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MAGNETIC FIELDS IN HEAVY-ION COLLISIONS

Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
in the transverse plane for an impact parameter b = 10 fm ¢ Deng and Huang
2012.
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Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
in the transverse plane for an impact parameter b = 10 fm ¢ Deng and Huang
2012.

Caveats:
» B and E are highly non-homogeneous.
» A real E leads to sign problem.

* No Minkoswki time evolution from
Euclidean simulations.
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Figure 2: Spatial distributions of the electric (right) and magnetic (left) fields
in the transverse plane for an impact parameter b = 10 fm ¢ Deng and Huang
2012.

Caveats: What can we do?

» B and E are highly non-homogeneous.

» A real E leads to sign problem. B(z) as .
No Minkoswk ti \ution § background in
o Minkoswki time evolution from lattice QCD! .

Euclidean simulations.
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* Improved staggered fermions with Ny = 2 4 1 flavors and
physical masses;

o Lattices: 162 x 6 243 x 8 283 x 10 363 x 12 —
continuum limit (lattice spacing — 0, V' = const.);

» Number of gauge confiigurations ~ O(200) - O(700);

» Magnetic field
B B 3’/TN1,

z eB= ———
Cosh(m _ Lz/2)2 Lye tanh (5z)
€

strength 0 GeV < veB < 1.2 GeV;

€~ 0.6 fm

» Temperature range 68 MeV < T < 300 MeV (crossover transition

at T, ~ 155 MeV).
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* Local Polyakov loop
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* Local electric currents (u, d and s quarks!)
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* Inverse catalysis for T around T, ¢ Endrédi et al. 2019
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Figure 6: Lattice electric currents for LHC-like (veB = 0.5 GeV) and
RHIC-like (veB = 0.1 GeV) magnetic fields, respectively.
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(dips, steady eletric currents, etc.);

Electric currents are prominent for LHC-like magnetic fields and
stronger;

Using J.. and Maxwell’s equations we introduced a new method to
compute xm;

Our . corroborates the picture of weak diamagnetism in QCD for
T < T. and strong paramagnetism for T' > T;

The knowledge of these processes is important to capture the correct
physics in heavy-ion collision studies (QCD models, hydrodynamics,
etc.);

More on electromagnetic
fields in lattice QCD:
posters by

J.J. H. Hernandez E. Garnacho Velasco
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