Lepton Flavor Violation in a Z' model for the b \rightarrow s anomalies

Paulina Rocha-Morán

BCTP und Physikalisches Institut University of Bonn arXiv:1810.02135 (in collab. with Avelino Vicente)

29.11.2018

Paulina Rocha-Morán (BCTP)

BS-LFV

$\textcircled{1} \textbf{The } \textbf{b} \rightarrow \textbf{s} \textbf{ anomalies}$

2 Flavor universality

3 The model

- Solving the $b \rightarrow s$ anomalies
- Neutrino mass

4 LFV phenomenology

5 Results

2013: First anomalies found by LHCb.

- Decrease in several branching ratios.
- Several anomalies in angular observables (P'_5).

2015: 'Confirmed' using full LHC run I dataset

2014/2017^(*): Lepton Flavor Universality Violation

$$R_{K^{(*)}} \equiv \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}, \qquad [R_{K^{(*)}}]^{SM} \sim 1$$

LHCb measurement

 $\begin{bmatrix} R_{\kappa} \end{bmatrix} = 0.745^{+0.090}_{-0.074} \pm 0.036 \qquad \begin{bmatrix} R_{\kappa^*} \end{bmatrix} = 0.660^{+0.110}_{-0.070} \pm 0.024 \qquad \begin{bmatrix} R_{\kappa^*} \end{bmatrix} = 0.685^{+0.113}_{-0.069} \pm 0.047 \\ q^2 \in \begin{bmatrix} 1,6 \end{bmatrix} \text{ GeV}^2 \qquad q^2 \in \begin{bmatrix} 0.045, 1.1 \end{bmatrix} \text{ GeV}^2 \qquad q^2 \in \begin{bmatrix} 1.1, 6.0 \end{bmatrix} \text{ GeV}^2$

2013: First anomalies found by LHCb.

- Decrease in several branching ratios.
- Several anomalies in angular observables (P'_5).

2015: 'Confirmed' using full LHC run | dataset

2014/2017^(*): Lepton Flavor Universality Violation

$$R_{K^{(*)}} \equiv \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}, \qquad [R_{K^{(*)}}]^{SM} \sim 1$$

LHCb measurement

$$\begin{bmatrix} R_{\mathcal{K}} \end{bmatrix} = 0.745^{+0.090}_{-0.074} \pm 0.036 \quad \begin{bmatrix} R_{\mathcal{K}^*} \end{bmatrix} = 0.660^{+0.110}_{-0.070} \pm 0.024 \quad \begin{bmatrix} R_{\mathcal{K}^*} \end{bmatrix} = 0.685^{+0.113}_{-0.069} \pm 0.047 \\ q^2 \in \begin{bmatrix} 1,6 \end{bmatrix} \text{ GeV}^2 \qquad q^2 \in \begin{bmatrix} 0.045, 1.1 \end{bmatrix} \text{ GeV}^2 \qquad q^2 \in \begin{bmatrix} 1.1, 6.0 \end{bmatrix} \text{ GeV}^2$$

The effective Hamiltonian for b
ightarrow s transitions

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right) + \text{h.c.}, \qquad (1)$$

The relevant effective operators for the study of the $B o K \ell^+ \ell^-$ decay are

$$\mathcal{O}_{9} = (\bar{s}\gamma_{\mu}P_{L}b)\left(\bar{\ell}\gamma^{\mu}\ell\right), \quad \mathcal{O}_{10} = (\bar{s}\gamma_{\mu}P_{L}b)\left(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\right)$$
(2)

It is convenient to split their associated Wilson coefficients into the SM and NP contributions $C_k = C_k^{SM} + C_k^{NP}$.

Global fits to $b \to s$ data require a negative $C_9^{\mu\mu,NP}$ contribution, leading to a total $C_9^{\mu\mu}$ significantly smaller than the one in the SM.

$$C_9^{\mu\mu,NP} \rightarrow [-0.88, -0.37]$$
 at $2\sigma^{[1]}$, $C_9^{\mu\mu,SM} = 4.07^{[2]}$
[1] B. Capdevila et al. JHEP 1801 (2018) 093, 1704.05340
[2] S. Descotes-Genon et al. JHEP 1606 (2016) 092, 1510.04239

$laceble{1}$ The b ightarrow s anomalies

Plavor universality

The model

- Solving the $b \rightarrow s$ anomalies
- Neutrino mass

LFV phenomenology

5 Results

[3] S. L. Glashow et al. Phys. Rev. Lett. 114 (2015) 091801, 1411.0565

It has been pointed out^[3] that Lepton Flavor Universality Violation implies Lepton Flavor Violation

This observation motivates the search of LFV in B meson decays.

$oldsymbol{1}$ The b ightarrow s anomalies

2 Flavor universality

3 The model

- Solving the $b \rightarrow s$ anomalies
- Neutrino mass

4 LFV phenomenology

5 Results

New $U(1)_x$ gauge group

extension of: [4] D. Aristizabal et al. Phys. Rev. D92 (2015) 015001, 1503.06077

-	spin	generations	$SU(2)_L$	$U(1)_{\mathbf{Y}}$	$U(1)_{\mathbf{X}}$	-		
Н	0	1	2	1/2	0	-		
ϕ	0	1	1	Ö	2	1		(N)
S	0	1	1	0	-4	LL,R	=	(F),
lL	1/2	3	2	-1/2	0	-		\ _ / L,R
91	1/2	3	2	1/6	0			$\langle 11 \rangle$
LLR	1/2	2	2	-1/2	2	0	_	$\left(\begin{array}{c} 0 \end{array} \right)$
$Q_{L,R}$	1/2	1	2	1/6	2	QL,R	_	$\left(D \right)$
F _L , R	1/2	2	1	0	2			$\setminus - / L, R$

Dirac mass

$$\mathcal{L}_m = m_Q \, \overline{Q} Q + m_L \, \overline{L} L + m_F \, \overline{F} F. \tag{3}$$

The Yukawa terms involved in flavor physics

 $\mathcal{L}_{Y} = \lambda_{Q} \,\overline{Q_{R}} \phi q_{L} + \lambda_{L} \,\overline{L_{R}} \phi \ell_{L} + y \,\overline{L_{L}} HF_{R} + \tilde{y} \,\overline{L_{R}} HF_{L} + h \,S \overline{F_{L}^{c}} F_{L} + \tilde{h} \,S \overline{F_{R}^{c}} F_{R} + \text{h.c.},$ (4)

Symmetry breaking and scalar spectrum

The scalar potential has the form

$$\mathcal{V} = \mathcal{V}_{SM} + \mathcal{V}(H, \phi, S) + \mathcal{V}(\phi, S), \qquad (5)$$

$$\mathcal{V}(H,\phi,\mathbf{S}) = \lambda_{H\phi} |H|^2 |\phi|^2 + \lambda_{HS} |H|^2 |\mathbf{S}|^2, \qquad (6)$$

$$\mathcal{V}(\phi, S) = m_{\phi}^{2} |\phi|^{2} + m_{S}^{2} |S|^{2} + \frac{\lambda_{\phi}}{2} |\phi|^{4} + \frac{\lambda_{S}}{2} |S|^{4} + \lambda_{\phi S} |\phi|^{2} |S|^{2} + (\mu' \phi^{2} S + h.c.)$$
(7)

All the scalars acquire a VEV

$$\langle H^0 \rangle = \frac{v}{\sqrt{2}}, \qquad \langle \phi \rangle = \frac{v_{\phi}}{\sqrt{2}}, \qquad \langle S \rangle = \frac{v_S}{\sqrt{2}}.$$
 (8)

 $\langle \phi
angle
eq 0$ and $\langle S
angle
eq 0$ will be responsible for the SSB of $U(1)_X$, giving

$$\to m_{Z'}^2 = 4g_X^2 \left(v_\phi^2 + 4v_S^2 \right)$$
 (9)

and for inducing mixings between V-L fermions and their SM counterparts.

Solving the $b \rightarrow s$ anomalies

The mixing leads to an effective coupling of the Z' to the SM fermions.

 $\Delta_{L}^{bs} = \frac{2g_{X}\lambda_{Q}^{b}\lambda_{Q}^{s*}v_{\phi}^{2}}{2m_{Q}^{2}+(|\lambda_{Q}^{s}|^{2}+|\lambda_{Q}^{b}|^{2})v_{\phi}^{2}}, \quad (10) \qquad \begin{array}{l} U_{L} \text{ Left matrix of biunitarity} \\ \text{diagonalization of } \ell-L \text{ mass} \\ \Delta_{L}^{\mu\mu} = 2g_{X}\left(|U_{L_{42}}|^{2}+|U_{L_{52}}|^{2}\right) \quad (11) \qquad \text{matrix.} \end{array}$

$$C_{9}^{\mu\mu,NP} = -C_{10}^{\mu\mu,NP} = -\frac{\Delta_{L}^{bs} \Delta_{L}^{\mu\mu}}{V_{tb} V_{ts}^{*}} \left(\frac{\Lambda_{\nu}}{m_{Z'}}\right)^{2},$$
 (12)

$$\Lambda_{\nu} = \left(\frac{\pi}{\sqrt{2}G_{F}\alpha}\right)^{1/2} \simeq 4.94 \,\text{TeV} \tag{13}$$

Neutrino mass

The complete 11 × 11 neutral fermion mass matrix in the basis $\psi^0 = \{\nu_L, N_R^c, N_L, F_R^c, F_L\}$

 $\diamond~\mathcal{M}$ can be diagonalized through an $\mathit{inverse seesaw approximation}$ (ISS) by assuming

 $hv_{S}, \tilde{h}v_{S} \ll yv, \tilde{y}v, \lambda_{L}v_{\phi} \ll m_{L,F}$

 $\diamond~\widetilde{y}=\widetilde{h}=0,$ since they do not contribute to the generation of neutrino masses at leading order.

 \diamond 3 \times 3 mass matrix for the light neutrinos.

$$\mathcal{M}_{\nu} \simeq \frac{v^2 v_{\phi}^2 v_{\rm S}}{2\sqrt{2}} \lambda_L^T m_L^{-1} y m_F^{-1} h \left(m_F^{-1}\right)^T y^T \left(m_L^{-1}\right)^T \lambda_L.$$
(14)

$oldsymbol{1}$ The b ightarrow s anomalies

2 Flavor universality

3 The model

- Solving the $b \rightarrow s$ anomalies
- Neutrino mass

4 LFV phenomenology

5 Results

Phenomenological analysis of LFV observables

• VEV v_S , mass $m_{Z'}$ and gauge coupling g_X . v_{ϕ} is obtained by eq. (9)

h is fixed to give the correct neutrino masses according to neutrino oscillation data^[6]

$$h = \bar{\nu}^{-5} m_F y^{-1} m_L \bar{\lambda}_L^T m_\nu \bar{\lambda}_L m_L^T (y^{-1})^T m_F^T, \qquad (15)$$

where $\bar{\lambda}_L$ is a 3 × 2 matrix such that $\lambda_L \bar{\lambda}_L = \mathbb{I}_2$.

Phenomenological analysis

- . Solve tadpole eqs. for $m_{H^1}^2$, m_{ϕ}^2 and m_S^2 .
- Compute couplings h (eq. 15)
 - \hookrightarrow Best fit neutrino oscillation data.
 - \hookrightarrow Dirac phase $\delta = 0$.
 - \hookrightarrow Normal hierarchy.
- . Fix the scalar potential parameters

 λ_L structure forbids contribution to electron observables.

$$\lambda_L = \begin{pmatrix} 0 & 1.0 & x \\ 0 & x & 1.0 \end{pmatrix} \tag{16}$$

 B_s - \overline{B}_s mixing constrain

$$\frac{m_{Z'}}{|\Delta_L^{bs}|} \gtrsim 244 \text{ TeV} \,. \tag{17}$$

LHC direct searches are taken into account to constraint the V-L fermion masses.

Paulina Rocha-Morán (BCTP)

$oldsymbol{1}$ The b ightarrow s anomalies

2 Flavor universality

3 The model

- Solving the $b \rightarrow s$ anomalies
- Neutrino mass

LFV phenomenology

5 Results

LFV in B and au decays

$$\frac{\mathsf{BR}(B \to K\tau\mu)}{\mathsf{BR}(\tau \to 3\,\mu)} = 1.7 \cdot 10^7 \,\mathrm{TeV}^4 \left(\frac{\left|\Delta_L^{bs}\right|}{m_{Z'}}\right)^4 \frac{1}{\left|C_9^{\mu\mu,\mathsf{NP}}\right|^2}\,.\tag{18}$$

	gx	v s	m _{z'}	$(m_L)_{11} = (m_L)_{22}$	$(\lambda_{\boldsymbol{Q}})_{\boldsymbol{2}} = (\lambda_{\boldsymbol{Q}})_{\boldsymbol{3}}$
Green	0.155	10.6 GeV	1592 GeV	1904 GeV	0.0407
Blue	0.2	200 GeV	1010 G eV	1600 GeV	0.055
Purple	0.4	34 G eV	2330 GeV	1007 GeV	0.052

 $\mathsf{BR}(B o K au\mu)_{\mathsf{max}}\lesssim 8\cdot 10^{-10}$.

P. Rocha-Morán, A. Vicente, arXiv:1810.02135

Paulina Rocha-Morán (BCTP)

On the relevance of loop effects in $\mathsf{BR}(au o \mathbf{3}\,oldsymbol{\mu})$

$$R_{\tau 3\mu} = \frac{\mathsf{BR}(\tau \to 3\,\mu)_{\mathsf{tree-level}}}{\mathsf{BR}(\tau \to 3\,\mu)_{1-\mathsf{loop}}}$$

$$\begin{array}{rcl} 0.05 & < & g_X < 1.0 \\ 10 \ {\rm GeV} & < & v_S < 500 \ {\rm GeV} \\ 0.01 & < & (\lambda_Q)_2 = (\lambda_Q)_3 < 0.1 \\ 0.8 \ {\rm TeV} & < & (m_L)_{11} = (m_L)_{22} < 2 \ {\rm TeV} \\ 1 \ {\rm TeV} & < & m_{Z'} < 3 \ {\rm TeV} \end{array}$$

Loop effects are negligible when $g_X \lesssim 0.4$

$oldsymbol{1}$ The b ightarrow s anomalies

2 Flavor universality

3 The model

- Solving the $b \rightarrow s$ anomalies
- Neutrino mass

4 LFV phenomenology

5 Results

- The additional d.o.f. involved in neutrino masses and mixings play a sub-dominant role in the LFV predictions of the model, which are dominated by the NP effects induced by the states responsible for the explanation of the $b \rightarrow s$ anomalies.
- $B \to K\tau\mu$ and $\tau \to 3\mu$ are dominated by tree-level Z' boson exchange. We derived the upper limit BR $(B \to K\tau\mu)_{max} \lesssim 8 \cdot 10^{-10}$. This limit applies to all models with purely left-handed Z' couplings.
- Loop effects in $\tau \to 3 \mu$ may be comparable to the tree-level ones. This is due to the strong suppression induced by the tree-level exchange of a TeV-scale Z' boson, which is absent in many 1-loop contributions. In fact, this feature is expected in generic Z' models for the $b \to s$ anomalies.

