

薄膜プラスチックシンチレータを用いた KOTO実験用荷電粒子検出器の性能評価

小野 啓太 (大阪大学) 第30回ICEPPシンポジウム

2024/02/20

J-PARC KOTO experiment

- Highly suppressed in SM ($BR_{SM} = 3 \times 10^{-11}$) •
- Small theoretical uncertainty (~2%)
- $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay has **NOT** been observed yet $\mathscr{B}(K_L \to \pi^0 \nu \bar{\nu}) < 2.0 \times 10^{-9}$ (Preliminary) with KOTO 2021 data

Signature of this signal $(\pi^0 \rightarrow) 2\gamma \rightarrow Csl calorimeter$ Nothing - Veto detectors

Search for the rare CP-violating $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay at J-PARC Sensitive to new physics

in the beam from 2021 (Upstream Charged Veto) • K^+ BG level(2021 data): $\#BG(K^+)/\#Signal(SM) = 1.1$

Previous UCV

0.5-mm-thick scintillating fiber Silicon photo-sensors (MPPCs)

- Detector is tilted by 25° to reduce inefficiency
 - Inefficiency = 7.8×10^{-2} K+BG rejection : 1/13

New version of UCV (filmUCV)

Developed the new version of UCV (FilmUCV)

- Requirements
- Reduce the probability of interaction of neutral particles in UCV Raise the detection efficiency against charged particle

jOa **Inefficiency**: K^+ BG rejection: $\sim 1/13 \Rightarrow 1/100$

Thinner + More Sensitive detector

- Todav Previous $8\% \Rightarrow 1\%$

• Reflect and collect light with $12 \,\mu m$ thick Al mylar

Check of yield of the light escaping from the scintillator Checked the yield of the light escaping from scintillator film with prototype Compared the light yield 1. w/ mask : light yield propagating inside the film 2. w/o mask : collected light by Al-mylar reflections, in addition

Got ×5.5 light yield

Design of filmUCV

- Size : 160 mm × 160 mm
 ⇒ large enough to cover the beam
- Structure of reflector
- ⇒ Collect photons with a few reflections
- Read out by several PMTs

⇒ Good S/N, Radiation hard (⇔ MPPC)

• Al Mirror outside of photocathode \Rightarrow increases light yield (× 1.25)

Design of reflector

• Make this structure by $12 \,\mu \text{mT}$ Al mylar

• Use 7 PMTs per side \Rightarrow 14 PMTs in total

mm 160 mm

60

Installation of filmUCV

- Installed a new version of UCV(FilmUCV) in May 2023
- Installed movable trigger counters at the same time

10

In Summer 2023, we took the data for FilmUCV

to evaluate Performance of FilmUCV directly .Movable trigger counter _

What we wanted to check about filmUCV using 2023 data

1. Performance of filmUCV (light yield, inefficiency)

2. Increase of probability of losing signal events (Accidental loss)

- Due to ① High counting rate of FilmUCV itself

2 Scattered neutral particle hitting other veto detector (on going)

3. Increase of other backgrounds

- Due to scattering of neutral particle

⇒ check the change of increase thanks to less material budget

Performance of filmUCV

Special data taking for performance evaluation Took the special data to evaluate FilmUCV performance directly in 2023 run Schematics of beam line : **Physics run** Beam plug (Brass) π, μ, e n, γ, K_L **FilmUCV** Magnet(**ON**)

(MC)

Physics run $F_{\text{charged}}/F_{\text{neutral}}$ 3.6 × 10⁻⁴

- 1. Turned OFF Magnet
- 2. Closed beam plug

Enhanced Minimum Ionizing Particles(MIPs)

14

- 1. Turned OFF Magnet
- 2. Closed beam plug

3. Trigger : coincidence of movable trigger counters

Can collect the data efficiently that MIPs pass through FilmUCV

Definition of light yield and timing

Light yield : Peak height = Maximum - Pedestal **Timing** *T*[*j*] : the timing that exceeded the half of Peak height (Constant Fraction Timing)

Evaluation of light yield and inefficiency

Light yield = Peak Height Time = Constant Fraction Time

Light yield

- Find peak in each channel in a 20 ns time window •
- Convert Peak height to # of photoelectrons with 1p.e. calibration data
- Calculate total light yield of UCV by summing for each channel

Inefficiency

• Inefficiency =

of event (< threshold)</pre>

of total event

Result of light yield and inefficiency

Obtained the performance as expected

Evaluation of timing resolution

- Calculated Constant Fraction Timing T[j] for each channel
- Calculated the FilmUCV timing (T_{UCV})
- **Definition : Average weighted by light yield**

 $T_{\text{UCV}} = \frac{\Sigma T[j] \cdot N_{\text{p.e.}}[j]}{\Sigma N_{\text{p.e.}}[j]}$ T[j] : timing of channel j $N_{p.e.}[j]$: light yield of channel j • Timing $\Delta t = T_{\rm UCV} - T_{\rm Trigger \, counter}$

By subtracting the timing resolution of Trigger counter ($\sigma_{\text{Trigger counter}} = 0.38 \text{ ns}$)

Accidental loss of filmUCV

Evaluation of accidental loss at filmUCV

$$L = 1 - \exp(-Rw)$$

• Calculated *R*

	١	١			I	١	Ì	1	
	1	١	١	I			١	١	J
		1	v					١	/
			ſ]
Ĩ			f						1
	1		ï	1	1	1	1	1	1
•	•	•	÷	•	•	•	•	•	1
			ŧ						
			ï						1
			;						
			ï						1
			÷						
			i						J
			ï						1
			;						
			÷						
			1						
			i						l
			-						ł
•	•	•	ķ	•	•	•	•	•	ł
•	•	•	ł	•	•	•	•	•	ł
•	•	•	ļ	•	•	•	•	•	ł
			i						J
			÷						
•	•	•	ķ	•	•	•	•	•	ł
			÷						
•	•	•	ļ	•	•	•	•	•	ł
			i						
			i						
•	•	•	ķ	•	•	•	•	•	ł
			i						
			i						
			i						
			i						
•	•	•	ķ	•	•	•	•	•	ł
•	•	•	Ì	•	•	•	•	•	1
	1		Ì	1	1	1	1	1	1
			Ĩ						1
	•		Ì	•	•	•	•	•	1
•	•	•	ķ	•	•	•	•	•	ł
			i						
			Ĩ						1
			÷						
•	•		Ì	•	•	•	•	•	1
			i						
			i						
	1		ì	1	1	1	1	1	1
			i						
			1						
			i						
			l						

Rejection power against *K*⁺ BG

• When Setting threshold = 0.4 MIP,

Accidental loss : 2.65% Inefficiency : $(4.8 \pm 0.2) \times 10^{-4}$

K^+ BG rejection w/ FilmUCV $#BG(K^+)/#Signal(SM):$ 0.007

Can eliminate K⁺ background

Increase of other backgrounds

Increase of other backgrounds Neutral particles (K_L , n) are scattered in UCV \Rightarrow **Increased 2 types of backgrounds** 1. Halo $K_L \rightarrow 2\gamma$ background

Increase of neutron background Goal # of neutron BG \propto neutron flux

 \Rightarrow Check change of neutron flux thanks to the change of UCV's material budget

• Estimated neutron flux using physics data

$(0.5 \text{ mmT} \rightarrow 0.2 \text{ mmT})$

Result of neutron flux comparison Comparison of neutron flux

 \Rightarrow Same as expectation within uncertainty

Conclusion

• Installed new charged particle detector using 0.2 mmT scintillator (filmUCV)

Performance

- Light yield : 18.8 p.e./MIP ✓
- Timing resolution : 1.01 ns

- Inefficiency: $(4.8 \pm 0.2_{\text{stat.}-1.0}^{+0.15}_{\text{syst.}}) \times 10^{-4}$ at 0.4 MIP threshold \checkmark \Rightarrow Can eliminate K^+ BG

Accidental loss

- Accidental loss : 2.6 % — Under investigation

Increase of other background

- Same as expectation for neutron background

Backup

CKM matrix

$$V_{ ext{CKM}} \equiv \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \ = \left(egin{array}{ccc} 1 - \lambda^2/2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{array}
ight) + O(\lambda^4)$$

- $A = 0.836 \pm 0.015$

$$\begin{split} \lambda &\equiv \frac{|V_{us}|}{\sqrt{|V_{ud}|^2 + |V_{us}|^2}} \\ A &\equiv \frac{1}{\lambda} \left| \frac{V_{cb}}{V_{us}} \right| \\ \rho &\equiv \Re \bigg\{ \frac{V_{ub}^*}{A\lambda^3} \bigg\} \\ \eta &\equiv \Im \bigg\{ \frac{V_{ub}^*}{A\lambda^3} \bigg\} \end{split}$$

 $\lambda = 0.22453 \pm 0.00044$ $ar{
ho} = 0.122^{+0018}_{-0.017}$ $ar{\eta} = 0.355^{+0.012}_{-0.011}$

Amplitude of $K_L \to \pi^0 \nu \bar{\nu}$ decay

$$A(s \to d\nu\bar{\nu}) \sim \frac{m_t^2}{M_W^2} \lambda_t + \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m_c} \lambda_c - \frac{m_c^2}{M_W^2} \ln \frac{m_c}{m_c} \lambda_c - \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m_c} \lambda_c - \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m$$

Large contribution due to the large mass of top (68%)

$$A\left(K_L \to \pi^0 \nu \bar{\nu}\right) \sim \frac{1}{\sqrt{2}} \left(A\left(K^0 \to \pi^0 \nu \bar{\nu}\right) - A\right)$$
$$\propto V_{ts} V_{td}^* - V_{ts}^* V_{td}$$
$$\sim -A\lambda^2 (A\lambda^3 (1 - \rho + i\eta) - A\lambda^2 (A\lambda^3 (1 - \rho + i\eta)) - A\lambda^2 (A\lambda^3 (1 - \rho + i\eta)) - A\lambda^2 (A\lambda^3 (1 - \rho + i\eta))$$
$$= -i2A^2\lambda^5 \eta$$
$$\propto \eta.$$

 \overline{d}

 $\bar{\nu}$

PMT used in FilmUCV

R14095-01

- Compact PMT (ϕ 52mm)
- Can count single photoelectron
- 10 stage dynode
- No assembly type
- QE = 28% at 420 nm

-> Current PMT base was prepared by A.Kitagawa(Osaka University)

How to move

I did not want to use a spring or something with wire… but

System of a both-end fixed wire and pulleys can transfer vertical movement of rod to the horizontal movement of trigger counters

1 p.e. calibration

Assembly of Al mylar Divide it into two parts

• Fold red line and fix parts of orange to holder with Kapton tape

Data taking in Summer 2023

- Beam usage : 1 night @ 30 kW, ~1 day @ 50 kW
- Accumulated physics data : 1.4×10^{17} POT (0.5% of 2021 data)

-Minimum Goal of the beam time

- Evaluation of performance of filmUCV (including UCV effect)
- Establishment of newDQ

Correlation between right and left

Light yield (IntegratedADC)

Distribution of # of photoelectron

• Light yield : MIP peak = (32.48 ± 0.03) p.e./MIP (IntegratedADC)

• Next page : inefficiency, comparison between peak height and IntegratedADC

41

Comparison

• No large difference between IntegratedADC and peak height in terms of inefficiency

Systematic uncertainty of effect of 2 MIP effect

- Counted # of charged particles passing through filmUCV at vacuum layer at first \Rightarrow The events of ≥ 2 charged particles : 8% (Don't consider quenching effect) But there is no clear MIP contribution in Data -> a few % at most
- Decided uncertainty as the change when 2MIP contribution is subtracted

$$0.97\eta_{\text{true}} + 0.03\eta_{\text{true}}^2 = \eta_{\text{Measure}} \qquad \eta_{\text{true}} \\ \eta_{\text{Measure}} \qquad \eta_{\text{Measure}} \qquad \eta_{\text{Measure}}$$

: True inefficiency against 1 MIP sure : Measured inefficiency

Effect of underestimation : Fake inefficiency

- Fake event :
 - \Rightarrow Fake event : 0.01 % (Don't consider quenching effect)

Estimation of halo K_I flux (1)

Estimate halo K_L flux using $K_L \rightarrow 3\pi^0(6\gamma)$ decay

- High Branching Fraction (20%)
- Require 6 clusters in Calorimeter -> small background

Best mode for halo K_L flux measurement

Estimation of halo K_I flux (2) Definition of halo K_I events • Use the Radius of Center Of Energy (RCOE) $RCOE = \sqrt{X_{COE}^2 + Y_{COE}^2} \qquad X_{COE} = \frac{\sum x_i E_i}{\sum E_i} \qquad Y_{COE} = \frac{\sum y_i E_i}{\sum E_i}$ Halo K_L Events = Events with (RCOE > 200 mm) Example of RCOE distribution h2 Entries 325 10' 274. Mean 6γ 62.7 Std Dev 10 HaloK Event (RCoE > 200 mm) 10⁵ $3\pi^0$ K_L 10⁴ 10³ 10² 10 50 100 15 50 300 350 400 450 500 200 RCOE [mm]

Current result of comparison of Halo K_I flux

RCOE distribution in RUN90

 $[O(10^{-5})]$ Rhalo/core

Comparison of $R_{halo/core}$

 $\frac{\Delta F^{\text{RUN90}}}{\Delta F^{\text{RUN87}}} = 0.45 \pm 0.38 \quad \text{(Expectation: } \frac{0.224 \text{ mmT(Sci. + mylar)}}{0.55 \text{ mmT(25^{\circ} tilted)}} = 0.41\text{)}$

Both-end Read out

Control data for neutron background

Neutron background

Physics data with inverse neutron cuts

Control data

Control data (Al target data)

Latest result of $K_I \rightarrow \pi^0 \nu \bar{\nu}$ search

- No signal candidates were observed in the signal region.
- Set the upper limit to be BR(K_L→π⁰νν) < 2.0×10⁻⁹ at 90% confidence level.
 - Corresponding to SES×2.3 based on Poisson statistics.

This result was firstly presented at IPNS and J-PARC Joint seminar on September 6, 2023

 $\pi^0 \mathbf{P}$

Rec.

We are preparing the paper of the 2021 data analysis.

https://kds.kek.jp/event/48881/contributions/252904/attachments/175352/231977/KOTO_pac37-rel.pdf

Background table in 2021 data analysis

Source	
Upstream π ⁰	0.064
K∟→2π ⁰	0.060
K±	0.043
Scattered and halo $K_{L}(\rightarrow 2\gamma)$	0.022 0.018
Hadron cluster BG	0.024
η production in CV	0.023
Sum	0.255

https://kds.kek.jp/event/48881/contributions/252904/attachments/175352/231977/KOTO_pac37-rel.pdf

Estimated value

- $\pm 0.050 (stat.) \pm 0.006 (syst.)$
- ± 0.022 (stat.) $^{+0.051}_{-0.060}$ (syst.)
- ± 0.015 (stat.) $^{+0.004}_{-0.030}$ (syst.)
- ± 0.005 (stat.) ± 0.004 (syst.)
- ± 0.007 (stat.) ± 0.004 (syst.)
- ± 0.004 (stat.) ± 0.006 (syst.)
- $\pm 0.010 (stat.) \pm 0.006 (syst.)$

 ± 0.058 (stat.) $^{+0.053}_{-0.068}$ (syst.)

Inefficiency measurement using $K^+ \rightarrow \pi^+ \pi^0$

• 3 clusters in the calorimeter 1 charged particle hit in the charged veto detector (CV) No energy deposition in any other veto detectors

