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We calculate the gravitational tensor-monopole moment of the momentum-current density 7
in the ground state of the hydrogen atom to order O(«) in quantum electrodynamics (QED). The

result is 4o
TH/To — 1= 3 (In o — 0.028)

where 19 = A% /4m, is the leading-order moment. The physics of the next-to-leading-order correction
is similar to that of the famous Lamb shift for energy levels.

- Intriguing: a new atomic observable

- Is the physics really similar to the Lamb shift?

- Practically important: related to hadronic structure

- Experiments ongoing at JLab and planned in Electron-lon Collider



Matrix elements of the energy-momentum tensor
in the hydrogen atom

based on work with Yizhuang Liu, Jagiellonian University, Poland

Outline:

- Moftivation: Ji & Liu's recent logarithmic correction to the
graviton's interaction with the Hydrogen atom

- Experimental relevance: hadronic physics (a new observable)
- Gravitational form-factors: the D-term

- D-ferm's sign vs stability of the system

- Logarithmic corrections: D-term vs Lamb shift
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Misha Eides' recent work on energy-momentum tensor

Motivation:

A new insight into the EMT properties could arise from
consideration of EMT in theories which allow perturbative [treatment]

One-loop electron mass and QED trace anomaly

Michael I. Eides? Eur. Phys. J. C (2023) 83:356
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Graviton-atom interaction:
Of recent interest because can be probed in scattering experiments,
via Generalized Parton Distributions [X. Ji; A. V. Radyushkin]




Experimental consequences

Determining the gluonic gravitational form
factors of the proton

Nature | Vol 615 | 30 March 2023 | 813

—

HMS spectrometer

- Beyond earlier studies of the charge and spin distributions in the proton;
- New parameter: proton mass radius 0.52(3) fm.



Graviton's interaction and the EMT
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The sign of the D-term and system's stability

On LHCDb pentaquarks as a baryon-1(2S) bound state — prediction of isospin g
pentaquarks with hidden charm *

Irina A. Perevalova,! Maxim V. Polyakov,?3 and Peter Schweitzer® °
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A less trivial local criterion can be obtained by considering that at any chosen distance r the force exhibited by the
system on an infinitesimal piece of area dA e; must be directed outwards. If this was not the case, the system would
collapse. Since this force is Fi(r) = T%(r)dAel = [2 s(r) + p(r)|dA e’ we obtain the criterion

§ s(r)+p(r) > 0. (18)

We checked that the condition is satisfied in all systems we are aware of where EMT densities were studied
9, 10, 25-31]. As this includes unstable systems, apparently also is a necessary but not sufficient condition for
stability. Due to its local character, it provides a stronger criterion than the von Laue condition and will play
an important role below. Interestingly, the criterion allows one to draw a conclusion on the sign of the D-term.
We see that

o0 2
4 4 — e = — . ].
0< 7r/0 drr (3 s(r)—i—p(r)) M + 5w M (19)

Thus, if a system satisfies the local stability criterion (18), then it must necessarily have a negative D-term (but a
negative D-term does not imply that s(r) and p(r) satisfy (18), so the opposite is in general not true). Indeed, in all
systems studied so far the D-terms were found to be negative |9, 10, 25-31].



Two integrals:
0= [ p(r)d®r

D ~ /p(’r)r2d3fr

Two types of stable systems:

”Liquid droplet”

tension at larger: D<0

Max von Laue’s stability condition

assuming spherical symmetry

“Atom”

Electron

tensionatsmallr: D>0



Max von Laue's stability condition

Energy-momentum conservation = in terms of the EMT o*T,, = 0.

In a stationary state: no time dependence, V*T}, = 0

Integral form (n: normal to an enclosing surface): / Tijnjda =0
g

Choose the surface as a cross-section of the system in the x-plane, closed at infinity:

/ T%dydz = 0

/ T%d3r = 0

Diagonal element like i=x: pressure 0 — /p(T)dST

Finally, integrate over x:

Zur Dynamik der Relativitditstheorie
von M. Lawue. 1911



von Laue's stability example 1: liquid droplet
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liquid drop model |
0 1 2 r
poR
p(r) = pob(r — R) — =—=0(r — R)
4T R3 R
/p(fr)dgr — 7T3 Po — pOszRQ =0

Forces inside hadrons: pressure, surface tension, mechanical radius, and all that

1805.06596

Maxim V. Polyakov!'? and Peter Schweitzer?



von Laue's stability example 2: hydrogen atom

§Y
T (7) = mv'v? 63 (7 — Z(t)) — E'E? + 7E2
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Electron’s motion Electron’s and proton’s electric field

We want to show [ d37 T%(7) =2T +V =0  asin virial theorem
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D-term vs EMT elements

q v q A (t) v D (t) v v iqr i .
(Pl @|P-3)= [713 P Ty (00— d0) | € graviton®
t=q°
Determine the EMT as the Fourier transform /.\
of this matrix element N(P) N(P’)

with respect to the momentum transfer
in the Breit frame (no energy transfer).

On the other hand, decompose in terms of pressure p and shear s,
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Example: D-term of a liquid drop

p(r) = podlr — R) — 2%5(r — )

R
D = mdr? (/ dr rpy — Z%R‘l)
0

872

=75 ™

It is negative because the negative pressure region is at the outer boundary.



Example: D-term of the hydrogen atom

Consider [ d°7 r2T™
In dimensional regularization, terms homogeneous in r vanish.
Potential energy contributions give two integrals,
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Together with the kinetic energy contribution, we get

.. 2
/d37'°' r2 T%(F) = mv?R? + © (Il + Iz) = aR

3272

This is positive, reflecting electron-proton attraction (rather than surface tension).



Logarithmic corrections: Lamb vs D-term

Vacuum fluctuations smear electron’s position,

Lamb
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Only S-states are affected

D-term
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Universal log-correction: all states



Welton's interpretation of Lamb shift

Electron’s position in the H-atom modified by vacuum fluctuations.
This changes the potential experienced by the electron,

{Ue(r+q)) =Uc(r)+ (q) -VU:+ 5 <q2q3>V’V9Uc+...,
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Mean-squared displacement <qg2>:
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+ non-logarithmic terms.
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Log correction to the D-term
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Summary

- There are interesting observables in atoms, related to the energy-momentum tensor,
in addition to the usually studied electromagnetic current.

- Atomic examples help understand properties of the EMT

- Sign of the D-term can be positive for a stable system

- Logarithmic corrections to the D-term are universal, affecting not only S-states.



