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The (g-2) anomaly

[Resonaances blog (Jester)] a, = (251+59) x 10~ (4.20)
[Muon g-2 colab.(2021)]

Neutrinos masses
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[https://globalfit.astroparticles.es]

SM
(data driven)
[ see for example: Jana, Vishnu,
2.0023318362 2.00233183908 2.00233184122
9y Rodejohann, Saad (2020); Escribano,
not updated with new lattice results Terol, Vicente (2021); Chowdhury,

[2206.06582, 2206.15084]
Ehsanuzzaman, Saad (2022)]



(g-2) and cLFV <— neutrino masses

INGREDIENTS:

At low energy, this is the effective electromagnetic dipole moment
operator:
C;‘d@aow PrlgFH* [Crivellin 2018]

(g —2)a = 78’:‘1 Re[cp?] do = —21Im[c3?]

Br(la — £57) = sz (Icp” P + £ ?)

Small m, with low mass scalar and large couplings?

suppression or Higher-dimension



BNT model



BNT model

Approach here: dimension 7 operator LLHH(HTH) = m, = c <£—\/2>3
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[Babu, Nandi, Tavartkiladze (2009)]

e New physics mass scale of O(1 — 10) TeV
e Particles with many electrical charges (ST++, W+ )
e Yukawa matrices that enter in CLFV processes, (g —2) and EDM

[BNT pheno see: Gosh, Jana, Nandi (2018)]



(g-2), in the BNT

[Arbeldez, RC, Fonseca, Hirsch, PRD 102 (2020)]

Effective EM dipole moment operator: cgﬁ EUWPR@F’“’

me Moo (| a8|? | Bal?
aq = —4—= Recg® Br(ls — £y7y) = e || R + ‘CR
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(g — 2)a is proportional to mj_ J

= The diagonal of the Yukawas is related to (g — 2).

= The off-diagonal participates in (£, — {3 + 7).



(g-2), in the BNT [Arbeldez, RC, Fonseca, Hirsch, PRD 102 (2020)]
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’ My < (1 —3) TeV for a reasonable (perturbative) value of the Yukawas




Extended BNT model (BNT®) [ameliez, RC, Fonseca, Hirsch, PRD 102 (2020)]

To soften this one can add ¢ = (1,3,0).
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(g — 2)q is proportional to my my, J




(g-2), in the BNT¢ [Arbeldez, RC, Fonseca, Hirsch, PRD 102 (2020)]
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Full lines: Yoy =1, Dashed lines: Y., = 4m



Production cross-sections

[Arbeldez, RC, Fonseca, Hirsch, PRD 102 (2020)]
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Branching Ratios

=

Br(p—e

Neutrino data requires that at least one Yukawa matrix to be
non-diagonal:

= flavour violating decays of W+

e}

=

S

.
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The upper limit on Br(u — ey) does not restrict the possibility to have
flavour violating decays for W.

[Arbeldez, RC, Fonseca, Hirsch, PRD 102 (2020)]
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[Arbeldez, RC, Fonseca, Hirsch, PRD 102 (2020)]

Branching Ratios

BUT to explain a, and obey the upper bound from cLFV decays at the

same time we need large diagonal Yukawa matrices.

= Heavy fermion decays are very nearly flavour diagonal.

Enhancement of the decay W+ — et h?, particular of the BNT ¢ model.
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Scotogenic T1-2A model




Scot ic model (a primer)

Radiative mass generation = naturally suppressed neutrino masses

Tree-level is forbidden by the Z, symmetry = stable DM candidate

P{ l/LI [ Original: Ma (2006) |

N 4 [ Variations: Restrepo et al (2013) ]
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Scotogenic T1-2A model
[Restrepo, Zapata, Yaguna (2020)]

Neutrino masses: [Sarazin, Bernigaud, Herrmann (2021)]
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= Three light neutrino masses with two copies of .
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(g-2) and cLFV
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How to make (g —2),

e Low new physics mass scale

e Large couplings and Yukawas, mainly lepton diagonal

e Link through the neutrino oscillation data fit

Neutrino structure: m, ~ YT.M.Y, with Y =

&y.
8n1.
N2,

&
&N1,
8gn2,

large enough with small Br(y — ev) ??

&y,
gNlT
gN2.,
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Leptogenesis in a nut-shell

Sakharov conditions for leptogenesis:

AL # 0 processes that violate C/CP symmetry and fall
at a certain time in the thermal evolution of the Universe.

Majorana my: AL =2 Decay parameter
Lepton number violating couplings: K. — I
gN; Y, - ¢ H(T=Mn)
L L 9y L
L n > )
N; N; N, ,-° N; !
— = N+ —~_ S +
gN '« ’ S Y= sia
Osn0? N L b == = H ~%-u--
Similar to the type-I seesaw leptogenesis
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Washout Processes

e Attempt to erase any lepton asymmetry generated.
e Inverse decays, i.e. production of the N;

n(H)
N NZ
L(¥)
e Two-to-two scatterings that modify lepton number, for e.g.
L (D) N,
L(¥) L(¥) \/
RN Iy
0 (H) i (H) /\
L(9) Ny,
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Washout Processes

o Effectiveness of processes determined by ratio of relevant rate w.r.t.
the Hubble parameter, i.e.

(C'n;) {ov)aLzo
Wp=——""— AW = — ==~
b H(M,‘)Z,' ’ H(M,‘)Z,‘
where (...) denotes velocity averaging.
e Define decay parameter
" H(M)

This can be related to the SM neutrino masses.
See for e.g. W. Buchmuller, P. Di Bari and M. Plumacher (2004) or S. Davidson, E. Nardi and Y. Nir (2008)

e Different washout regimes characterized by values of K;

e K; > 3: strong washout regime, where inverse decays are dominant
source of washout.
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Boltzmann Equations

M; M,

Define variables z; = 3, so 0 = 2221
dNy,
dzl,-VI =—zki /ngz,; (NN - Neq) — Out of equilib. decays of N;
2
ehip—r K1(zi)
Tdn i Ki Ny, — N | — (Wo + AW)Np_ .
dz; “ ZF lCz(z,-)( m = Ng) | = (Wb + )N,

washout of asymmetry

production of asymmetry
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Choice of Parameters: (g — 2), <> leptogenesis

The neutral component of the vector-like doublet v, g seems to be the
preferred DM candidate [Sarazin, Bernigaud, Herrnmann (2021)]

We choose N; to drive leptogenesis.

gt
Y
LT TR T
S, Y 9y L
I,I \‘ N w 1
N 2 i 1
— = AN
9y R ~
YR % YL H ~9----
Y K 7N

Pushing (g — 2) to be large , k11 and gy 11, while reducing the
new physics mass scale.

—> pushes also the CP asymmetry to be large, leading to a larger
lepton number asymmetry!!

Price to pay: strong washout regime!
18



Results (WOI’k in progress) [Alvarez, Banik, RC, Herrmann, Porod, Sarazin, Schnelke]

Preliminary results from a MCMC scan.

All points satisfy DM contraints, cLFV bounds and fit (g — 2),.

Log10[ €ce ]

Baryon asym. (ng)

o o o . ¢ . o
2000 3000 4000 5000 6000 7000 8000
My (GeV)

Low-scale leptogenesis despite being in the strong washout regime

[Analogoues to Hugle, Platscher, Schmitz (2018)]
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Results (WOI’k in progress) [Alvarez, Banik, RC, Herrmann, Porod, Sarazin, Schnelke]

(g — 2) together with neutrino masses pushes the asymmetry to larger
values.

q 07 Log10[ |gnl]

105t

10%

decay param (KN;)

1000¢

100

1000 2000 3000 4000 5000
K (GeV)

= Larger k implies larger lepton asymmetry, but also less wash-out!!
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e Neutrino mass mechanisms can be connected to (g — 2).

e (g — 2) pushes toward larger couplings and a lower new physics
mass scale, while the interplay between the neutrino fit and cLFV
constraints affects the flavour structure.

e Depending on the model interesting pheno can be found in very
different scenarios: LHC, leptogenesis, ...

e Flavour effects should also affect strongly in leptogenesis (work to
be donel!)

21



Backup (more... really?)



Production cross-section with 100 TeV

V5 =100 TeV

o(pp — W) [fb]

2000 4000 6000 8000 10000
my [GeV]



(g-2), in the BNT¢

Yy = (f,1,1),vs = 1 GeV, my = 10 TeV
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CLFV decays in the BNT¢
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EDM in the BNT¢

Yy = e™Pe(f,1, 1),v5 =1GeV
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Lepton Asymmetry ¢

e Difference between decay rates of the N; into leptons and
anti-leptons.

L () L ()

~ N

n(H) 0t (HT)

e At tree-level, this is 0; generated at lowest order by interference
between tree-level and one-loop diagrams.



¢ for this model

e Have the usual self-energy and triangle diagrams in “vanilla
leptogenesis”. These can be related to the SM neutrino masses.

T. Hugle, M. Platscher and K. Schmitz (2018)

e But also have additional triangle diagrams with different coupling
combinations.

Yom L(¥) gu L (%)




Solving the Equations

e Start at T > M, with the initial conditions
NN, = N,evcj' and NB—L =0

e Track the number densities down to low temperatures and ascertain
NE_, = Np—i(z1 > 1)

e This value is converted to be compared to the observed
baryon-to-photon ratio 7 as

3 0
B = (4Csph g*) NB L

where Coph, = ﬁ , g0 = and g = 122.25.
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