

Recent results from the Pierre Auger Observatory

Serguei Vorobiov, University of Nova Gorica, Slovenia IPA2022, TU Wien, Austria, 5.9.2022

Connections of UHECRs (E>10¹⁷ eV)

The Pierre Auger Observatory

Phase 1: data taking from 2004 on (from 2008 with the full array in operation):

- ✓ Over 120,000 km² sr yr for anisotropy studies
- ✓ Over 90,000 km² sr yr for spectrum studies

Phase 2: the AugerPrime upgrade Data taking from 2023 to 2030...

- \checkmark +40,000 km² sr yr
- ✓ Multi-hybrid events : FD, SD, SSD, RD, UMD

Primary CR reconstruction

Auger energy calibration & systematics

FD: the common energy scale

free of SD-related uncertainties (cascade simulation + hadronic interaction models)

Energy systematic uncertainties:

FD calibration: 9.9%

FD profile reconstruction 6.5-5.6%

Atmospheric conditions: 3.4-6.2%

Stability of the energy scale 5%

Fluorescence yield: 3.6%

Invisible energy 1.5%

Statistical error of SD calibration fit 1%

FD energy scale: 14%

SD resolution for energy reconstruction:

Energy: 20% (@2 EeV) to 7% (@ >20 EeV)

Hybrids (FD + at least 1 SD station):

Energy resolution 7.4%

Features of the energy spectrum of cosmic rays above 2.5 x 10¹⁸ eV using the Pierre Auger Observatory, Phys. Rev. Lett. 125, 121106 (2020)

Measurement of the cosmic ray energy spectrum above 2.5 x 10¹⁸ eV using the Pierre Auger Observatory, Phys. Rev. D 102, 062005 (2020)

UHECR energy spectrum

Auger Coll., Phys. Rev. D102 (2020) 062005 Auger Coll., Eur. Phys. J. C 81 (2021) 966 V.Novotny, PoS(ICRC2021) 324

Comparing spectrum to other data

- At the highest energies, Auger and TA data can be brought to better agreement using a +/- 4.5% energy rescaling (well within systematics).
- Even when looking in the common declination band, an energy dependent shift is required to resolve the remaining discrepancies.

X_{max} moments

Evidence of a mixed composition - pure composition of light nuclei excluded with > 6σ Change of slope around $10^{18.3}$ eV : composition first becomes lighter before getting heavier and heavier at the highest energies

Above $10^{18.3}$ eV : distribution of X_{max} become narrower

Comparisons with Telescope Array

- The Auger composition fractions input to the TA simulations; the resulting distributions are compared to the TA Xmax results
- TA data consistent with proton AND with Auger-mix composition at least up to 10 EeV

Auger&TA working group, JPS Conf.Proc. 9 (2016) 010016 Auger&TA working group, EPJ Web of Cons. 210 (2018) 010009

Large scale anisotropy

- ⇒ exposure 110,000 km² sr yr
- → OBSERVATION (at 6.6σ): 3D dipole above 8 EeV at $(\alpha, \delta) = (95^{\circ}, -36^{\circ})$: $(7.3^{+1.1}_{-0.9})$ %
- → UHECRs are extra-galactic above 8 EeV, predominantly Galactic below few EeV

Intermediate scale anisotropy

Catalog	E _{th} [EeV]	Ψ [deg]	<i>α</i> [%]	TS	Post-trial <i>p</i> -value
All galaxies (IR)	40	24^{+16}_{-8}	15^{+10}_{-6}	18.2	6.7×10^{-4}
Starbursts (radio)	38	25^{+11}_{-7}	9^{+6}_{-4}	24.8	3.1×10^{-5}
All AGNs (X-rays)	41	27^{+14}_{-9}	8^{+5}_{-4}	19.3	4.0×10^{-4}
Jetted AGNs (γ -rays)	40	23^{+9}_{-8}	6^{+4}_{-3}	17.3	1.0×10^{-3}

Search parameters

- $1^{\circ} \le \Psi \le 30^{\circ}$
- 32 $EeV \le E \le 80 EeV$

Whole sky blind search

- Most significant excess:
- $\Psi = 24^{\circ} \& E = 41 \text{ EeV}$
- 2.2σ post trial

Fixed direction (CenA)

- Most significant excess:
- $\Psi = 27^{\circ} \& E = 41 \text{ EeV}$
- 3.9 σ post trial

Catalog searches (see table)

J.Biteau for the Pierre Auger Collaboration, ICRC2021 #307 A.Aab et al., Ap. J. Lett 853 L29 (2018) Paper accepted to ApJS (2022); see arXiv:2206.13492

Intermediate scale anisotropy

Signal growths consistent with the discovery of one or more classes of UHECR sources by 2025-30

J.Biteau for the Pierre Auger Collaboration, ICRC2021 #307, A.Aab et al., Ap. J. Lett 853 L29 (2018) F.Sarazin, L.Anchordoqui et al. 2020 Decadal Survey UHECR white paper, arXiv:1903.04063

Composition enhanced anisotropy studies

- Scan of data before Jan 1, 2013 (54% of the data). Highest TS for Log(E_{min}/eV)=18.7 and b_{split}=30°.
- Significance at the end date: 4.9σ statistics only,
 3.3σ including systematics
- Indication of a lighter composition far from the Galactic plane

Such anisotropy may not be related to the Galactic Magnetic Field. Local source distribution or mass dependent horizons may play a role.

E. Mayotte for the Pierre Auger Collaboration, ICRC 2021 #321

18

20

16

14

Years since 2000

3σ

2σ

Fest Statistic

Preliminary

8

Interpreting the data

UHE photons and neutrinos

Most stringent limits on UHE photons across three decades in energy

- limits background dominated
- more data for γ/hadron separation needed
- an increased sensitivity to photons required for probing unexpected phenomena, e.g. Milky Way sources, interaction in the halo, decay of SHDM

Maximum sensitivity to UHE v's around EeV k (90% CL) < 4.4 \times 10⁻⁹ GeV cm⁻² s⁻¹ sr⁻¹

- different models of cosmogenic and astrophysical neutrino production excluded
- aperture comparable to that of IceCube if source direction is favourable
- neutrinos used (as photons) in multimessenger studies of transient phenomena

Auger Coll., JCAP04 (2017) 009; JCAP09 (2020) E02 P.Savina (Auger Coll.), PoS(ICRC2021) 373 Auger Coll., ApJ (2022)

Auger Coll., JCAP10 (2019) 022; JCAP 11 (2019) 004; ApJ 902 (2020)105

Results and lessons from Auger Phase 1

Flux suppression well established: the UHECR sources must be nearby (< 200 Mpc)

Composition mixed and heavier above ~ 2x10¹⁸ eV from Xmax measurements ... but statistics too low above ~10^{19.5} eV due to FD duty cycle ~15%.

Large scale dipolar anisotropy (6.6 σ): extragalactic origin for UHECR > 8 EeV + Hints of correlation with SBG/AGN

——— Quest for sources still open.

Muon puzzle: muon content in simulations lower than in data

→ Tension with all hadronic models.

Strong limits on the flux of neutrinos and gammas: "standard" astrophysical scenarios of UHECR production

... and many more

Towards Auger Phase 2: AugerPrime upgrade

Surface Scintillator Detector (SSD)

different response to electromagnetic & muonic shower components w.r.t. WCD

Radio antenna

to measure the radio emission of showers in atmosphere (30-80 MHz)

Underground Muon Detector (UMD)

direct muon measurement and cross-check of SSD-WCD combined analysis

Small PMT (SPMT)

increase of the dynamic range of WCD measurements

Upgraded Unified Electronics (UUB)

to process the signals from all the new detectors with improved performances

Auger Preliminary Design Report [arXiv:1604.03637]

A. Castellina, EPJ Web of Conf.210 (2019) 06002

Measurements with AugerPrime

AugerPrime: status and conclusions

AugerPrime: largest exposure UHECR detector with composition sensitivity above 4 x 10¹⁹ eV

- Deployment and commissioning to be completed by mid 2023.
- Data taking foreseen up to 2030.
- Fundamental input for future experiments.

Backup slides

AugerPrime scientific case

Primary goal: mass composition of UHE

- to study the origin of the suppression
- to accomplish composition-driven anisotropy analyses
 e.g. if 10% of protons at the highest energies
- → to study the hadronic interactions at energy much larger than human made accelerators (hints of new physics?)
- to provide better estimates of γ and ν flux (explore potential of future experiments)

Scenario 1 : maximum rigidity model

Scenario 2 : photo-disintegration model

Radio emission by extensive air showers

The 30–80 MHz band is used by most experiments.

Due to coherence effects, the cosmic-ray-induced radio emission is strongest below 100 MHz.

Atmospheric noise and short-wave band transmitters make measurements below 30 MHz unfeasible.

From 85 to 110 MHz the FM band interferes with measurements.

Geomagnetic emission

- geomagnetic field deflects e- and e+ in opposite directions -> transverse current varying over time
- linear polarisation of the radiation (E aligned along the Lorentz force)
- propagation along the shower axis

Askaryan effect

- ionisation of ambient medium by EAS particles:
 e+ annihilation -> excess of e- along the longitudinal development
- linear polarisation of the radiation (E radially oriented wrt EAS axis)
- sub-dominant in EAS

