DISCRETE 2018

Contribution ID: 35

Type: Invited Talk

The IR-truncated \mathcal{PT} -symmetric $V = ix^3$ model and its asymptotic spectral scaling graph

Thursday 29 November 2018 17:45 (25 minutes)

The \mathcal{PT} -symmetric quantum mechanical $V = ix^3$ model over the real line, $x \in \mathbb{R}$, is IR truncated and considered as Sturm-Liouville problem over a finite interval $x \in [-L, L] \subset \mathbb{R}$. Structures hidden in the Airy function setup of the V = -ix model are combined with WKB techniques developed by Bender and Jones in 2012 for the derivation of the real part of the spectrum of the $(ix^3, x \in [-1, 1])$ model. Via WKB and Stokes graph analysis, the location of the complex spectral branches of the $V = ix^3$ model as well as those of more general $V = -(ix)^{2n+1}$ models over $x \in [-L, L] \subset \mathbb{R}$ are obtained. Splitting the related action functions into purely real scale factors and scale invariant integrals allows to extract underlying asymptotic spectral scaling graphs $\mathcal{R} \subset \mathbb{C}$. These (structurally very simple) scaling graphs are geometrically invariant and cutoff-independent so that the IR limit $L \to \infty$ can be formally taken. Moreover an increasing L can be associated with an \mathcal{R} -constrained spectral UV \rightarrow IR renormalization group flow on \mathcal{R} . It is shown that the eigenvalues of the IR-complete ($V = ix^3, x \in \mathbb{R}$) model can be bijectively mapped onto a finite segment of \mathcal{R} asymptotically approaching a (scale invariant) \mathcal{PT} phase transition region. In this way, a simple heuristic picture and complementary explanation for the unboundedness of projector norms and \mathcal{C} -operator for the $V = ix^3$ model are provided and the lack of quasi-Hermiticity of the ix^3 Hamiltonian over \mathbb{R} appears physically plausible. Possible directions of further research are briefly sketched.

Content of the contribution

Theory

Authors: Dr GUENTHER, Uwe (Helmholtz-Center Dresden-Rossendorf); Dr STEFANI, Frank (Helmholtz-Center Dresden-Rossendorf)

Presenter: Dr GUENTHER, Uwe (Helmholtz-Center Dresden-Rossendorf)

Session Classification: PT symmetric Hamiltonians

Track Classification: [9] PT symmetric Hamiltonians