

Status and prospects of the muon magnetic anomaly measurement at FNAL

Alberto Lusiani, for the FNAL Muon g-2 collaboration Scuola Normale Superiore and INFN, sezione di Pisa

International Conference on Precision Physics and Fundamental Physical Constants (FFK2023), Vienna, Austria, 22-26 May 2023

Muon magnetic anomaly

particle x such as a muon, electron, proton, neutron

Muon g-2 anomaly motivated FNAL Muon g-2 experiment (E989)

FNAL-E989 vs. BNL-E821

FNAL-E989 design precision, compared to BNL-E821 final report (2006)

	BNL E821 (2006)	FNAL E989 final goal	
ω_a statistical	460 ppb	100 ppb	$ imes$ 21 detected muon decays (1.6 \cdot 10 11)
ω_a systematic	210 ppb	70 ppb	faster calorimeter with laser calibration, tracker
ω_p systematic	170 ppb	70 ppb	more uniform <i>B</i> , improve NMR measurement
external measurements	negligible	negligible	
total	540 ppb	140 ppb	

 ω_a : measured muon spin precession frequency in magnetic field

 ω_p : measured proton spin precession frequency to measure magnetic field

FNAL-E989 Muon g-2 collaboration measurement in April 2021

► FNAL-989 collaboration Run 1 measurement, Phys. Rev. Lett. 126, 141801

BMW 2021, calculation with lattice QCD of HVP contribution, Nature volume 593, pages51-55 (2021)

Motion and spin precession of muon in uniform magnetic field

polarized muons in magnetic storage ring

Motion and spin precession of muon in uniform magnetic field

polarized muons in magnetic storage ring

Beam focusing in storage ring, magic energy

beam focusing

- weak horizontal focusing provided by uniform magnetic field
- vertical focusing with electric field quadrupoles
 - magnetic focusing prevails on quadrupole horizontal defocusing

$$\mathbf{\check{\omega}}_{a} = -\frac{e}{m_{\mu}} \begin{bmatrix} a_{\mu}\vec{B} & - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right)(\vec{\beta} \times \vec{E}) & - a_{\mu}\frac{\gamma}{\gamma + 1}\left(\vec{\beta} \cdot \vec{B}\right)\vec{\beta} \end{bmatrix}$$

 $E \text{ field correction} \qquad \text{pitch correction}$

magic energy, corresponding to $p_{\mu}^{\text{magic}} = 3.094 \,\text{GeV}$ and $\gamma = 29.3$, zeroes E field correction

Production of polarized muons

Rate of high-energy muon-decay electrons modulated with $\cos \omega_a t$

Muon production, storage and decay at FNAL

Magnetic kickers put muons into correct orbit

Electric quadrupoles focus beam vertically

Two tracker modules

24 calorimeter modules

 ω_a : muon spin precession frequency

 \triangleright C_x: corrections to ω_a for E field, pitch, muon loss, phase accetpance, differential decay

 $\omega'_p(T)$ precession frequency of shielded proton spin in spherical water sample at T = 34.7 °C

 B_{x} : corrections to ω_{p} for quadrupole and kickers transient fields

Muon precession frequency ω_a fit with threshold (T) method

fit model for number of detected positrons with $E>1.7\,{
m GeV}$ in time bins from 30 to 650 $\mu{
m m}$

$$\mathsf{N}_{e^+}(t) = \mathsf{N}_0 \cdot \mathsf{N}_{\mathsf{x}}(t) \cdot \mathsf{N}_{\mathsf{y}}(t) \cdot \mathsf{\Lambda}(t) \cdot e^{-t/\gamma \tau_{\mu}} \cdot [1 + \mathsf{A}_0 \cdot \mathsf{A}_{\mathsf{x}}(t) \cdot \cos\left(\omega_a t + \phi_0 \cdot \phi_{\mathsf{x}}(t)\right)]$$

$$\begin{split} N_{x}(t) &= 1 + e^{-t/\tau_{\text{CBO}}} A_{N,x,1,1} \cos(\omega_{\text{CBO}} t + \phi_{N,x,1,1}) + e^{-2t/\tau_{\text{CBO}}} A_{N,x,2,2} \cos(2\omega_{\text{CBO}} t + \phi_{N,x,2,2}) \\ N_{y}(t) &= 1 + e^{-t/\tau_{y}} A_{N,y,1,1} \cos(\omega_{y} t + \phi_{N,y,1,1}) + e^{-2t/\tau_{y}} A_{N,y,2,2} \cos(\omega_{\text{VW}} t + \phi_{N,y,2,2}) \\ A_{x}(t) &= 1 + e^{-t/\tau_{\text{CBO}}} A_{A,x,1,1} \cos(\omega_{\text{CBO}} t + \phi_{A,x,1,1}) \\ \phi_{x}(t) &= 1 + e^{-t/\tau_{\text{CBO}}} A_{\phi,x,1,1} \cos(\omega_{\text{CBO}} t + \phi_{\phi,x,1,1}) \\ \Lambda(t) &= 1 - K_{\text{loss}} \int_{0}^{t} e^{t'/\gamma\tau} L(t') dt' \\ \omega_{\text{CBO}} \cdot t \to \omega_{\text{CBO}} \cdot t + A_{1} e^{-t/\tau_{1}} + A_{2} e^{-t/\tau_{2}} \\ \omega_{y}(t) &= \kappa_{y} \cdot \omega_{\text{CBO}}(t) \left(\frac{2\omega_{c}}{\kappa_{y} \cdot \omega_{\text{CBO}}(t)} - 1\right)^{1/2} \\ \omega_{\text{VW}}(t) &= \omega_{c} - 2\omega_{y}(t) \end{split}$$

from 16 to 27 (22 typical) fit parameters, depending on analysis group and measurement method
 actual measurement uses asymmetry-weighted (A) method, about 10% more precise

Fourier transform of fit residuals of ω_a fit

beam frequencies appear (in red) for simple 5 parameter fit, N(t) = N₀e^{-t/τμ} [1 + Acos(ω_at + φ)]
 no beam frequencies peaks for full ~22 parameter fits accounting for muon loss and beam dynamics

7 analysis groups, 19 blind ω_a measurements on each of 3 datasets

 $R(\omega_a)$ measurements, common blinding

Storage ring magnet, magnetic field measurement

Status and prospects of the muon magnetic anomaly measurement at FNAL

B_q , correction for transient B field produced by electric quadrupoles

- electric quadrupoles are pulsed (to prevent static charge accumulation)
- plates vibration perturbs magnetic field
- special NMR probes measure the transient field perturbation in muon region
- much better measured in Run 2+ vs. Run 1

B_k , correction for transient B field produced by kicker magnets

- kicker magnets pulsed before start of fit window
- induced eddy currents perturb magnetic field inside fit window
- magnetic field perturbation measured with a Faraday effect magnetometer
- much better measured in Run 2+ vs. Run 1

Improvements with respect to Run 1

- refinements in ω_a fits reduced systematics
 - refinements in ω_p
 - fixed broken resistors that affected quadrupole operations in Run1
 - significantly recuced phase acceptance correction and its uncertainty
 - significantly reduced muon losses
- kickers power increased, towards end of Run 3 beam reached nominal position
 - ▶ in Run1 and part of Run 2,3 larger *E* field correction
- active RF system reduces amplitude of horizontal beam oscillations (only since Run 5
- significantly better measurements of transient fields

Personal estimate of Run 2+3 ω_a uncertainties

	Run 1	Run 2+3	design	notes
ω_a^m (statistical)	434	200	100	
ω_a^m (systematic)	56	24		
C _{BD}	93	56		
- C _e	53	53		my guestimate
- C _p	13	10		
- C _{pa}	75	13		
- C _{ml}	5	3		
- C _{dd}	-	7		one small term still missing
ω_a total systematic	109	61	70	
$\omega_p'(T)$	56	46		
$\tilde{\omega}'_{p}(T)$ (transient fields)	99	19		
$-B_q$	92	14		
$-B_k$	37	13		
${ ilde \omega}_p'({\mathcal T})$ (total)	114	50	70	
R_{μ} (total systematic)	157	79	100	
total	462	215	140	

Expected precision on a_{μ} vs. number of BNL samples after quality cuts

Calculation of the muon magnetic anomaly

$r_p - \omega_a / \omega_p$ (TA constants)
hetic field ample at $T = 34.7 ^{\circ}\text{C}$ $\varphi) \times M(x, y, \varphi) \rangle$
7 °C
035009 (2016)
1999 measurements t. 82, 711 (1999)

Expected precision of final FNAL Run 1..3 a_{μ} measurement in 2023

Expected precision of final FNAL Run 1..6 a_{μ} measurement in 2025

Backup slides

_			-	and the second	 and the second second	1					 		

FNAL Muon g-2 collaboration

USA

- Boston Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

China Shanghai Jiao Tong

Germany

- Dresden
- Mainz

Italy

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine

orea

- CAPP/IBS
- KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

Alberto Lusiani (SNS & INFN Pisa) – FFK2023, Vienna, Austria, 22-26 May 2023

 \mathbf{H}

Focusing electric field and magic energy

in presence of (focusing) electric field and motion not perfectly transverse to magnetic field $\vec{\omega}_{a} = -\frac{e}{m_{\mu}} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) (\vec{\beta} \times \vec{E}) - a_{\mu} \frac{\gamma}{\gamma + 1} \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \right]$ CERN 1975-, BNL, FNAL J-PARC E34

$$p_{\mu}^{\text{magic}} = 3.094 \,\text{GeV} \Rightarrow \gamma = 29.3$$

 $\Rightarrow \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \simeq 0$

Beam dynamics frequencies

			f [MHz]	Τ [μs]
Anomalous precession	f _a		0.2291	4.3649
Cyclotron	f_c		6.7024	0.1492
Horizontal betatron	f_x	$= f_c \sqrt{1-n}$	6.2874	0.1590
Vertical betatron	f_{y}	$= f_c \cdot \sqrt{n}$	2.3218	0.4307
Coherent betatron oscillation	f _{CBO}	$= f_c - 1 \cdot f x$	0.4150	2.4097
Vertical oscillation	f _{VO}	$= f_c - 1 \cdot f y$	4.3806	0.2283
Vertical waist	f_{VW}	$= f_c - 2 \cdot f y$	2.0589	0.4857
field	التعامير	0.12		

field index n = 0.12

Extend ω_a fit model to account for lost muons on collimators

- some muons hit collimators and are lost
- muon loss rate during a fill measured with 3-4-5 coincidences of m.i.p. on calorimeters
- overall normalization of muon loss included as fit parameter

Early to late effects

unaccounted variations of conditions during muon fill time can induce biases on ω_a fit result example of early-to-late effect: phase variation due to muon loss ► $N(t) = N_0 e^{-t/\tau_{\mu}} [1 + A \cos(\omega_a t + \varphi)]$ phase φ = muon spin-momentum angle at injection ► muon loss depends on momentum ⇒ muon sample momentum varies $\bar{p} = \bar{p}(t)$ single muon phase depends on momentum (because of production chain) $\bar{\varphi} = \bar{\varphi}(\bar{p})$ $ar{arphi}(t)=ar{arphi}_0+rac{\mathrm{d}ar{arphi}}{\mathrm{d}t}t=ar{arphi}_0+rac{\mathrm{d}ar{arphi}}{\mathrm{d}ar{arphi}}rac{\mathrm{d}ar{
ho}}{\mathrm{d}t}t\simeqar{arphi}_0+ar{arphi}'t$ at first order • muon rate modulation $\cos(\omega_a t + \bar{\varphi}(t)) \simeq \cos(\omega_a t + \bar{\varphi}_0 + \bar{\varphi}'t) = \cos[(\omega_a + \bar{\varphi}')t + \bar{\varphi}_0]$ \Rightarrow fit result for ω_a is biased when muon sample phase varies in the fit time window ▶ note: muon loss phase effect is different and additional to muon loss effect on positron rate other early to late effects variation of calorimeter gain (corrected before the wiggle plot fit) variation of pileup (proportional to $[N(t)]^2$, corrected before the wiggle plot fit) variation of beam average position and size (phase acceptance) transient magnetic field due to electric quadrupoles plates vibration transient magnetic field due to kicker eddy currents

Electric field correction $C_e = +489 \pm 53$ ppb

- compute momentum distribution from electrons detected at early times after injection
 - using cosine Fourier transform of rate vs. time
 - measuring change of shape of rectangular bunches (debunching)
- compute radial muon distribution from momentum distribution
- compute electric field contribution to ω_a due to quadrupoles electric field

Pitch correction $C_p = +180 \pm 13 \text{ ppb}$

 \cdot reconstruct muon vertical position from decay electrons measurend on trackers

compute corresponding pitch correction to ω_a

Lost muons phase-variation effect correction $C_{ml} = -11 \pm 5 \text{ ppb}$

- muon phase depends on momentum
- muon population momentum changes because muon loss probability depends on momentum
- ▶ dφ/dp measured on dedicated runs by varying magnetic field by -0.68%, +0.68%
- measurement consistent with simulation

estimated $\Delta \varphi(t)$ due to muon loss

- use delivery ring collimators to change the muon momentum distribution
- muon loss function of time and momentum fitted using simulation-inspired analytic function to model observed beam loss for different muon momentum distributions

Phase-Acceptance correction $C_{pa} = -158 \pm 75 \text{ ppb}$

Measuring ω_p / magnetic field with fixed and trolley probes

- ▶ 378 fixed probes measure continuosly the magnetic field
- \blacktriangleright 17-probes trolley run along muons path every ${\sim}3\,$ days
- fixed probes measurements corrected using trolley measurements

Differential decay corrections

muon population phase at t = 0 depends on muon properties that change during the fill for t > 0

- horizontal displacement and velocity (x, x')
- vertical displacement and velocity (y, y')
- time of flight from when muon polarization is selected to kicker hit
- momentum
- injected muons momentum has average and spread at t = 0
- momentum average increases for t > 0 because slower muons decay earlier on average
- negligible dependence from momentum of vertical displacement and velocity (y, y')
- other 3 dependences require:
 - differential decay spin-orbit correction
 - differential decay kicker correction
 - differential decay beamline correction

Measuring ω_p magnetic field: calibration of probes

calibration

- each trolley probe calibrated with absolute cylindrical probe placed in the same position inside the storage ring
- absolute cylindrical probe calibrated to reference absolute spherical probe in MRI magnet at Argonne National Laboratory
- ► absolute spherical probe consistent with novel absolute ³He probe
- 17 probes calibration uncertainty 20 48 ppb

reference temperature

magnetic field measurements corrected to be expressed as ω'_p(T), precession frequency of shielded proton spin in spherical water sample at reference temperature of 34.7 °C

$\tilde{\omega}'_{p}(T)$ (magnetic field experienced by the muons) measured to 56 ppb

- tracker reconstructs muons decay vertices in parts of storage region
- beam dynamics simulation used to extrapolate to whole storage region
- magnetic field map averaged over muon distribution
- ▶ two independent groups did the measurement, one additional group the calibration

