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Abstract

In this work, we propose an efficient and accurate computational method to evaluate the many-

potential α (Zα)n≥3 vacuum polarization density of hydrogen-like atoms within the finite-basis approx-

imation of the Dirac equation. To prove the performance of our computational method, we choose to

work with the one-electron 238
92U atom. In summary, we find that compliance with charge conjugation

symmetry is a priori required to obtain physical results that are in line with our knowledge of the an-

alytical problem. We also note that the final numerical results are found to be in excellent agreement

with previous formal analytical (and numerical) evaluations that are limited to a few simple nuclear

distribution models. Our technique can be efficiently implemented and evaluated in codes that solve

the radial Dirac equation in the finite basis set framework and allows the use of arbitrary (radial) nu-

clear charge distribution. The obtained numerical results of the non-perturbative vacuum polarization

density automatically account for the extended nuclear size effect. This method is hence of special

importance for atomic Dirac problems whose analytical Green’s functions expressions are not at hand

or have relatively complicated analytical forms.

Theory

The vacuum polarization (VP) four-current can be written as a

JVPµ (x) = i~ecTr
[
γµS

F
A (x, y)

]
y→x

, (1)

where x = (ct,x) and SFA (x, y) is the Feynman propagator (time-ordered propagator) solving the

inhomogenous linear differential equation[
γµ

(
i~∂µ + eAext.

µ (x)
)

−mc
]
SFA (x, y) = δ4 (x− y) , (2)

in the presence of an external four-potential Aext. = (φext./c,Aext.). In the case where the external

potential is time-independent, the VP four-current reads

JVPµ (x) =
(
cρVP,−JVP

)
= ec

2
[ ∑
En>0

ψ̄n (x) γµψn (x) −
∑
En<0

ψ̄n (x) γµψn (x)
]
, (3)

where ψ̄n = ψ
†
nγ

0.ψn (x) and En form an eigensolution of the time-independent Dirac equation[
cα · [−i~∇ + eAext. (x)] + βmc2 − eφext. (x)

]
ψn (x) = Enψn (x) . (4)

In the absence of an external vector potential Aext. and using T -symmetry, we have shown that the

VP three-current must vanish. We shall now focus on the static VP density cloud, represented by

ρVP (x) = e

2
[ ∑
En>0

ψ
†
n (x)ψn (x) −

∑
En<0

ψ
†
n (x)ψn (x)

]
, (5)

forming around (and inside) a radial nucleus of normalized charge distribution ρn (x) that generates a
scalar potential

−eφext. (x) = − (Zα) ~c
∫
d3y

ρn (y)
|x − y|

. (6)

Radial Dirac problem

In spherical symmetry, i.e. when the nuclear distribution becomes radial ρn (x) = ρn (r), the Dirac

spinor can be written as

ψn,κ,mj (x) = 1
r

[
Pn,κ (r) Ωκ,mj (x̂)
iQn,κ (r) Ω−κ,mj (x̂)

]
, (7)

where Ωκ,mj are the two-component spherical spinors, and the radial functions Pn,κ and Qn,κ form a

solution of the radial Dirac (eigenvalue) equationmc2 − eφext. (r) −c~
[
d
dr − κ

r

]
c~

[
d
dr + κ

r

]
−mc2 − eφext. (r)

[
Pn,κ
Qn,κ

]
= En,κ

[
Pn,κ
Qn,κ

]
. (8)

Using angular summation relations over product of spherical spinors, one can show that the total VP

density of Eq.(5) can be written as (see Ref. [1])

ρVP (x) =
∑

κ=±1,±2...
ρVPκ (x) (9)

ρVPκ (x) = e |κ|
4π

1
r2

∑
n

sgn
(
En,κ

)
ρn,κ(r), (10)

where ρn,κ = P 2
n,κ + Q2

n,κ is the radial probability density associated with the n-th solution of the κ

problem. The VP densities ρVP±κ (x) must be computed in pairs as

ρVP|κ| (x) = ρVP+κ (x) + ρVP−κ (x) , (11)

due to the large cancellation between ±κ contributions. In the free-particle problem (Z = 0), the total
VP density must vanish due to the total cancellation of these VP densities.

Finite basis approximation

The finite basis set scheme suggests solving the radial eigenvalue problem of Eq.(8) by expanding the

radial spinor in a finite set of basis functions. We have considered two main schemes:

1. The kinetic balance (KB) construction, where the radial Dirac wavefunction expands as[
Pn,κ
Qn,κ

]
≈ ϕKBn,κ =

n+
κ∑

i=1
c+n,κ,i

[
π+
κ,i
0

]
+ ~

2mc

n−
κ∑

i=1
c−n,κ,i

[
0[

d
dr + κ

r

]
π+
κ,i

]
, (12)

widely used in molecular calculations and biased towards positive-energy solutions (PES).

2. The dual kinetic balance (DKB) construction, introduced by Shabaev et al. in Ref. [2], giving[
Pn,κ
Qn,κ

]
≈ ϕDKBn,κ =

n+
κ∑

i=1
c+n,κ,i

[
π+
κ,i

~
2mc

[
d
dr + κ

r

]
π+
κ,i

]
+

n−
κ∑

i=1
c−n,κ,i

 ~
2mc

[
d
dr − κ

r

]
π−
κ,i

π−
κ,i

 , (13)

providing a democratic description between positive- and negative-energy solutions.

In the present work, we have employed the large- and small-component Gaussian (basis) functions

π+
κ,i (r) = r|κ+1

2|+1
2e

−ζ+
κ,ir

2
(14)

π−
κ,i (r) = r|κ−1

2|+1
2e

−ζ−
κ,ir

2
. (15)

These radial functions follow the right behavior of the exact wavefunctions Pn,κ and Qn,κ in the finite

nuclear distribution case. We need to carefully select sets of exponents {ζ±
κ,1, . . . , ζ

±
κ,n±

κ
} that effec-

tively cover the relevant radial range. In addition, we have shown that the:

1. RKB construction can be made C-symmetric iff one uses the free-particle Dirac solutions (spherical

Bessel functions) as basis functions.

2. DKB construction can be made C-symmetric if one forces large and small functions to obey

π+
±κ,i = π−

∓κ,i, meaning that for Gaussian functions of Eqs.(14 and 15) we must set ζ±
κ,i = ζ∓

−κ,i.

Numerical calculations

Our VP density ρVPκ of Eq.(10) can be expanded in powers of the external potential (Z) as

ρVPκ (x;Z) =
∞∑
n=0

ρ
VP,n
κ (x;Z) where ρ

VP,n
κ (x;Z) = ∂n

∂Zn
ρVPκ (x;Z)

∣∣∣
Z=0

Zn

n! . (16)

The bound-electron interaction with this VP density is represented in Fig. (1). Recall from Furry’s

theorem (Ref. [3]) that fermion loops with an odd number of vertices (even n) must yield a vanishing

contribution. Moreover, the VP process that is linear in Z (containing the Uehling process) is logarith-

mically divergent. We eliminate this divergence by computing the many-potential VP density

ρ
VP,n≥3
κ (x;Z) = ρVPκ (x;Z) − ρ

VP,1
κ (x;Z) (17)

ρ
VP,1
κ (x;Z) = lim

δ→0

Z

δ

[
ρVPκ (x; δ) − ρVPκ (x; 0)

]
. (18)

To test our technique, we chose to work with the shell nucleus model, represented by the nuclear

distribution ρn (x) = δ (r − rn) /4πr2
n with r = 5.86 fm for the hydrogen-like uranium atom (Z = 92).

ρVP,2
κ (x;Z)ρVP,1

κ (x;Z)ρVP,0
κ (x;Z)ρVP

κ (x;Z)

+ + +=

Figure 1. Bound-state VP density expanded in powers of Z .

We first run two free-particle calculations (Z = 0) with a set of 10 Gaussian exponents within both KB

and DKB constructions, and present the obtained results in Figs. (2a) and (2b), respectively. Notice

that the KB construction yields non-vanishing free VP densities due to C-symmetry violation.
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Figure 2. Free VP density ρVP|κ|=1 (x) with 10G.

We then run the same calculations on the single-electron uranium atom Z = 92, and present the

corresponding results of the total VP density of Eq.(11) in Figs. (3a) and (3b). These results show a

decaying VP density at relatively large distances with DKB, compared to KB.
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Figure 3. Atomic VP density ρVP|κ|=1 (x) with 10G.

We finally compute the many-potential VP density ρ
VP,n≥3
κ of Eq.(17), for the uranium atom of shell

nuclear distribution (hollow sphere), and compare our results to the ones obtained by Mohr et al. in

Ref. [4] in Figs. (4a) and (4b). An excellent agreement is observed at both small and large distances.
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Figure 4. Many-potential VP density ρVP,n≥3
|κ|=1 (x) with 150G within DKB.

Conclusions

The DKB construction of finite basis sets allows the compliance to C-symmetry and yields VP

density results that are 1) in line with Furry’s theorem (forZ = 0) and 2) decaying at large distances
(for Z 6= 0). Both of these essential characteristics are missing in the KB construction.

One can account for the n = 3 VP process using the effective potential (V13) derived by Blomqvist

(1972) (limited to point nuclei) or compute the many-potential VP density (n ≥ 3), following Soff

and Mohr (1988) or Gyulassy (1974). These latter proposals are 1) limited to a few nuclear models

(sphere and ball) whose radial Green’s functions are at hand, and 2) require numerical integrations.

The proposed procedure allows accurate and efficient computation of the many-potential VP den-

sity, within the finite basis set framework, without the need for numerical integrations and in the

presence of arbitrary nuclear distributions. This procedure is therefore of particular importance

for nuclear model problems whose radial Green’s function is not at hand, and can be straightfor-

wardly implemented in relativistic molecular calculations to account for the missing physics.
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