Studying the astrophysically crucial $12C(\alpha, \gamma)16O$ reaction at high temperatures

Wednesday 18 June 2025 11:45 (15 minutes)

One of the major processes in stars is helium burning, which consists of two main parts that produce ¹²C and ¹⁶O. Helium burning is the primary source of ¹²C and ¹⁶O, the two most abundant elements after hydrogen and helium. The second part of helium burning is the process of an α particle being captured by a ¹²C nucleus (¹²C(α, γ)¹⁶O), which produces ¹⁶O in an excited state. The excited ¹⁶O can then γ decay to the stable ground state of ¹⁶O. As ¹²C and ¹⁶O also take part in other processes in stars, the total amount of both elements, and the ratio between them, are important factors in how a star evolves. Thus the ¹²C(α, γ)¹⁶O reaction is important in understanding stellar evolution. A new state of the art experiment of the ¹²C(α, γ)¹⁶O reaction will be performed at iThemba LABS. A beam of α particles will be used on a stationary enriched ¹²C target. The resulting γ rays will be measured using 12 large volume LaBr₃ detectors. The reaction will be developed at the Oslo Cyclotron Laboratory. The PSD will mitigate the neutron background resulting from the ¹³C(α, n)¹⁶O reaction on the ¹³C contaminant in the target. The data will then be analyzed using the *R*-matrix code AZURE2 to extrapolate the reaction cross section down to the experimentally inaccessible stellar energy region.

Author: THINGHOLM, Jeppe (University of Oslo)

Co-authors: LI, Kevin Ching Wei (University of Oslo); INGEBERG, Vetle Wegner (University of Oslo (NO)); Mr MALATJI, Kgashane (iThemba LABS / Stellenbosch University); DONALDSON, Lindsay M. (iThemba LABS); NEVEL-ING, Retief (iThemba LABS, South Africa); SIEM, Sunniva (University of Oslo); ADSLEY, Philip (Texas A&M University); INOUE, Azusa (University of Oslo)

Presenter: THINGHOLM, Jeppe (University of Oslo)

Session Classification: Parallell B4