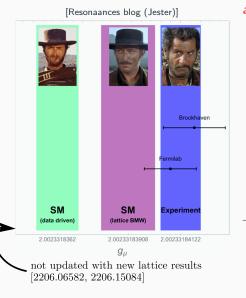




# (g-2) and neutrino masses

work with A. Alvarez, C. Arbeláez, A. Banik, R. Fonseca, B. Hermann,
M. Hirsch, W. Porod, M. Sarazin, M. Schnelke


Ricardo Cepedello

University of Würzburg

IPA 2022, Vienna

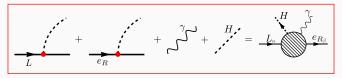
September 8, 2022

# The (g-2) anomaly



$$a_{\mu} = (251 \pm 59) \times 10^{-11} \text{ (4.2 } \sigma \text{)}$$
[Muon g-2 colab.(2021)]






[https://global fit.astroparticles.es]

[ see for example: Jana, Vishnu, Rodejohann, Saad (2020); Escribano, Terol, Vicente (2021); Chowdhury, Ehsanuzzaman, Saad (2022)]

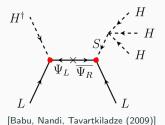
# (g-2) and cLFV $\longleftrightarrow$ neutrino masses

#### **INGREDIENTS:**



At low energy, this is the effective electromagnetic dipole moment operator:

$$rac{oldsymbol{c}_{R}^{lphaeta}ar{\ell}_{lpha}\sigma_{\mu
u}P_{R}\ell_{eta}F^{\mu
u}}{(g-2)_{lpha}=-rac{8m_{lpha}}{e}\operatorname{Re}[oldsymbol{c}_{R}^{lphalpha}]} \qquad d_{lpha}=-2\operatorname{Im}[oldsymbol{c}_{R}^{lphalpha}]$$
 
$$\operatorname{Br}(\ell_{lpha} o\ell_{eta}\gamma)=rac{m_{lpha}^{3}}{4\pi\Gamma_{lpha}}(|oldsymbol{c}_{R}^{lphaeta}|^{2}+|oldsymbol{c}_{R}^{etalpha}|^{2})$$


Small  $m_{\nu}$  with low mass scalar and large couplings?

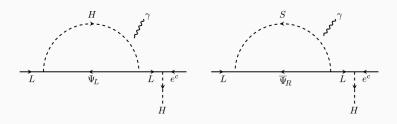
Loop suppression or Higher-dimension

# BNT model

#### **BNT** model

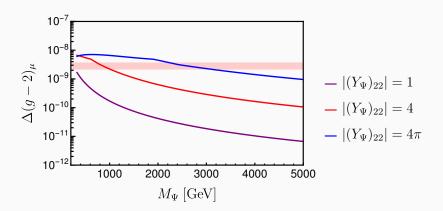
Approach here: dimension 7 operator  $LLHH(H^\dagger H) \Rightarrow m_
u = c \, rac{\langle H 
angle^3}{\Lambda^2}$ 




|              | $SU(3)_c$ | $SU(2)_L$ | U(1) <sub>Y</sub> |
|--------------|-----------|-----------|-------------------|
| $\Psi_{L,R}$ | 1         | 3         | 1                 |
| S            | 1         | 4         | $\frac{3}{2}$     |

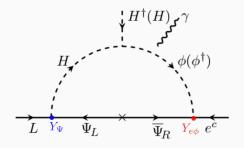
- ullet New physics mass scale of  $\mathcal{O}(1-10)$  TeV
- Particles with many electrical charges  $(S^{\pm\pm\pm}, \Psi^{\pm\pm}, ...)$
- ullet Yukawa matrices that enter in CLFV processes, (g-2) and EDM

[BNT pheno see: Gosh, Jana, Nandi (2018)]

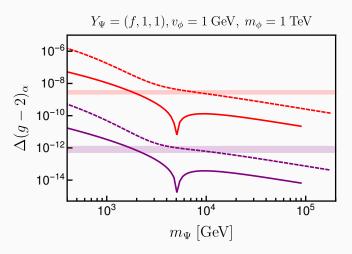

Effective EM dipole moment operator:  $c_R^{\alpha\beta} \overline{\ell_{\alpha}} \sigma_{\mu\nu} P_R \ell_{\beta} F^{\mu\nu}$ 

$$a_{lpha} = -4 rac{m_{\ell_{lpha}}}{e} \operatorname{Re} c_{R}^{lpha lpha} \qquad \qquad \operatorname{Br} \left( \ell_{eta} 
ightarrow \ell_{lpha} \gamma 
ight) = rac{m_{\ell_{eta}}^3}{4 \pi \Gamma_{\ell_{eta}}} \left( \left| c_{R}^{lpha eta} 
ight|^2 + \left| c_{R}^{eta lpha} 
ight|^2 
ight)$$

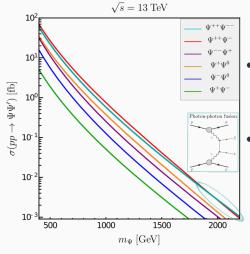



 $(g-2)_{\alpha}$  is proportional to  $m_{\ell_{\alpha}}^2$ 

- $\Rightarrow$  The diagonal of the Yukawas is related to (g-2).
- $\Rightarrow$  The off-diagonal participates in  $(\ell_{\alpha} \to \ell_{\beta} + \gamma)$ .



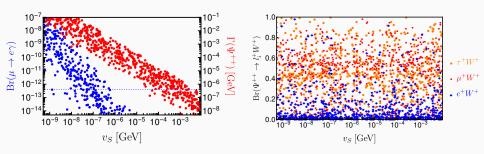

 $M_{\Psi} < (1-3)$  TeV for a reasonable (perturbative) value of the Yukawas


To soften this one can add  $\phi \equiv (1, 3, 0)$ .



 $(g-2)_{\alpha}$  is proportional to  $m_{\Psi} m_{\ell_{\alpha}}$ 



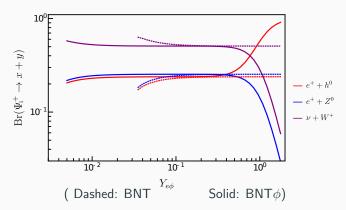

Full lines:  $Y_{e\phi} = 1$ , Dashed lines:  $Y_{e\phi} = 4\pi$ 



- High-lumi LHC: more than 100 (20) events for  $m_{\Psi}=1.5\,(1.8)$  TeV before cuts
- Current (non-dedicated) multi-lepton searches by CMS: optimistic rough estimate  $m_{\Psi} > (800-900) \text{ GeV}$

Neutrino data requires that at least one Yukawa matrix to be non-diagonal:

 $\Rightarrow$  flavour violating decays of  $\Psi^{++}$ 



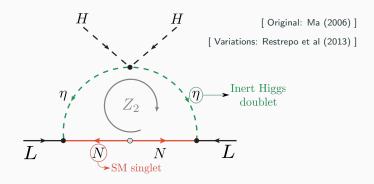

The upper limit on  ${\rm Br}(\mu\to e\gamma)$  does not restrict the possibility to have flavour violating decays for  $\Psi.$ 

BUT to explain  $a_{\mu}$  and obey the upper bound from cLFV decays at the same time we need large diagonal Yukawa matrices.

⇒ Heavy fermion decays are very nearly flavour diagonal.

Enhancement of the decay  $\Psi^+ \to e^+ h^0$ , particular of the  $BNT\phi$  model.

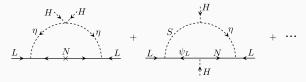



# \_\_\_\_\_

Scotogenic T1-2A model

# Scotogenic model (a primer)

Radiative mass generation  $\Longrightarrow$  naturally **suppressed** neutrino masses

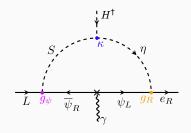

Tree-level is forbidden by the  $Z_2$  symmetry  $\Longrightarrow$  stable **DM candidate** 

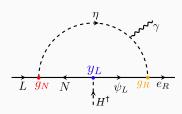


# Scotogenic T1-2A model

[Restrepo, Zapata, Yaguna (2020)] [Sarazin, Bernigaud, Herrmann (2021)]

#### Neutrino masses:





|                    | N <sub>i</sub> | $\psi_{L,R}$ | $\eta$ | 5  | Н  | Li | e <sub>R, i</sub> |
|--------------------|----------------|--------------|--------|----|----|----|-------------------|
| SU(2) <sub>L</sub> | 1              | 2            | 2      | 1  | 2  | 2  | 1                 |
| U(1) <sub>Y</sub>  | 0              | -1           | +1     | 0  | +1 | -1 | -2                |
| $\mathbb{Z}_2$     | -1             | -1           | -1     | -1 | +1 | +1 | +1                |

$$-\mathcal{L} \supset g_N N_i L \eta + g_R \eta^{\dagger} \psi_L e_R^c + g_{\psi} \overline{\psi}_R L S$$
$$+ y_L \psi_L H N_i + y_R \psi_R H \overline{N}_i + \kappa \eta^{\dagger} H S + \text{h.c.}$$

 $\Rightarrow$  Three light neutrino masses with **two copies of** N.

# (g-2) and cLFV

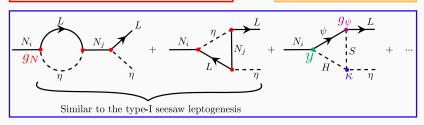




How to make  $(g-2)_{\mu}$  large enough with small  $\text{Br}(\mu \to e\gamma)$  ??

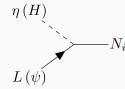
- Low new physics mass scale
- Large couplings and Yukawas, mainly lepton diagonal
- Link through the neutrino oscillation data fit

Neutrino structure: 
$$m_{\nu} \sim Y^{T}.M.Y$$
, with  $Y = \begin{pmatrix} g_{\psi_{e}} & g_{\psi_{\mu}} & g_{\psi_{\tau}} \\ g_{N1_{e}} & g_{N1_{\mu}} & g_{N1_{\tau}} \\ g_{N2_{e}} & g_{N2_{\mu}} & g_{N2_{\tau}} \end{pmatrix}$ .

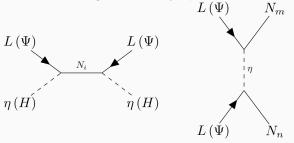

# Leptogenesis in a nut-shell

#### Sakharov conditions for leptogenesis:

 $\Delta L \neq 0$  processes that violate C/CP symmetry and fall out of equilibrium at a certain time in the thermal evolution of the Universe.


Majorana  $m_{\nu}$ :  $\Delta L = 2$ Lepton number violating couplings:  $g_N, y, \dots$  Decay parameter

$$K_i = \frac{\Gamma_N^{tree}}{H(T=M_N)}$$




#### **Washout Processes**

- Attempt to erase any lepton asymmetry generated.
- Inverse decays, i.e. production of the  $N_i$



• Two-to-two scatterings that modify lepton number, for e.g.



#### Washout Processes

 Effectiveness of processes determined by ratio of relevant rate w.r.t. the Hubble parameter, i.e.

$$W_D = \frac{\langle \Gamma_{N_i} \rangle}{H(M_i) z_i}, \qquad \Delta W = \frac{\langle \sigma v \rangle_{\Delta L \neq 0}}{H(M_i) z_i}$$

where  $\langle \dots \rangle$  denotes velocity averaging.

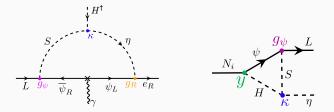
Define decay parameter

$$K_i = rac{\Gamma_{N_i}^{\text{tree}}}{H(M_i)}$$

This can be related to the SM neutrino masses.

See for e.g. W. Buchmuller, P. Di Bari and M. Plumacher (2004) or S. Davidson, E. Nardi and Y. Nir (2008)

- Different washout regimes characterized by values of  $K_i$
- K<sub>i</sub> > 3: strong washout regime, where inverse decays are dominant source of washout.


## **Boltzmann Equations**

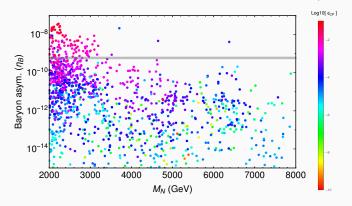
Define variables 
$$z_i = \frac{M_i}{T}$$
, so  $z_2 = \frac{M_2}{M_1} z_1$ . 
$$\frac{dN_{N_i}}{dz_i} = -z_i \, K_i \, \frac{\mathcal{K}_1(z_i)}{\mathcal{K}_2(z_i)} \left( N_{N_i} - N_{N_i}^{\text{eq.}} \right) \to \text{Out of equilib. decays of } N_i$$
$$\frac{dN_{B-L}}{dz_1} = -z_1 \left[ \sum_{i=1}^2 \epsilon_i \, K_i \, \frac{\mathcal{K}_1(z_i)}{\mathcal{K}_2(z_i)} \left( N_{N_i} - N_{N_i}^{\text{eq}} \right) \right] - \underbrace{\left( W_D + \Delta W \right) N_{B-L}}_{\text{washout of asymmetry}}.$$

# Choice of Parameters: $(g-2)_{\mu} \leftrightarrow$ leptogenesis

The neutral component of the vector-like doublet  $\psi_{L,R}$  seems to be the preferred DM candidate [Sarazin, Bernigaud, Herrnmann (2021)]

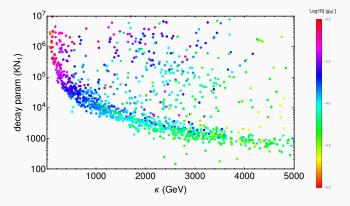
We choose  $N_i$  to drive leptogenesis.




Pushing (g-2) to be large  $g_R \uparrow \uparrow$ ,  $\kappa \uparrow \uparrow$  and  $g_\psi \uparrow \uparrow$ , while reducing the new physics mass scale.

 $\Longrightarrow$  pushes also the CP asymmetry to be large, leading to a **larger lepton number asymmetry**!!

Price to pay: strong washout regime!


Preliminary results from a MCMC scan.

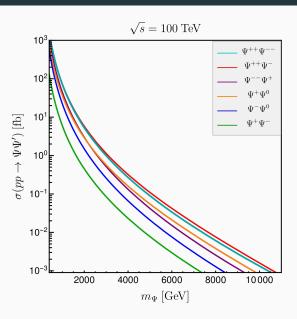
All points satisfy DM contraints, cLFV bounds and fit  $(g-2)_{\mu}$ .



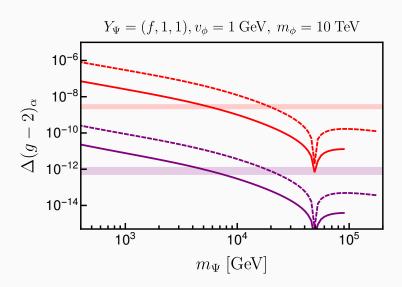
Low-scale leptogenesis despite being in the strong washout regime

(g-2) together with neutrino masses pushes the asymmetry to larger values.

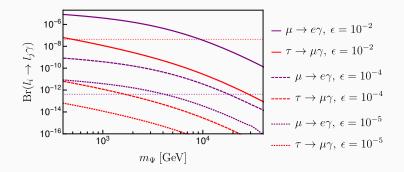



 $\implies$  Larger  $\kappa$  implies larger lepton asymmetry, but also less wash-out!!

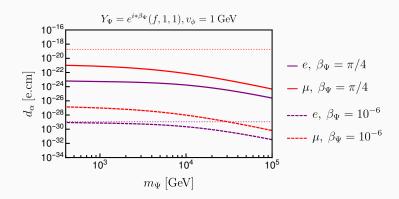
### Summary


- Neutrino mass mechanisms can be connected to (g-2).
- (g 2) pushes toward larger couplings and a lower new physics mass scale, while the interplay between the neutrino fit and cLFV constraints affects the flavour structure.
- Depending on the model interesting pheno can be found in very different scenarios: LHC, leptogenesis, ...
- Flavour effects should also affect strongly in leptogenesis (work to be done!)

# Backup (more... really?)

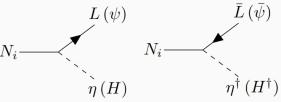

# Production cross-section with 100 TeV




# $\overline{(g-2)_{lpha}}$ in the BNT $\phi$



# **CLFV** decays in the BNT $\phi$

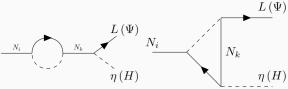



## **EDM** in the BNT $\phi$

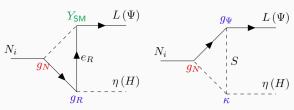


# **Lepton Asymmetry** $\epsilon$

 Difference between decay rates of the N<sub>i</sub> into leptons and anti-leptons.




• At tree-level, this is 0; generated at lowest order by interference between tree-level and one-loop diagrams.


#### $\epsilon$ for this model

 Have the usual self-energy and triangle diagrams in "vanilla leptogenesis". These can be related to the SM neutrino masses.

T. Hugle, M. Platscher and K. Schmitz (2018)



• But also have additional triangle diagrams with different coupling combinations.



# **Solving the Equations**

• Start at  $T \gg M_2$  with the initial conditions

$$N_{N_i} = N_{N_i}^{\text{eq.}}$$
 and  $N_{B-L} = 0$ 

- Track the number densities down to low temperatures and ascertain  $N_{B-L}^f=N_{B-L}(z_1\gg 1)$
- ullet This value is converted to be compared to the observed baryon-to-photon ratio  $\eta_B$  as

$$\eta_B = \left(rac{3}{4} \; \mathcal{C}_{\mathsf{sph.}} \; rac{g_*^0}{g_*}
ight) \; \mathcal{N}_{B-L}^f$$

where  $C_{\text{sph.}} = \frac{8}{23}$ ,  $g_*^0 = \frac{43}{11}$  and  $g_* = 122.25$ .