Open heavy flavor in a hot bath

Gloria Montaña, Olaf Kaczmarek, Angels Ramos, Laura Tolós and Juan Torres-Rincón

Institute of Space Sciences

XQCD 2022

The 18th International Conference on QCD in Extreme Conditions

Exotic heavy mesons with unitarized effective theories

Heavy mesons in a hot medium

Open-charm Euclidean correlators

Conclusions

presentation based on G. Montaña PhD defense

Exotic heavy mesons with unitarized effective theories

There are many (excited) hadrons that do not accommodate in the qqq or $q\bar{q}$ picture. Other configurations allowed by QCD, e.g., $qqqq\bar{q}$, $qq\bar{q}\bar{q}$, etc., are called **exotic**.

Interaction between open heavy-flavor mesons and Goldstone bosons and unitarization via Bethe-Salpeter equation

V_{ii}(s) from Lagrangian at NLO in the chiral expansion and LO in the heavy-quark expansion

- [Liu, Orginos, Guo, Hanhart and Meißner (2013)]
 - [Tolos and Torres-Rincon (2013)]
- [Albaladejo, Fernandez-Soler, Guo and Nieves (2017)]
 - [Guo, Liu, Meißner, Oller and Rusetsky (2019)]

$$G_k(s) = \mathrm{i} \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_D^2 + \mathrm{i}\,\varepsilon} \frac{1}{(p-q)^2 - m_\Phi^2 + \mathrm{i}\,\varepsilon} \text{ regularized with a momentum cut-off } |\vec{q}| \leq \Lambda$$

Unitarization and Analytical Continuation

- leads to the dynamical generation of states
- cuts along the real-energy axis and poles in the complex-energy plane
- classification of the poles depending on their location in the Riemann surface:

bound states (RS-II), resonances (RS-II), and virtual states (RS-II)

Properties of the dynamically generated states:

- Mass $M_R = \operatorname{Re} \sqrt{s_p}$
- Width $\Gamma_R = 2 \mathrm{Im} \sqrt{s_p}$
- Coupling constants to the different g_i channels (from the residue around the pole)
- Compositeness $\chi_i = \left| g_i \frac{\partial G_i(s_p)}{\partial s} \right|$

Results: Dynamically generated states in the charm sector

6/22

Results: Dynamically generated states in the charm sector

7/22

Heavy mesons in a hot medium

Theoretical tools to study QCD matter at high temperatures

- Perturbative theories (very high temperatures)
- Lattice QCD
- Non-perturbative effective hadronic theories (below transition temperature T_c)

Heavy flavor

- Heavy quarks (mostly charm) are created in the initial stage of the collision
- Due to its large mass and relaxation time, heavy-flavor mesons are a powerful probe of the QGP
- The properties of heavy mesons, i.e., masses and widths, are modified in hot matter
- Understanding phenomena such as quarkonia suppression:

color screening

comover scattering

Mesonic bath in equilibrium at finite temperature

- Mesonic matter at temperature $0 < T < T_c$ and vanishing baryon density (produced in RHIC & LHC)
- Pions are the most abundant (lightest particles)
- Heavy mesons behave as Brownian particles scattering off the light mesons
- New processes are available: production and absorption of thermal mesons

Thermal effective hadronic theory

- Thermal scattering amplitudes
- Thermal spectral functions

The spectral function tells the probability that a particle with a certain momentum has a specific energy

It encodes information about the properties of the particle, i.e., its mass and decay width (or lifetime)

Thermal effective theory for open heavy-flavor mesons

Imaginary time formalism

• Sum over Matsubara $q^0 \to i \omega_n = i \frac{2n\pi}{\beta}$ (bosons), $\int \frac{d^4q}{(2\pi)^4} \to \frac{1}{\beta} \sum_n \int \frac{d^3q}{(2\pi)^3}$

Thermal production and absorption processes by weighted combinations of Bose-Einstein distribution functions $f(\omega, T) = \frac{1}{e^{\omega/T} - 1}$

Dressing of the mesons in the loop functions with their spectral functions

- Self-energy corrections to the heavy meson propagator
- Pion mass slightly varies below $T_c \longrightarrow$ Approximation: only the heavy meson is dressed

Thermal effective theory for open heavy-flavor mesons: self-consistency

Physical interpretation and cuts of the thermal propagator

$$\operatorname{Im} G_{D\Phi}(E, \vec{p}; T) = -\pi \int \frac{d^3q}{(2\pi)^3} \frac{1}{4\omega_D \omega_\Phi} \times \left\{ \underbrace{\left[(1+f_D)(1+f_\Phi) - f_D f_\Phi \right] \delta(E - \omega_D - \omega_\Phi)}_{+ \left[f_D f_{\Phi} - (1+f_D)(1+f_{\Phi}) \right] \delta(E + \omega_D + \omega_\Phi)} + \left[f_D (1+f_\Phi) - (1+f_D) f_\Phi \right] \delta(E + \omega_D - \omega_\Phi) + \underbrace{\left[(1+f_D) f_\Phi \right] - \left[f_D (1+f_\Phi) \right] \delta(E - \omega_D + \omega_\Phi)}_{|E| \ge (m_D + m_\Phi)} \right\}$$
Branch cuts along the real energy axis:

$$\operatorname{Im} E + \operatorname{Im} E + \operatorname$$

Results: Thermal loop functions

[GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Lett. B 806* (2020) 135464] [GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, *Phys. Rev. D 102* (2020) 9, 096020]

Results: Spectral functions and scattering amplitudes

Ground states

[GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, Phys. Lett. B 806 (2020) 135464] [GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, Phys. Rev. D 102 (2020) 9, 096020]

Dynamically generated states

Results: Thermal evolution of masses and widths

•

•

[GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, Phys. Lett. B 806 (2020) 135464] [GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, Phys. Rev. D 102 (2020) 9, 096020]

 $J^P = 0^{\pm}$

Results: Thermal evolution of masses and widths

[GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, Phys. Lett. B 806 (2020) 135464] [GM, A. Ramos, L. Tolos, J.M. Torres-Rincon, Phys. Rev. D 102 (2020) 9, 096020]

Open-charm Euclidean correlators

- Euclidean correlators are directly accessible in lattice QCD simulations •
- Meson spectral functions are related to meson temporal Euclidean correlators •

$$G_E(\tau, \vec{p}; T) = \int_0^\infty d\omega \, K(\tau, \omega; T) \, \rho(\omega, \vec{p}; T) \qquad \begin{cases} \text{Spectral function} \quad \rho(\omega; T) \\ K(\tau, \omega; T) = \frac{\cosh\left[\omega\left(\tau - \frac{1}{2T}\right)\right]}{\sinh\left(\frac{\omega}{2T}\right)} \end{cases}$$

 $G_E(\tau;T)$

Euclidean correlator \longrightarrow Spectral function (ill-posed)

- Bayesian methods (MEM)
- Fitting Ansätze

Spectral function — Euclidean correlator

Reconstructed correlator

$$G_E^r(\tau; T, T_r) = \int_0^\infty d\omega K(\tau, \omega; T) \rho(\omega; T_r) \longrightarrow \frac{G_E(\tau; T)}{G_E^r(\tau; T, T_r)}$$

Euclidean correlators from the effective field theory

Full spectral function: $\rho(\omega;T) = \rho_{\rm gs}(\omega;T) + a \rho_{\rm cont}(\omega;T)$

19/22

with a weight parameter $a = \{0, 1, 10\}$

Results: Spectral functions at unphysical meson masses

[GM, O. Kaczmarek, L. Tolos, A. Ramos, Eur.Phys.J.A 56 (2020) 11]

Lattice setup in Kelly et al. :

	$m_{\pi} \; ({\rm MeV})$	$m_K \ ({\rm MeV})$	$m_{\eta} \; ({\rm MeV})$	$m_D \ ({\rm MeV})$	m_{D_s} (MeV)
Lattice	384	546	589	1880	1943
Physical	138	496	548	1867	1968

[Kelly, Rothkopf, Skullerud (2018)]

Ground-state spectral functions using unphysical meson masses:

Results: Euclidean correlators and comparison with lattice QCD

- The continuum improves the behavior at small **Euclidean times**
- Agreement at the lowest temperature $(0.76 T_c)$
- Deviation at larger T: excited states? Kaonic
- Above T_c the EFT breaks down

Conclusions

- Effective field theories allow to describe the dynamics of heavy mesons in the non-perturbative regime.
- We have extended the effective field theories describing the scattering of open heavy-flavor mesons off light mesons to finite temperature in a self-consistent way.

Thermal effects: heavy-meson **masses decrease moderately** while the **decay widths increase substantially** with increasing temperatures. **Pions** provide the main contribution (most abundant mesons in the bath).

• **Euclidean correlators** computed from spectral functions at unphysical meson masses are in agreement with lattice QCD results below the QCD transition temperature.

Discrepancies close to T_c possibly indicate the missing contribution of higher-excited states and the kaons of the bath.

