!

N

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

p-value

No evidence for violation of GR

Is the inspiral phase
consistent with GR ?

128y

Inspiral can be treated
perturbatively within the
post-Newtonian
framework. PN coefficients
: measurable parameters of
the waveform —> sensible
consistency test of GR

1 1 1 1
) 0.2
N }
«Q 0.0 ‘44’B>
—0.2
1 1 1 1
%o ¥1 P2 ¥3

0PN 0.5 PN 1PN 1.5 PN

No evidence for violation of GR
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Modified dispersion

Test for GW echoes

Question to answer

Modified theory predict
dispersion of GW

Testing GR — examples

Description

Affect the morphology of the
signal —> effective dephasing of
the GW signal can be measured.

E? = p2c? + A p%c®
Different choices of a —> leads
to a deviation in the GR phasing

formula.
Mass of the graviton :

my = [Ag/c?

https://arxiv.org/pdf/2112.06861.pdf

Results

1.5
1.0 A
0.5

o1 g

—0.5 1

A, [107% peV?]

—1.0 1

—1.5

T T
0.0 0.5 1.0

T T T T
1.5 20 25 3.0 35 4.0

«

Improved bounds on graviton
mass with respect to GWTC-2

my < 1.27x10723eV /c?

If the merger remnant is not a

classical BH but an exotic
compact object without an
event horizon but a reflective
surface

Search for post-merger
echoes in a morphology
independent way:.

1.0

> [=>] o
i f f

Cumulative fraction of events

2
)

0.0

==+ Null hypothesis 7’

Measurement

0.2 0.4 0.6 08 1.0
p-value

No evidence for echoes
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Testing GR - summary

Many more tests of General Relativity have been done :

- Spin-induced quadrupole moment test
-  GW polarizations test

- BH remnant test

- Ringdown test

- Found no statistically significant evidences for any deviation from GR
- Update bounds on deformation parameters in the case of parametrized tests
- Testing GR is very hard, even if a deformation is found:

- Isitreally GR that is deformed ?

- A problem in the data qualify models ?
-  Waveform not enough precise ?

20



e There are several plausible sources of short-duration GW
transients (GW bursts) that have not yet been observed, such
as core-collapse supernovae, neutron star excitations, non-
linear memory effects, or cosmic string cusps and kinks

. All-sky search looks for signals arriving at any time from any sky
direction : short-duration GW transients, up to a few seconds
duration , and longer GW transients, up to ~103 s duration

. 2 independently developed search algorithms deployed:
coherent WaveBurst (cWB) and BayesWave (BW).

Null result of this search :

- Allows sefting of rate density upper limits at an inverse false
alarm rate threshold of 100 years

- Estimate sensitivity to certain classes of GW signals: CCSNe
and isolated NS excitations.

103
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Improving sensitivity
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Challenges for O4

O4 Predicted rate for BNS and BHNS mergers based on O3 :

. 10 (-10 +52) per year (BNS) |
e 1(-1+91) per year (NSBH)

o
oo

—BNS

--~BNS HLV prediction | /

—BBH

---BBH HLV prediction

o 79 (-44 +89) per year (BBH)
061

GW170817 at 40 Mpc -> Rare event
Up to 1 GW alert per day in O4 (HLV prediction)

Cumulative distribution function

KN peak magnitude >20.5 mag for a BNS merger within
200 Mpc

aaaa

GRB: <1 GW + GRB per year observable by Fermi 10

Distance (Mpc)
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Going beyond :Adding new instruments - parameters inference

Comparison between 3 and 5 detectors for sky localization
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Conclusions

¢ 90 confirmed detections up to now

o
o

o

Black holes with large masses

First binary neutron star merger, observed in
coincidence with a short gamma-ray burst

First NSBH events
Test on GR passed
First HO measurement

25






Conclusions

90 confirmed detections up to now

o Black holes with large masses

o First binary neutron star merger, observed in Updated

coincidence with a short gamma-ray burst

o First NSBH events
o Test on GR passed
o First HO measurement

New run O4 for one calendar year

o 3 detectors at beginning

o KAGRA will perform some data taking during the
period with a reduced sensitivity

o Detection rate : ~1/day (BBH)

Plans for O5 and beyond
3G already in discussion

G2002127-v12

IPA2022
mm O1 = 02 == O3 == O4 05
16 June 2022
80 100 100-140 160-190 240-325
Ll G O Minc Mpc Mpc Mpc Mpc
30 40-50 80-115 150-260
. Mpc Mpc Mpc Mpc
Virgo i =
0.7 (1-3) ~10 25-128
KAG RA Mpc Mpc Mpc
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

Observing scenarios with targeted sensitivities (from
https://observing.docs.ligo.org/plan/)
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