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Outline

1. Introduction and motivation

2. Dense QCD matter in V-QCD
I Both quark and nuclear matter

3. “Hybrid” Equations of State (EoSs)
I Combining V-QCD with other approaches
I Model at finite temperature and density

4. Application to neutron star mergers
I Production of quark matter
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1. Introduction
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QCD phase diagram: theoretical results

I Lattice data only available at zero/small chemical potentials
I Effective field theory works at small densities
I Perturbative QCD: only at high densities and temperatures
I Open questions at intermediate densities
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1. Improving theoretical predictions important!
2. Incoming experimental data from neutron star measurements!

White region strongly coupled ⇒ use holography?
Interpolate between known results using holography?
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Gauge/gravity duality for QCD

I Motivated by the original
AdS/CFT correspondence for
N = 4 SYM

I Instead of conformality,
confinement:
non-AdS/non-CFT duality

I Field theory lives on the
boundary of the 5D geometry

R1,3
Horizon

UV IR
holographic

coordinate

I Operators Oi (x
µ) ↔ classical bulk fields φi (x

µ, r)

Zgrav(φi |bdry =Ji (x
µ)) =

∫
D e iSQCD+i

∫
d4xJ i (xµ)Oi (x

µ)

I E.g. ψ̄jψi ↔ φij Tµν ↔ gµν Jµ ↔ Aµ

I Thermodynamics of QCD ↔ thermodynamics of a planar bulk
black hole
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2. Dense holographic QCD
matter
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Holographic V-QCD

A holographic model for QCD
I Bottom-up, but trying to follow principles from string theory

closely [MJ, Kiritsis 1112.1261; Review MJ 2110.08281]

The model is obtained through a fusion of two building blocks:

1. IHQCD: model for glue inspired by string theory
[Gürsoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via a D-brane
setup

[Klebanov,Maldacena; Bigazzi,Casero,Cotrone,Iatrakis,Kiritsis,Paredes]

Two bulk scalars: λ↔ TrF 2, τ ↔ q̄q

SV−QCD = N2
cM

3

∫
d5x
√
g

[
R − 4

3

(∂λ)2

λ2
+ Vg (λ)

]

−NfNcM
3

∫
d5x Vf 0(λ)e−τ

2√−det(gab+κ(λ)∂aτ∂bτ+w(λ)Fab)

Effective model, many potentials Vg , Vf 0, w , κ – essential to fix
them by fitting QCD data → predictions for other observables
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Quark matter:
I Require agreement with confinement,

asymptotic freedom . . .
I (Good) fit to lattice data at µ ≈ 0
I Extrapolate to high µ and down to T ≈ 0
I Extrapolated results consistent with pQCD

and EFT! [MJ, Jokela, Remes, 1809.07770]
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Nuclear matter:
I In holographic setups, baryons ↔ solitons of gauge fields in

the gravity dual [Talk and poster by Edwan Préau]
I However, solitons technically involved . . . use a simple

homogeneous approximation ≈ smeared solitons
[Ishii, MJ, Nijs 1903.06169]

I Stiff EoS: “violation” of the conformal bound c2
s = 1/3!
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3. Hybrid EoSs
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Combining with other approaches

The V-QCD EoS as such is however not fully satisfactory:

1. Our (homogeneous) approach for nuclear matter only works at
high densities

2. Temperature dependence is trivial in the confined phases, and
therefore also for holographic nuclear matter
I This is a large Nc issue, T dependence would arise from loops

Solutions:

1. At low densities for nuclear matter, use “traditional” nuclear
theory results
⇒ choose the Hempel-Schaffner-Bielich model with DD2
interactions (HS(DD2))

[Typel et al. 0908.2344; Hempel, Schaffner-Bielich 0911.4073]

2. Since no reliable results available, borrow T dependence from
basically the simplest reasonable model
⇒ use van der Waals (vdW) gas (protons, neutrons, electrons)

[Ecker, MJ, Nijs, van der Schee 1908.03213]
[Jokela, MJ, Nijs, Remes 2006:01141]

[Demircik, Ecker, MJ 2112.12157]
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Overview of the hybrid model

I V-QCD for quark matter
and cold dense nuclear matter

I Van der Waals model extra-
polates dense V-QCD nuclear
matter to finite T

I At low density, choose HS(DD2)

I At medium density, use APR cold EoS (using only HS(DD2)
would lead to tension with neutron star observations)

I Add QCD mesons to HS(DD2), important to describe the
critical point

[Demircik, Ecker, MJ 2112.12157]
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Cold EoS and known constraints

I Three choices of EoSs: soft, intermediate, and stiff ↔
the degrees of freedom of V-QCD left free by fit to lattice data

I Compared to bands of all feasible cold matter EoS: Without
and with holography
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I Plug EoSs in TOV: neutron star M(R) curves (left plot)

I Compares well with mass/radius observations
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Results: phase transition and critical point

stiff

interm.

soft

20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

T[MeV]

Δ
ϵ[
M
eV
fm

-
3 ]

I Low T : strong 1st order nuclear to quark matter transition
and mixed phase

I High T : weak first order transition ≈ crossover
I Critical point with

110 MeV . Tc . 130 MeV
480 MeV . µbc . 580 MeV

I Close to results in other (simpler) holographic
models
[DeWolfe et al. 1012.1864; Knaute et al. 1702.06731; Critelli et al. 1706.00455]13/19



4. (Holographic) Neutron Star
Mergers
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Simulating Binary Neutron Star Mergers

Have to solve the 3+1D General Relativistic hydrodynamics equations:

Rµν −
1

2
Rgµν = 8πGNTµν , ∇µT

µν = 0 , ∇µJ
µ = 0

with initial spacetime and fluid distribution modelling a NS binary system

I Equation of State p = p(nb,T ,Ye) as input – use V-QCD hybrid
EoS

I Spectral code Frankfurt University/Kadath (FUKA) for initial data

[Papenfort, Tootle, Grandclement, Most, Rezzolla 2103.09911]

I Frankfurt/Illinois (FIL) code for binary evolution with tabulated EoS

[Most, Papenfort, Rezzolla 1907.10328]

I Implemented in the Einstein Toolkit

[http://einsteintoolkit.org]

I Need supercomputing: Project BNSMIC with 100 million core-hours
on HAWK at the High-Performance Computing Center Stuttgart
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Hot, Warm and Cold Quarks

Simulations with parameters chosen to match with GW170817
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Hypermassive neutron star after merger (soft EoS, M1/M2 = 0.7)
[Tootle, Ecker, Topolski, Demircik, MJ, Rezzolla 2205.05691]
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I Hot quarks: in the hottest region at early times

I Warm quarks: at intermediate times due to complicated
post-merger dynamics

I Cold quarks: in the densest core at late times

[Tootle, Ecker, Topolski, Demircik, MJ, Rezzolla 2205.05691]

details
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Imprint on Gravitational Waves
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I Most significant signature of the phase transition: short
lifetime of remnant

I Early collapse in tension with electromagnetic signal from
GW170817 ⇒ constrains the EoS – soft model disfavored
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Summary

I (Effective) holography, combined with other
approaches, is useful to study dense QCD

I Using V-QCD with simple approximations, many
details work really well:

3 Precise fit of lattice thermodynamics at µ ≈ 0
3 Extrapolated EoS for cold quark matter reasonable
3 Simultaneous model for nuclear and quark matter
3 Stiff EoS for nuclear matter

I We constructed an EoS at finite temperature
and density using V-QCD (+other models)
I Predictions for the critical point
I Input for merger simulations

I State-of-the-art binary neutron star merger
simulations with our EoS
I Production of hot, warm and cold quark matter
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Thank you!
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The QCD phase diagram

T

µ

?

matter

?

Vacuum

?
matter
Quark

phases?
Exotic

Nuclear

Quark-gluon
plasma

Hadron
gas

?
Focus in this talk: phases at high density
I Nuclear matter: dense liquid of protons and neutrons –

density & density of large nuclei
I Quark matter: densely packed phase of free quarks and gluons

Laboratory experiments challenging (TQCD ∼ 1012 K), in particular
at high density – lots of effort

I Recent and future progress: LHC, RHIC, FAIR, NICA, . . .
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Neutron stars

Neutron stars: extremely dense cold QCD matter

I Tolman-Oppenheimer-Volkoff (TOV) equations
map equation of state (EoS) to mass-radius relation ~10km

Outer Core
n−p Fermi liquid

~1−2km

?

e  Z  nCrust

Inner
Core

∼ 0.5ρs

∼ 2ρs

I EoS can be constrained by measuring masses and radii

Mass measurements: dozens of results using
various methods
I Highest masses from Shapiro delay

measurement of NS – white dwarf binaries
J0348+0432 and J0740+6620:
Mmax & 2M�

[Antoniadis et al 1304.6875
Cromartie et al 1904.06759]

Radius measurements: more challenging,
high uncertainties

I Cooling after X-ray bursts ⇒ radii around
10-15 km

[Lattimer]More and better results expected in near future! E.g. NICER
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LIGO/Virgo constraints from GW170817

I The tidal deformability Λ measures how strongly neutron stars
deform in gravitational field

I Inspiral phase GW signal gives
an upper bound Λ . 580

I Implies a rough upper bound for
neutron star radius: R . 13.5 km
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Constraints on equation of state (EoS)

State of the art for QCD EoS at T = 0: interpolations between
nuclear EoS and pQCD, constrained by

1. Mass bound Mmax > 2M� (excludes cyan area)

2. LIGO constraint from GW170817: (excludes red area)
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[Adapted from Annala, Gorda, Kurkela, Vuorinen 1711.02644]

Source of uncertainties: physics at strong coupling ⇒
Can holographic methods be used to reduce uncertainties further?
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Recent progress on dense holographic QCD

For quark matter, use D3-D7 top down model: ε = 3p +
√

3m2

2π

√
p

[Karch, O’Bannon, 0709.0570]

I N = 4 SYM + Nf = 3 probe hypermultiplets in the
fundamental representation

For nuclear matter use with stiff, intermediate, and soft
“extrapolations” of EFT results

[K. Hebeler, J. M. Lattimer, C. J. Pethick, A. Schwenk 1303.4662]
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I Strong first order nuclear to quark matter transitions
I Neutron stars with “holographic” quark matter core (black

curves) are unstable
[Hoyos, Rodriguez, Jokela, Vuorinen 1603.02943]25/19



Varying the quark mass m one can get quark stars and hybrid stars
[Annala, Ecker, Hoyos, Jokela, Rodriguez-Fernandez, Vuorinen 1711.06244]

I Sizeable deviations from universal I-Love-Q relations
[Yagi, Yunes, 1303.1528]

Including running of the quark mass + color superconductivity
[Bitaghsir Fadafan, Cruz Rojas, Evans, 1911.12705; 2009.14079]

I Possibility of an intermediate χSB deconfined phase

I Stiffer holographic equations of state (high speed of sound)

I Quark matter cores

Using Einstein-Maxwell-dilaton for quark matter
[Mamani, Flores, Zanchin, 2006.09401]

(Largish) quark stars also studied in Witten-Sakai-Sugimoto and in
D4-D6 models [Burikham, Hirunsirisawat, Pinkanjanarod, 1003.5470

Kim, Shin, Lee, Wan, 1108.6139, 1404.3474]

This talk: towards more realistic model of quark matter?
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Ansatz for potentials, (x = 1)

Vg (λ) = 12

[
1+V1λ+

V2λ
2

1 + λ/λ0
+VIRe

−λ0/λ(λ/λ0)4/3
√

log(1 + λ/λ0)

]

Vf 0(λ) = W0 + W1λ+
W2λ

2

1 + λ/λ0
+ WIRe

−λ0/λ(λ/λ0)2

1

w(λ)
= w0

[
1 +

w1λ/λ0

1 + λ/λ0
+ w̄0e

−λ0/λws
(wsλ/λ0)4/3

log(1 + wsλ/λ0)

]

V1 =
11

27π2
, V2 =

4619

46656π4

W1 =
8 + 3W0

9π2
; W2 =

6488 + 999W0

15552π4

Fixed UV/IR asymptotics ⇒ fit parameters only affect details in
the middle
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Constraining the potentials

In the UV ( λ→ 0):
I UV expansions of potentials matched with perturbative QCD

beta functions ⇒ asymptotic freedom and logarithmic flow of
the coupling and quark mass, as in QCD

[Gürsoy, Kiritsis 0707.1324; MJ, Kiritsis 1112.1261]

In the IR (λ→∞): various qualitative constraints
I Linear confinement, discrete glueball & meson spectrum,

linear radial trajectories
I Existence of a “good” IR singularity
I Correct behavior at large quark masses
I Working potentials often string-inspired power-laws, multiplied

by logarithmic corrections (i.e, first guesses usually work!)
[Gürsoy, Kiritsis, Nitti 0707.1349; MJ, Kiritsis 1112.1261; Arean, Iatrakis, MJ, Kiritsis

1309.2286, 1609.08922; MJ 1501.07272]

Final task: determine the potentials in the middle, λ = O(1)
I Qualitative comparison to lattice/experimental data
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Constraining the model at µ ≈ 0

Stiff fit to lattice data near µ = 0 (many parameters, but results
insensitive to them) [Gürsoy, Kiritsis, Mazzanti, Nitti 0903.2859;

MJ, Jokela, Remes, 1809.07770]
I Many parameters already fixed by requiring qualitative

agreement with QCD
I Good description of lattice data – nontrivial result!

Interaction measure,
2+1 flavors

Lattice data: Borsanyi et
al. 1309.5258

Baryon number
susceptibility

Lattice data: Borsanyi et
al. 1112.4416
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Extrapolated EoSs of cold quark matter

The V-QCD cold quark matter result compares nicely to known
constraints:

[MJ, Jokela, Remes, 1809.07770]

I Band of allowed
equations of state
(EoSs) (gray, polytropic
interpolations)

I Stiff, intermediate, and
soft nuclear EoSs

[Hebeler, Lattimer, Pethick,

Schwenk 1303.4662]
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Approach similar in spirit to studies of the QCD critical point
[DeWolfe,Gubser,Rosen 1012.1864; Knaute,Yaresko,Kämpfer 1702.06731;

Critelli, Noronha, Noronha-Hostler, Portillo, Ratti, Rougemont, 1706.00455]
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Phase diagram with quark matter
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I With quark matter only, expected phase diagram

I Cold QM equation of state (EoS) and location of the T = 0
phase transition agree with contraints
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Nuclear matter in holographic models

Each baryon maps to a solitonic “instanton” configuration of
gauge fields in the bulk [Witten; Gross, Ooguri; . . . ]

I Such instantons have been studied in many models, including
V-QCD (see the poster/talk by Edwan Préau)

I However, dense nuclear matter requires studying
many-instanton solutions

I Extremely challenging!

I This talk: set Nf = 2 and try first a simple approximation
scheme (homogeneous), reasonable at high densities?

[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

Ai = h(r)σi

[Li,Schmitt,Wang 1505.04886; Elliot-Ripley,Sutcliffe,Zamaklar 1607.04832]

[Kovensky, Poole, Schmitt, 2111.03374]
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Homogeneous nuclear matter in V-QCD

Nuclear matter in the probe limit: consider full brane action
S = SDBI + SCS where

[Bigazzi, Casero, Cotrone, Kiritsis, Paredes; Casero, Kiritsis, Paredes]

SDBI = −1

2
M3Nc Tr

∫
d5x Vf 0(λ)e−τ

2

(√
− det A(L) +

√
− det A(R)

)
A

(L/R)
MN = gMN + δrMδ

r
Nκ(λ)τ ′(r)2 + δrtMNw(λ)Φ′(r) + w(λ)F

(L/R)
MN

gives the dynamics of the solitons (will be expanded in F (L/R)) and

SCS =
Nc

8π2

∫
Φ(r)e−bτ

2
dt ∧

(
F (L) ∧ F (L) − F (R) ∧ F (R) + · · ·

)
sources the baryon number for the solitons
I Extra parameter, b > 1, to ensure regularity of solutions

Set Nf = 2 and consider the homogeneous SU(2) Ansatz
[Rozali, Shieh, Van Raamsdonk, Wu 0708.1322]

Ai
L = −Ai

R = h(r)σi

[Ishii, MJ, Nijs, 1903.06169]
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Discontinuity and smeared instantons

With the homogeneous Ansatz Aa
i (r) = h(r)δai baryon number

vanishes for any smooth h(r):

Nb ∝
∫

dr
d

dr
[CS− term] = 0

How can this issue be avoided?

I Smearing the BPST soliton in
singular Landau gauge:

〈Aa
i 〉 ∼

∫
d3x ηai4 δr

(δr2 + x2 + ρ2)(δr2 + x2)

∼ − δai δr√
δr2 + ρ2 + |δr |

I This suggests a solution: introduce
a discontinuity in h(r) at r = rc
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I The discontinuity sources nonzero baryon charge!
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Phase diagram at zero quark mass
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ter phase ⇒ helps to pass the bounds
from neutron star observations!
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Van der Waals model

Ideal gas of protons, neutrons and electrons with
I Excluded volume correction for nucleons

pex(T , {µi}) = pid(T , {µ̃i})
µ̃i = µi − v0pex(T , {µi}) (i = p, n)

v0 ∼ volume of one nucleon
I (Mostly) attractive potential term to match with (APR and)

V-QCD at T = 0

pvdW(T , {µi}) = pex(T , {µi}) + ∆p({µi})
schematically:

∆p({µi}) = pV−QCD(T = 0, {µi})− pex(T = 0, {µi})

[Rischke, Gorenstein, Stoecker, Greiner, Z Phys. C 51, 485 (1991)]

[Vovchenko, Gorenstein, Stoecker, 1609.03975]

[Vovchenko, Motornenko, Alba, Gorenstein, Satarov, Stoecker, 1707.09215]
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Hempel-Schaffner-Bielich DD2 model

A widely used general purpose model for the EoS

I Parameters: temperature, density, charge fraction Yq

Combines two approaches (in thermodynamically consistent way):

I For n < ns , statistical method with excluded volume
corrections and interactions, including light and heavy nuclei

[Hempel, Schaffner-Bielich, 0911.4073]

I For n > ns , relativistic mean field theory of nucleons
interacting with σ, ρ, and ω mesons (DD2)

[Typel, Ropke, Klahn, Blaschke, Wolter, 0908.2344]
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Results: Cold Hybrid Equations of State

I Variations in model parameters give rise to the band
I Same (holographic) model for dense nuclear and quark matter

phases!

Without and
with holography
[Ecker, MJ, Nijs, van der

Schee 1908.03213]

[Jokela, MJ, Nijs, Remes

2006:01141]
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I Similar EoS for dense
nuclear matter as V-QCD!

[Kovensky, Poole, Schmitt
2111.03374]

WSS
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Speed of sound and comparison to FRG

Speed of sound (squared) as a function of density
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[Drews, Weise 1610.07568; Otto, Oertel, Schaefer 1910.11929]

I Relatively mild dependence on model parameters
I Similar predictions as with the functional renormalization

group method!
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Results: EoS at Finite T

T=0 MeV

T=50 MeV

T=100 MeV

T=150 MeV
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β-equilibrium

I Bands: variation of the V-QCD model
(soft/intermediate/stiff)

I With increasing T , weaker transition at lower pressure
[Demircik, Ecker, MJ 2112.12157]
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Results: critical point
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Critical point is determined by fitting the latent heat in the region
of strong phase transition and extrapolating
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Results: thermal index Γth

Γ
th

(FD)
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Γth(nb,T ) = 1 + p(nb,T )−p(nb,0)
e(nb,T )−e(nb,0)

I Values in expected range
I Low values in the mixed phase
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Rapidly spinning holographic neutron stars

GW190814: LIGO/Virgo observed a merger of a 23M� black hole
with a 2.6M� compact object

[2006.12611]

I 2.6M� falls in the “gap”: a black hole or a neutron star?

I Holographic EoSs easily
compatible with the
neutron star
interpretation

I However requires fast
rotation, f & 1 kHz

GW190814 [1]

Ref. [9]

J0740+6620 [5]

f= 716Hz

f= 1 kHz

f= 1.25kHz

Kepler

static

Mmax
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4U 1702-429 [48]

NICER [46,47]
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[Demircik, Ecker, MJ, 2009.10731]
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Neutron star mergers

I Significant sources of gravitational radiation

I Microscopic properties of dense matter encoded in GW and
EM signal

[picture: Baiotti, Rezzola 1607.03540]

One good event (GW170817) and a few other events already
observed! [LIGO/Virgo, 1710.05832]
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Simulations with parameters chosen to match with GW170817

Soft EoS with M1/M2 = 0.7
[Tootle, Ecker, Topolski, Demircik, MJ, Rezzolla 2205.05691]

[Movie by K. Topolski]
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Details on quark formation
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Mechanical Toy Model

[Takami, Rezzolla, Baiotti 1412.3240]
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